用户名: 密码: 验证码:
裂隙岩体应力—损伤—渗流耦合理论、试验及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体内部富含各种缺陷,包括微裂纹、孔隙以及节理裂隙等宏观非连续面,这些存在的缺陷不但大大地改变了岩体的力学性质,而且也严重影响着岩体的渗透特性,因而裂隙岩体具有复杂的力学特性和渗透特性。应力-损伤-渗流耦合是指裂隙中的渗流水压力加剧岩体裂隙的起裂、扩展、贯通,导致岩体中应力场和损伤场的改变;而岩体应力的改变和岩体裂隙的损伤扩展,又导致裂隙岩体渗透特性变化,进而改变渗流场的分布。
     本文重点研究了裂隙岩体的应力-损伤-渗流耦合过程,揭示了岩体裂隙在应力-损伤-渗流耦合状态下裂隙的起裂、扩展、贯通规律,探求了裂隙岩体在应力-损伤-渗流耦合状态下由于其裂隙的扩展贯通而导致破坏的机理,进而揭示了含水裂隙岩体失稳破坏的原因。该耦合理论在预防采矿工程中的矿井突水、水利水电工程中的大坝失稳破坏以及水下隧道工程突(涌)水等方面有着广泛的应用前景。
     本文结合国家重点基础研究发展973计划项目(2007CB209402:矿井突水的动力学特征及控制因素)和山东省黄金集团相关科研项目的共同资助下开展理论和应用研究,主要开展的研究工作如下:
     (1)理论分析研究:将断裂力学和损伤力学相结合,对渗透水压作用下裂隙岩体的损伤断裂力学性质进行研究;探讨压剪、拉剪应力状态下及渗透水压力作用下裂隙岩体中张开型裂纹闭合、起裂、分支裂纹扩展、相邻裂纹间岩桥断裂破坏及贯穿等的规律;给出渗透水压力-压(拉)剪应力共同作用下岩石裂隙变化发展规律。
     (2)力学试验研究:设计制作含预置裂纹圆柱体岩石试样(φ50mm×100mm)的模具,可根据需要制作单、双预置裂纹的类岩石试件;在原有2000KN伺服试验机设备的基础上,设计开发三轴室、水压加载系统和围压加载系统,改进后的试验装置可完成完整类岩石试件应力应变-渗透率试验和渗透水压-应力耦合作用下含预置裂隙岩石试件破坏过程的试验;进行含预置裂隙类岩石试件的常规单轴试验并使用声发射仪对试验过程进行监测,并用离散元软件PFC对单轴试验过程进行数值模拟;运用RFPA-flow模拟分析在渗透水压力作用下,含预置裂隙岩石的破坏过程,并与试验结果进行了对比,通过应力场和渗流场的图形显示观察到岩石试件中裂纹的萌生、扩展、贯通直至整个结构破裂的全过程。
     (3)本构推导研究:研究拉、压剪应力及渗透水压力共同作用下,裂隙岩体的损伤演化特性;推导考虑渗透水压力作用的裂隙岩体弹塑性断裂损伤本构关系方程和裂隙岩体损伤演化方程;建立应力-渗流-耦合作用下裂隙岩体渗透张量演化方程。
     (4)物理模拟研究:以海下开采矿井突水灾害为研究目标,开发设计“矿山突水机理及渗流特性研究试验机”。采用重晶石粉、液体石蜡、固体石蜡和河沙等材料配置用于模拟流固耦合相似物理模型试验的非亲水性相似材料;以三山岛海下开采为工程实例,针对海下矿山开采的最小顶板安全厚度问题进行相似物理模拟试验研究;试验结果证明该试验系统的研制对于考虑渗流-应力耦合作用的深部开采承压突水的宏细观机制试验和理论研究具有重要的理论意义和实用价值。
     (5)数值分析研究:推导出包含离散介质和拟连续介质的双重介质渗流应力耦合模型;详细介绍了有限元程序自动生成系统FEPG的原理、文件组成以及使用方法等。
     根据裂隙节理调查数据,利用Monte-Carlo模拟技术生成岩体裂隙网络,通过VB编写程序将裂隙面控制点坐标导出,再用Ansys调用裂隙面控制点坐标文件,使用Ansys对整体裂隙岩体进行网格划分,然后将所建数值模型导入FLAC3D,运用FISH编写孔隙-裂隙岩体介质流固耦合分析计算程序,数值模拟的最终结果通过Tecplot软件输出。
     (6)工程应用研究:编写SURPAC三维地质模型转化为FLAC3D数值计算模型的接口程序,实现SURPAC三维地质模型与数值模拟的耦合,使快速、便捷地建立较复杂的FLAC3D计算模型成为现实;然后运用FISH扩展建立了基于FLAC3D的裂隙岩体渗流应力耦合计算程序。后处理在TECPLOT和SURFER中完成,通过接口程序FLACTOTECPLOT.dat将FLAC3D计算结果导入TECPLOT软件进行后处理。此外,用FISH编制小程序实现数据的倒换至SURFER中,绘制孔隙水压力的等高线图形。
Jointed rock mass is rich in a variety of internal defects such as micro-cracks, pores, fissures and other discontinuous macro-joints etc. The jointed rock mass usually possesses very complex mechanical properties and permeability characteristics because the existence of those defects will not only dramatically change the mechanical properties of the rock mass, but also seriously affect its permeability. On the one hand, fracture seepage water pressure will intensify the crack's opening, extension and the linking between each other, resulting in the change of stress field and damage field of rock mass; on the other hand, the stress level and the extension of rock mass fractures will lead the change of fractured rock permeability and the distribution of seepage field in rock mass. This kind of interaction described above is called the stress-damage-seepage coupling.
     In this paper, the process of the seepage in the stress-damage-seepage coupling state has been strongly researched. The studies reveal the law of fracture's initiation, extension and the linking of rock fissures, and explore the damage mechanism of the fractured rock in the stress-damage-seepage coupling state. The reasons of in-stabilized destruction of water-bearing fractured rock mass are explained as well. The proposed coupling theory has a great application prospect in the mining engineering, the dam construction and underwater tunnel project to prevent from water inrush.
     The achieved researches in this paper have been supported financially by the National Key Basic Research and Development 973 project (No.2007CB209402:Dynamic characteristics and controlling factors of the water-inrush in mine) and the related research project with SHAN DONG Gold Group CO LTD. This paper mainly includes the following research contents:
     (1) Research on theoretical analysis:The fracture mechanical properties of jointed rock mass under the seepage water pressure is studied by the combination of fracture mechanics and damage mechanics. For the open type of cracks, the law of crack's closure or initiation, the law of branch crack's propagation, and the penetration and fracture laws of rock bridges between the adjacent cracks are discussed under the pressure-shear stress and the presentation of water pressure. The theoretical basics on the rock fracture and damage under the coupling action of seepage water pressure and pressure-shear stress are established.
     (2) Research on mechanics test:A model is studied and designed to make the pre-crack cylindrical rock samples ((?)50mm×100mm) with a single crack or with a pair of cracks according to the real needs. A high-precision universal seepage experimental device is developed on the basis of 2000KN servo testing machine. The modified equipment can help to measure the rock permeability by using fixed-level method or flow method at high confining pressure and high pore water pressure conditions. The software PFC is used to simulate and analyze the failure process under pore water pressure of non-uniform medium such as rock mass containing holes, cracks and grain, etc. The accordance between the numerical results and the test results is studied. The full process of the crack's initiation, expansion, linking up and even the breakdown of the entire structure are displayed and observed graphically in the stress field and seepage field.
     (3) Research on constitutive relation:The damage evolution of fractured rock under the coupling effect of tensile, compressive and shear stress and seepage water pressure is studied. The damage constitutive equations of elasto-plastic fracture and the damage evolution equations for the jointed rock mass under the consideration of the osmotic water pressure are derived. The damage constitutive tensor equations of elasto-plastic fracture are established under the coupling action of seepage and stress.
     (4) Research on physical simulation:A test system to study mine water inrush mechanism and seepage characteristics in mining engineering is developed and designed. Based on the above derived constitutive equations, a three-dimensional fluid-structure interaction model for Shandong Sanshandao Gold Mine is constructed. Theoretical calculation and numerical simulation analysis of mine water inrush caused by under seabed mining-induced seepage in jointed rock mass.
     Barite powder, liquid paraffin, solid paraffin, sand and other materials are selected and mixed up with proper proportion to make a non-hydrophilic material, which is used to build the fluid-structure coupling similar physical model. The minimum safe mining roof thickness for Shandong Sanshandao Gold Mine is studied by the similar physical model test under the consideration of seepage-stress coupling. The results show that the developed test system has important theoretical significance and practical value both in micro-macro tests and theoretical studies of deep mining water inrush mechanism.
     (5) Research on numerical analysis:The seepage stress dual-medium coupling model is derived with both discrete medium and quasi-continuous medium. The theory, source files and application methods of Finite Element Program Generator (FEPG) are introduced in detail.
     According to the survey data of fractured joints, the Monte-Carlo simulation technique is used to generate fracture network, then the coordinates of control points for the crack plane are derived through the VB programming. The file of the coordinates is directly called by ANSYS. The whole fractured rock mass is divided into grids with ANSYS, then the meshed numerical model is imported into FLAC3D. The numerical procedures of the fluid-structure interaction analysis and calculation are developed by using FISH. The final numerical results are pulled out by TECPLOT software.
     (6) Research on engineering application:The interface program that transits SURPAC three-dimensional geological model into FLAC3D numerical model is developed, which makes the coupling of the SURPAC three-dimensional geological model and numerical simulation to be possible and help to build complex computational FLAC3D model quickly and easily. The use of FISH is then extended to stress-coupling calculations based on FLAC3D seepage in fractured rock. Post-processing is completed in the TECPLOT and SURFER, e.g. the FLAC3D results are input into TECPLOT software through the interface program FLACTOTECPLOT.dat. Moreover, the data can be switched to SURFER by small program developed in FISH, the visual contours of pore water pressure can be draw.
引文
[1]盛金昌、速宝玉,裂隙岩体渗流应力耦合研究综述,岩土力学,1998.6,No2,92-98.
    [2]件彦卿,张悼元.岩体水力学导论[M],成都:西南交通大学出版社,1995.
    [3]Wang J A, Park H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering Geology,2002,63(7):291-300.
    [4]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社.1992.
    [5]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社.1993.
    [6]Griffith, A.A.The phenomena of rupture and flow in solids, Phil. Traps. Royal Soc [J].London, Series A,221,163,1921.
    [7]Griffith, A A, The theory of rupture Proceeding of 1 st International congress applied Mechanics [J].1st Delft,55-63,1924.
    [8]刘庭金.混凝土及岩土材料破坏过程的弹塑性各向异性损伤数值模型及其应用[博士学位论文][D].同济大学.2004.
    [9]Poston. T., Stewart, I. Catastrophe Theory and Its Applications [J]. Pitman, London, Sanfrancissco, Melbourne,1978.
    [10]Lajtai E Z. A theoretical and experimental evaluation of the Griffith theory of brittle fractwe[J].Tectonophysics,1971,11(1):129-150.
    [11]Lajtal E. Z. Brittle Fracture in compression [J].Int. Frac.1977.10(4).
    [12]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000(9):573-576.
    [13]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩体力学.2000,21(1):64-67.
    [14]Bazant Z P, Oh B H. Crack band model for concrete [J].Materials and Structures (RILEM),1983(16):155-177.
    [15]Jeffrey R q Mills K W. Hydraulic fracturing applied to inducing longwall coal mine goaf falls [J]. Paciffic RocK Girard, Liebman, Breeds, Doe (Eds). Balkema, Rotterdam.2004,23-430.
    [16]Keivan N. Discrete versus smeared versus element-embedded crack models on ring problem [J].Journal of Engineering Mechanics,2000(4):307-314.
    [17]Bruno M S, Nakagawa F M. Pore Pressure influence on tensile fracture propagation in sedimentary rock [J]. Int. J. Rock Mech.Min. Sci.Geomech. Abstr, 1991,28(4):261-273.
    [18]Vandamme M, Roegiers J C. Poroelasticity in hydraulic fracturing simulators [J]. JPT,1990,1199-1203.
    [19]Dournary E, Mclennan et al. Poroelastic concepts explain some of the hydraulic fracturing mechanism [J]. SPE 1990,15-62.
    [20]Thallk S, Rothenbury L, Dusseault M. Simulation of multiple hydraulic fractures in a discrete element system. Rock mechanics as a multidisciplinary science. Roegiers (eds).Balkema,Rotterdam, Proceedings of the 320d U.S. Symposium,1991,271-280.
    [21]Kachanov, L. M. Time of the Rupture Process under Creep Condition [J]. Iiv. Akad. Nauk, S.S.R, Otd Tekh. Naul, No.8 1958.
    [22]Lemaitre, J., Chaboche, J. L.Aspect Phenomenologique de la Rupture Par Endommagement [J].J.de Mec.Appl.1978,2,(3).
    [23]Chaboche, J. L., Lifetime Predictions and cumulative Damage under High Temperature Conditions. Int. sump. On Low Cycle Fatigue and Life Prediction [J]. Firming. France, ASTM STP1980 (770).
    [24]Chaboche, J. L., Continuous Damage Mechanics:A Tool to Desscribe Phenomena Before Crack Initiation, Nuclear Engineering and Design[J].1981(64):233-247.
    [25]Kraicinovic, D., and Fonseka, G. U., The continuous Damage Theory of Brittle MaterialsPart 1 and 2[J]. ASME J Apple. Mech.,1981(48):809-24.
    [26]Kraicinovic, D., and Silva, M.A.G, Statistical Aspects of the Continous Damage Theory [J]. Int J. Solids Structures,1982(18):7.
    [27]Kraicinovic, D.Continuum Damage Mechanics [J]. Appl. Mech. Reviews, 1984(37):1.
    [28]Dougil J W, Lau J C, Burt N J. Toward a theoretical model for progressive failure and softening in rock,cincrete,and similar materials[J].Mech.In Engng., ASCE,1976,335-335.
    [29]Dragon Z, Mroz A. Continum model for plastic-brittle behavior and concrete [J].Int.Engng.Sci,1979,17:121-137.
    [30]Curtin W.A. and Scher H., Britle fracture in disordered materials:a spring network model [J].J.Mater. Res.,1990,5:535-550.
    [31]Cumin W.A., Ahn B.K.and Taketa N., Modeling brittle and tough stress-strain behavior in Unidirectional ceramic matrix composites[J].Acta M ater.1998,46:3409-3420.
    [32]Krajcinovic D, Sumaral D. A Mecsomechanical Model for Brittle Deformation Processes:Part Ⅰ and Ⅱ, ASME J Appl. Mech.1989 (56):51-62.
    [33]Kachanov, L. M. Time of the Rupture Process under Creep Condition [J]. Iiv. Akad. Nauk, S.S.R,Otd Tekh. Naul, No.8 1958.
    [34]Lemaitre, J., and Chaboche, J. L.,Aspect Phenomenologique de la Rupture Par Endommagement, J. de Mec. Appl.,19782, (3).
    [35]Chaboche, J. L., Lifetime Predictions and cumulative Damage under High Temperature Conditions. Int. sump. On Low Cycle Fatigue and Life Prediction, Firming. France, ASTM STP1980 (770).
    [36]Chaboche, J. L., Continuous Damage Mechanics:A Tool to Desscribe Phenomena before Crack Initiation, Nuclear Engineering and Design.1981 (64):233-247.
    [37]Kawamoto T. Damage and fracturing of discontinous rock mass and fointed rockmass[C].Proc. Int. Symp. On Engng. In Complex Rock Formations, Beijing, 1985:506-513.
    [38]Murakami S. Mechanical Modeling of Material Damage[J].ASME J. Appl. Mech.1987(55):280-286
    [39]Atkinson B K, Meredith P G. The Theory of Subcritical crock Growth with Applications to Minerals and Rocks. Fracture Mechanics of Rock. Atkinson B Ked. London:Academic Press,1987,111-166.
    [40]孙卫军,周维垣.节理岩体的弹塑性损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119.
    [41]杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩体工程中的应用[博士学位论文][D].清华大学,1990.
    [42]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学性质-本构模型[J].岩土力学,1993,14(4):108-119.
    [43]李广平,陶震宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报.1995,17(1):24-31.
    [44]周小平.卸荷岩体本构理论及其应用[M],北京:科学出版社,2007.
    [45]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报.1995,14(3):236-245.
    [46]谢和平.大理岩微观断裂的分形模型研究[J].科学通报.1989,34:(5).
    [47]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报.1991,10(1):1-9.
    [48]谢和平,D. J.Sanderson, D. C. P. Peacock.雁行断裂分形模型和能量耗散[J].岩土工程学报.1994,16(1):1-7.
    [49]凌建明.节理岩体损伤力学及时效损伤特征的研究[博士学位论文][D].同济大学,1992.
    [50]叶黔元.岩石的内时损伤本构模型[J].第四届全国岩土力学数值方法与解析方法会议论文集,武汉:武汉测绘技术科技大学出版社,1991,85-90.
    [51]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅰ):各向异性损伤本构模型[J].岩土力学,2005,26(5):779-783.
    [52]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅱ):各向异性渗透系数张量及算例[J].岩土力学,2005,26(12):1996-2000.
    [53]韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅰ):理论模型[J].岩土力学,2006,27(3):428-434.
    [54]张嘉翔,韦立德,陈从新,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅱ):三轴压缩应力状态下理论模型及算例[J].岩土力学,2007,28(2):241-246.
    [55]朱珍德,孙均.裂隙岩体非稳定渗流场与损伤场辐合分析模型[J].水文地质工程地质.1999,26(2):35-42.
    [56]朱珍德,等.裂隙岩体的渗流场与损伤场耦合分析及其工程应用[J].长江科学院院报.1999,16(2):22-27
    [57]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩体力学.2000,21(1):64-67.
    [58]郑少河.裂隙岩体渗流场—损伤场耦合理论研究及工程应用武汉[D].中国科学院武汉岩土力学研究所博士论文,2004.
    [59]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社.2005.
    [60]杨天鸿.岩石破裂过程的渗流特性-理论、模型与应用[M].北京.科学出版社.2004.
    [61]赵延林.裂隙岩体渗流-损伤-断裂耦合理论及应用研究[博士学位论文][D].中南大学,2009.
    [62]Hult J., Janson J. Fracture Mechanics and Damage Mechanics-A [J].Combined Approach. J. Me canique Appliq ee,1977,(1):69-84.
    [63]Leglndre D, Mazars J.混凝土的损伤力学和断裂力学(一个联合方法),张彦秋译[J].岩石混凝土断裂强度,1985(1):51-58.
    [64]朱维申,张强勇.节理岩体脆弹性断裂损伤模型及其工程应用[J].岩石力学与工程学报,1999,18(3):245-249.
    [65]朱维申,陈卫忠,申晋.雁行裂纹扩展的模型试验及断裂机制研究[J].固体力学学报.1998,19((4):355-360.
    [66]周维垣,杨若琼等.流形元法及其在工程中的应用[J].岩石力学与工程学报.1996,15(3):211-218.
    [67]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):24-31.
    [68]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水利学报,1991,5:19-27.
    [69]徐靖南.压剪应力作用下多裂隙岩体的力学特性-理论分析与模型试验[博士学位论文][D].中科院武汉岩土所,1993.
    [70]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [71]谢兴华.岩体水力劈裂机理试验及数值模拟研究[博士论文][D].河海大学,2004.
    [72]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版社,2004.
    [73]张有天,裂隙岩体数学模型研究概况[J].水利水电科学研究院,1989.
    [74]张有天等,裂隙岩体渗流数学模型研究现状[J].水利水电科学研究院结构材料所,1989(1).
    [75]Snow D. T. Rock fracture specings, openings and porosities [J].J. Soil Mech. Found. Div. Proc. ASCE94,1968,73-79.
    [76]#12
    [77]Oda M. An Equivalent Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses. Water Resour. Res.,1986,22(13):1845-1856.
    [78]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报.1996,15(6):338-344.
    [79]王媛,徐志英,速宝玉.裂隙岩体渗流预应力耦合分析的四自由度全耦合法[J].水利学报,1998(7):55-59.
    [80]段小宁、李继初、刘继山,应力场和渗流场相互作用下的裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32(6):712-717。
    [81]陶振宇、沈小莹,库区应力场的耦合分析[J].武汉水利电力学院学报,1988,21(1):8-13。
    [82]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [83]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制[[J].岩石力学与工程学报,2008,27(1):1-8.
    [84]康天合,张建平,白世伟.综放开采预注水弱化顶煤的理论研究及其工程应用[J].岩石力学与工程学报,2004,23(15):2615-2621.
    [85]胡耀青,严国超,石秀伟.承压水上采煤突水监测预测理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-16.
    [86]梁卫国.盐类矿床水压致裂水溶开采的多场耦合理论及应用研究[博士论文][D].太原理工大学,2004.
    [87]陈胜宏,王鸿儒,熊文林.节理面渗流性质的探讨[J].武汉水利电力学院学报,1989(1):53-60.
    [88]常小林,岩体稳定渗流与应力状态的耦合分析及其工程应用初探[J].第一届全国计算岩土力学研讨会论文集,成都:西南交通大学出版社,1987,335-343.
    [89]J. Bear著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [90]Wittke W. Three-dimensional penetration in fissured rock.Proc open pit mining symp.Johannesburg.1970.181-191.
    [91]王科锋,柴军瑞,吴坤占.Monte-Carlo裂隙网络图的计算机处理与自动剖分[J].长江科学院院报2009,26 (supp):33-37.
    [92]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模拟(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报.2004,23(12):2015-2020.
    [93]王恩志.岩体裂隙的网络分析及渗流模型[J].岩石力学与工程学报,1993,12(3):214-221.
    [94]王洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报(自然科学版),1998,38(12):23-26.
    [95]Dverstorp B, Amderson J. Application of the discrete fracture network concept with field data:possibilities of model calibratin and validation [J]. Water Resources Research,1989,25(3):540-550.
    [96]张有天,刘中.降雨过程裂隙网络饱和-非饱和、非恒定渗流分析[J].岩石力学与工程学报.1997,16(2):104-111.
    [97]杜广林,周维垣,赵吉东.裂隙介质中的多重裂隙网络渗流模型[J].岩石力学与工程学报.2000,19(6):1014-1018.
    [98]柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析[博士学位论文][D].西安理工大学,2000.
    [99]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [100]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质,1992.11.
    [101]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质边坡的稳定性[J].水文地质与工程地质,2000(2):30-33.
    [102]周创兵、熊文林,双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996(12),338-344.
    [103]Jing L R, Feng X T. Numerical modeling for coupled thereto-hydro-mechemical and chemical process(THMC) of geological media-international and Chinese experiences[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [104]Jing L R, Ma Y, Fang Z L. Modeling of fluild flow and solid deformation for fractured ricks with discontinuous deformation analusis (DDA) method [J]. Int.J. Rock Mech. Min. Sci.,2001,38(3):343-355.
    [105]Jing L R. Formulations of discontinuous deformation analusis for block systems [J].Engineering Geology,1998,49,(3/4):371-381.
    [106]Warren T E, Root P J, The behaviour of naturally fractured reservoirs [J],Soc. Pet. Engg.J.,1963, (3):234-255.
    [107]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[博士学位论文][D].东北大学,2000.
    [108]Valliappan S, Khalili-Naghadeh N. Flow through fissured porous media with deformable matrix [J], Int. J. Numer. Method Engg. Sci.,1990,29:1079-1094.
    [109]Bai M, Ma Q, Roegiers J. Dual-porosity behavior of naturally fractured reservoirs [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:359-376.
    [110]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩石力学与工程学报,2003,24(5),748-754.
    [111]Noorishad J,et al. A Finite-Element Method for Coupled Stress and Fluid Flow Analysis in Fractured Rock Masses[J].Int. J. Rock Mech. Sci.&Geomech. Abstr., 1985,22(4):251-281.
    [112]田开铭.裂隙水交叉流的水力特性[J].地质学报,1986,No2.
    [113]田开铭.渗透度张量[J].水文地质工程地质论丛,1986.
    [114]黎水泉,徐秉业.非线性双重空隙介质渗流[J].岩石力学与工程学报,2000,(7):417-420.
    [115]杨栋,赵阳升,段康廉.广义双重介质岩体水力学模型机及有限元模拟[J].岩石力学与工程学报.2000,19(2):182-185.
    [116]赵延林,曹平,赵阳升,等.双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J].岩石力学与工程学报.2007,26(supp.2):4024-4031.
    [117]张文杰,周创兵,李俊平,李向阳.裂隙岩体渗流特性物模试验研究进展[J].岩土力学.2005,26(9):1517-1524.
    [118]Zhang S, Cox S F, Paterson M S. The influence of room temperature deformation on porosity and permeabiilty in calcite aggregates [J].Jounral of Geophysical Research,1994,99:15761-15775.
    [119]Mordecai M, Morris L H.An investigation into the changes of permeability occurring in asandstone when failed under triaxial stress conditions[C].In Proceedings of the 12th Symposium of Rock Mechanics, University of Missouri-Rolla, Rolla, American Institute of Mining,Metalurgy,and Petorleum Engineers(AIME),1971:221-229.
    [120]Peach C J, Spires C J. Influence of crystal plasticde formation on dilatancy and permeabiilty development in synthetic salt rock[J].Tectonophysics,1996,25 6:101-108.
    [121]Stoemont J C, Daemen J J K Laboratory study of gas permeability changes in rock salt during deformation [J]. Intenrational Jounral of Rock Mechanics and Mining Sciences,1992,29:323-342
    [122]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,7(2):231-235.
    [123]Li S P, Wu D X. Effect of confining pressure,pore pressure and specimen dimension on permeability of yinzhuang sandstone[J].Intenrational Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):435-441.
    [124]Zhang J C,Bai M,RoegiersJ C,et al.E xperimentalde terminationo fst ress-permeabiiltyrelationship [J]. Paciffic Rock Girard, Liebman, Breeds&Doe, Balkema, Roterdam,2000:817-822.
    [125]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001.23(1):68-70.
    [126]姜振泉,季梁军.岩石全应力应变过程渗透试验研究[J].岩土工程学报,2001,23(2):153-156.
    [127]王金安,彭苏萍,孟召平.岩石三轴全应力应变过程中的渗透规律[J].北京科技大学学报,2001,23(6):489-491.
    [128]韩宝平,冯启言,于礼山,等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(1):127-128.
    [129]Zhu W, Wong T F. The transition from brittle faulting to cataclastic flow: permeability evolution[J].Jounral of Geophysical Research,1997,102(B2):3027-3041.
    [130]Zoback M D, Byerlee J D. The effect of microcrack dilatancy on the permeability of Westerly granite[J].Jounralof Geophysical Research,1997,80:752-755
    [131]盛金昌.三维裂隙岩体渗流应力耦合数值分析及工程应用[博士学位论文][D].河海大学,2000.
    [132]Lomize G M. Flow in Fractured Rocks. Moscow:Gosemergoizdat,1951.
    [133]Louis C. Rock Hydraulics in Rock Mechanics, Ed. By L Muller,1974.
    [134]Amadei B. Illangasekare T A. Mathematical model for flow and solute transport in nonhomogeneous rock fracture[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1994(18):719-731.
    [135]速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探.水力学报[J].1994(5):19-24.
    [136]速宝玉,詹美礼,赵坚.裂隙渗流与应力辐合特性的试验研究[J].岩土工程学报.1997(4):73-74.
    [137]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5):19-24
    [138]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报.1997(5).
    [139]速宝玉,等.仿开然岩体裂隙渗流的实验研究[J].岩土工程学报.1995.
    [140]许光祥,张永兴,哈秋聆.粗糙裂隙渗流的超立方和次立方定律及其试验 研究[J].水力学报.2003.(3):74-79.
    [141]周创兵.裂隙岩体渗流场与应力场精合分析研究[博士学位论文][D].武汉水利电力大学,1995.
    [142]Snow D T. Rock fracture specings, opening and porosities[J]. J. Soil Mech. Found. Div Proc.ASCE94,1968,73-79.
    [143]Snow.D.T., Anisotropic permeability of fractured media[J].Resour. Res., 1969,5(6).
    [144]Gale G. E. The effects of fractwe type (induced versus natural) on the stress fracture closure permeability relationships[J].In:Proc.23th Symp. On Rock Mech. Berkeley,California,1982.
    [145]B.Indraratna, P.G.Ranjith-J.R. Price. Analytical and experimental study. Two phase(air and water) flow through rock joins:Journal of Geotechnical and geoenviromental engineering,2003,129(10):918-928.
    [146]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究.岩石力学与工程学报.2002,21(8):1194-1198
    [147]常宗旭,赵阳升,等.三维应力作用下单一裂缝渗流规律的理论与试验研究[J].岩石力学与工程学报.2004 23(4):620-624
    [148]刘继山.单裂隙受正向应力作用时的渗流公式[J].水文地质工程地质.1987,(2)
    [149]刘继山.结构面力学参数与水利参数耦合关系及其应用[J].水文地质工程地质.1988,(2)
    [150]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学.1997,18(4):59-62
    [151]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报.1999 18(2):133-136
    [152]M. Gutierrez. The efect of fluid content on the mechanical of fractures in chalk[J].Int. J. Rockech. Min. Sci.&Geomech Abstr,2000,33,(2)
    [153]Oda.M. Permeability tensor for discontinuous rockmass. Geotecluzique,1985
    [154]M. Bai. Dual-porosity poroelastic modeling of generalized plane strain. Int. J. Rock Mech.Mi n. Sci.&GeomechA bstr,1999,36,1087-1092
    [155]M. Bai. Numerical modeling of coupled flow and deformation in fractured rock specimens.Rock mech. Rock engng,1999,23
    [156]Esaki T, Du S, Mitani Y, et al. Development of ashear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1999,36: 641-650
    [157]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报.2003.22(10):1651-1655
    [158]曾亿山,卢德唐,曾清红,董虎.单裂隙流—固耦合渗流的试验研究[J].试验力学.2005,20(1):11-16
    [159]沈洪俊,张奇,夏颂佑.单裂隙辐向流试验的初步探讨[J].河海大学学报.1995,23(2):94-98
    [160]沈洪俊,高海鹰,夏颂佑.应力作用下裂隙岩体渗流特性的试验研究[J].长江科学院院报.1998,15(3):35-39
    [161]刘亚晨,蔡永庆,刘泉声.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报.2001,23(2):196-200
    [162]Nelson R A. A discussion of the apporximation of subsurface (burial) stressc onditions in laboratory experiments, in Mechanical Behavior of Crustal rocks[M]. The Handin Volume, Geophys, monographic series,V24,Carter N L Friedman M,Logan J M et al (eds).AGU,Washington,D.C,1981,311-322
    [163]Rhett D W, Teufel L W. Stress path dependence of matrix permeability of North Sea sandstone reservoir rock [C]. Proceedings of the 33rd Symposium of Rock Mechanics,1992:345-355
    [164]Somerton W H, Soylemezoglu I M,Dudley R C. Effectof stress on permeabiilty of coal[J].Intenrational Jounral of Rock Mechanics and Mining Sciences,1975,12:129-145
    [165]Wang K J,Daniel C J.Permeability study of cracked concrete[J].Cement and Concrete Research,1997,27(3):381-292
    [166]张金才,张玉卓.岩体渗流与煤层底板突水[M].北京:地质出版社,1997
    [167]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [168]刘志军,胡耀青.承压水上采煤断层突水的流固耦合研究[J].煤炭学报,2007,32(10):1046-1050
    [169]耿克勤,吴永平.拱坝和坝肩岩体的力学与渗流耦合分析实例[J].岩石力学与工程学报,1997,16(2):125-131.
    [170]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,
    1994,13(4):299-308.
    [171]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [172]顾冲时,吴中如.渗流影响下坝体和岩基应力场的分析模型研究[J].水电能源科学,1999,17(1):1-4.
    [173]郜新军.海底隧道突涌水分析及应用研究[硕士学位论文][D].北京工业大学2007
    [174]刘招伟.圆梁山隧道岩溶突水机理及其防治对策[博士学位论文][D].中国地质大学,2004
    [175]田杰.岩体渗流流固耦合问题及工程应用[硕士学位论文][D].中科院研究所,2005
    [176]唐春安,马天辉,李连崇,刘红元.高放废料地质处置中多场耦合作用下的岩石破裂问题[J].岩石力学与工程学报,2007,26(supp2):3932-3938
    [177]王树仁,何满潮,刘招伟.岩溶隧道突水灾变过程分析及控制技术[J].北京科技大学学报,2006,28(7):613-618
    [178]李小红.渝怀铁路歌乐山隧道岩溶富水区施工技术研究[硕士学位论文][D].西南交通大学,2004
    [179]庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[博士学位论文][D].同济大学,2006
    [180]诸武扬.断裂力学基础[M].北京:科学出版社,1979
    [181]黎振兹.工程断裂力学基础[M].长沙:中南工业大学出版社,1987
    [182]李灏.断裂力学[M].济南:山东科学技术出版社,1980
    [183]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2006
    [184]Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Leyden:Noordhoff,1953
    [185]Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4):519-527.
    [186]Hussain M A, Pu S L, Underwood J H. Strain energy release rate for a crack under combined mode Ⅰ and mode Ⅱ [J].Fracture Analysis, ASTM STP,1974,560:2-28
    [187]Sih G C. Strain energy density factor applied to mixed-mode crack problems[J]. International Journal of Fracture,1974,10:305-321
    [188]李强.压缩作用下岩体裂纹起裂扩展规律及失稳特性的研究[博士学位论
    文][D].大连理工大学,2008
    [189]HORRI H,NEMAT-NASSER S. Compression-induced microcrack growtlh in brittle solids:axial splitting and shear failure[J].J.Geopbys Res., 1985,90:3105-3125
    [190]HORRI H, NEMAT-NASSER S. Brittle failure in compression:splitting, faulting and brittle-ductile transition[J]. Pbil. Traps. R. Soc. Lond,1986,139(A): 337-374
    [191]ASHBY M F, HALLAM S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metall,1986,34:497-510
    [192]STEIF P S. Crack extension under compressive loading [J]. Engng Fract. Mech.,1984.20:463-473
    [193]王元汉,徐钺,谭国焕,等.改进的翼形裂纹分析计算模型[J]岩土工程学报,2000,22(5):612-615.
    [194]BAUD P, REUSCHLE T, CHARLEZ P. An improved wirg crack model for the deformation and failure of rock in compression[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(5): 539-542
    [195]LEHNER F, KACHANOV M.On modeling of "winged" cracks forming under compression[J]. Int. J. Fract,1996,77:65-75
    [196]Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metall,1986,34:497-510
    [197]Roegiers,J C. Ong Seehong. Fracture initiaion from included wellbores in anisotropic formations [A]. In:proc. Of international Meeting on Petroleum Engineering [C]. Beijing, China:[s.n.],1995,14-17。
    [198]Vaziri H H. Mechanics of fluid and sand production from oil sand reservoirs [A] Proc. Of 37th Annual Technical Meeting of the Petroleum Society of CIM[C]. Calgary:[s.n.],1986,35-38。
    [199]陈祖安,伍向阳,孙德明,等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159
    [200]徐贵娥,刘加华,钱春香.一种新的测试受拉状态下混凝土水渗透性试验装置[J].建材技术与应用,2007,(11):1-4.
    [201]张守良,沈琛,邓金根.岩石变形及破坏过程中渗透率变化规律的实验研究[J].岩石力学与工程学报,2000,19(supp):885-888.
    [202]李世平,李玉寿,吴振业.岩石全应力-应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-18.
    [203]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [204]姜振泉,季梁军,左如松,等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报,2002,21(10):1442-1446.
    [205]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报,2003,22(5):742-746.
    [206]刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J].矿山压力与顶板管理,2002,19(2):108-110.
    [207]刘亚晨,蔡永庆,刘泉声,等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报,2001,23(2):196-200.
    [208]黄润秋,徐德敏,付小敏,等.岩石高压渗透试验装置的研制与开发[J].岩石力学与工程学报,2008,27(10):1981-1992.
    [209]周维垣 高等岩石力学[M]北京:水利电力出版社,1990.
    [210]李灏,陈树坚.断裂理论基础[M]成都:四川人民出版社,1983
    [211]李宁,张平,陈蕴生.裂隙岩体试验研究进展与思考[A].中国岩石力学与上程学会第七次大会论文集北京:中国科学技术出版社,2002.63-69
    [212]Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks[J].Int J Mech Min Sci.1998.35(2):147-164.
    [213]朱维申,陈卫忠,申晋.雁行裂纹扩展的模型试验及断裂机制研究[J].固体力学学报,1998,19(4):355-360
    [214]陶振宇,赵震英,余启华,等.裂隙岩体特性与洞群施工力学问题[M].中国地质大学出版社,1993
    [215]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199
    [216]周维垣,杨延毅.节理岩体的损伤断裂力学模型及其在坝基稳定性分析中的应用[J].水利学报,1990,11:48-54
    [217]Cran J K,Sensenv P E,Croethe M A. Dynamic response of an opening in jointed rock[J].Int J Rock Mech Min Sci,1998,35(8):1021-1035
    [218]Reyes O, Einstein H H. Failure mechanic of fractured rock-A fracture coalescence model[A].Preceedings of 7th International Congress of Rock Mechanics[A].USA:Balkema Publishers,1991.333-340.
    [219]Shen B.The mechanics of fracture coalescence in compression experimental study and numerical simulation[J].Eng Fract Mech,1993,51(1):73-85.
    [220]Wong R H C,Chau K T,Tang C A,et al.Analysis of crack coalescence in rock-Part I:experimental approach[J].Int J Rock Mech Min Sci,2001,38:909-924.
    [221]Robet A, Einstein H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression [J].Int Rock Mech Min Sci,1998,35(7):863-888.
    [222]Vasarhelyi B, Robert A.Modeling of crack initiation,Propagation and coalescence in uniaxial compression[J].Rock Mech Rock Engng,2000,33(2): 119-139.
    [223]刘东燕,朱可善.岩石压剪断裂的模型试验研究[J].重庆建筑大学学报,1994,16(1):56-62.
    [224]白世伟,任伟中,丰定祥,等.平面应力条件下闭合断续节理岩体破坏机理及强度特性[J].岩石力学与工程学报,1999,18(6):635-640.
    [225]张平,李宁,李爱国.动载下非贯通裂隙介质破坏模型的研究[J].岩石力学与工程学报,2001,20(supp.2):1411-1416.
    [226]黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):426-429.
    [227]李银平,王元汉,陈龙珠,等.含预置裂纹大理岩的压剪试验分析[J].岩土工程学报,2004,26(1):120-124.
    [228]Brar N. S.& Stesky R. M. Permeability of Intact Joined Rock.1980.
    [229]Jones F. O. A Laboratory Study of the Effects of Confining pressure on Fracture Flow and Storage Capacity in Carbonate Rock. J. Rock Mech. Min. Sci.& Geomech. Abstr.16,1979。
    [230]Kranz R. L et al., permeability of whole and Jointed Barre Granite. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.16,1979
    [231]刘贵民.无损检测技术.北京:国防工业出版社,2006
    [232]王仲生,万小朋.无损检测诊断现场实用技术[M].北京:机械工业出版社,2002
    [233]赵永红.受单轴压缩大理岩填充割缝周围的微裂纹生长[J].岩石力学与工程学报,2004,23(15):2504-2509
    [234]Cundall P A, Strack O D L. Particle flow code in 2 Dimensions [A]. Itasca Consulting Group, Inc.,1999.
    [235]Cundall P A, Strack O D L. A discrete numerical model for graunlar assemblies [J]. Geotechnique,1979,29(1):47-65
    [236]周健,池永,池毓蔚,等.颗粒流方法及PFC2D程序[J].岩土力学,2000,21(3):271-274.
    [237]周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [238]Itasca(?) Consulting Group Inc.PFC2D (particle flow code in 2 dimensions) theory and background[R]. Minnesota, USA:Itasca Consulting Group Inc.,2002.
    [239]刘顺桂,刘海宁,王思敬,等.断续节理直剪试验与PFC2D数值模拟分析[J].岩石力学与工程学报,2008,27(9):1828-1836.
    [240]TSUYOSHI ISHIDA, HIROYUKI SHIMIZU, SUMIHIKO MURATA. Importance of inhomogeneity in rock fractuting deduced from distinct element simulation and in-situ direct shear test[J] Controlling seismic hazard and Sustainable Development of Deep Mines, Rinton Press,2009,(7):3-16
    [241]Tang C A.Numerical Simulation on Progressive Failure Leading to Collapse and Associated Seismicity[J].Int.J. Rock Mech.&Min.Sci.1997,34:249-62.
    [242]Tang C A,Tham L G,Lee K K,Yang T H.Coupled analysis of flow,stress and damage(FSD)in rock failure[J].Int.J.Rock Mech.&Min.Sci.2002,39:477-489.
    [243]唐春安,杨天鸿,李连崇,等.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24(supp),17-20.
    [244]李术才.加锚断续节理岩体断裂损伤模型及其应[博士学位论文][D].中科院岩土力学研究所,1996
    [245]Li Xinping, Zhu WeiShen. The Damage-Fracture Analysis of Jointed Rockmass and its Application in Engineering [J].Engineering Fracture Mechnics,1992, 43(2):165-170.
    [246]唐春安,杨天鸿,李连崇,等.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24(supp):17-20.
    [247]江涛.基于细观力学的脆性岩石损伤—渗流耦合本构模型研究[博士学位论文][D].河海大学,2006
    [248]中国航空研究院,应力强度因子手册(增订本),北京:科学出版社,1993
    [249]刘卫群,缪协兴,陈占清.破碎岩石渗透性的试验测定方法[J].实验力学,2003,18(1):56-61
    [250]李天珍,李玉寿,马占国.破裂岩石非达西渗流的试验研究[J].工程力 学,2003,20(4):132-135.
    [251]刘光廷,叶源新,徐增辉.渗流-三轴应力耦合试验机的研制[J].清华大学学报(自然科学版),2007,47(3):323-326.
    [252]周辉,汤艳春,胡大伟,等.盐岩裂隙渗流-溶解耦合模型及试验研究[J].岩石力学与工程学报,2006,25(5):946-950
    [253]仵彦卿,曹广祝,丁卫华.CT尺度砂岩渗流与应力关系试验研究[J].岩石力学与工程学报,2005,24(23):4203-4209
    [254]詹美礼,胡云进,速宝玉.裂隙概化模型的非饱和渗流试验研究[J].水科学进展,2002,13(2):172-178.
    [255]邵龙潭,梁爱民,王助贫,等.非饱和土稳态渗流试验装置的研制与应用[J].岩土工程学报,2005,27(11):1338-1340.
    [256]张文杰,周创兵,李俊平,等.裂隙岩体渗流特性物模试验研究进展[J].岩土力学,2005,26(9):1517-1524.
    [257]张羽强,黄庆享,严茂荣.采矿工程相似材料模拟技术的发展及问题[J].煤炭技术,2008,27(1):1-3.
    [258]陈陆望.物理模型试验技术研究以及在岩土工程中的应用[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2006.
    [259]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机制[J].煤田地质与勘探,1997,25(supp):33-36.
    [260]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [261]张杰,侯忠杰,石平五.地下工程渗流场与应力场耦合的相似材料模拟[J].辽宁工程技术大学学报,2005,24(5):639-642.
    [262]梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报(自然版),2001,20(4):120-122
    [263]郑少河,朱维申,王书法.承压水上采煤的固-流耦合问题研究[J].岩石力学与工程学报,2000,19(4):421-423
    [264]贺显群,刘志祥,李夕兵,陈红江,等.流固耦合相似材料的研究[J].矿冶工程(已录用)
    [265]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.
    [266]白占平,曹兰柱,白润才.相似材料配比的正交试验研究[J].露天采煤技术,1996,(3):22-23.
    [267]Jacoby W R,Schmeling H. Convection experiments and driving
    mechanism[J].Geol.Rundsch.,1981,70(2):207-230
    [268]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32-46
    [269]Wiens J. Plate tectonic model for Indian ocean"intraplate"deforma-tion[J].Tectonophysics,1986,132(1):37-48
    [270]Kincaid C, Olson P. An experimental study of subducting slab migration[J].J.G.R.,1987,92(3):13831-13840
    [271]Shemenda A I. Horizontal lithosphere compression and subduction:constraints provided by physical modeling[J].J.GR.,1992,97(B7):11097-11116
    [272]白冰.CO2煤层层封存流动-力学理论及场地力学稳定性数值模拟方法[博士学位论文][D].中科院岩土所,2008
    [273]北京飞箭软件有限公司编.基于FEPG的有限元方法,2005年3月.
    [274]北京飞箭软件有限公司编.如何由公式生成有限元程序,2005年3月.
    [275]史文兵.土体渗流场与应力场耦合研究[硕士学位论文][D].西北农业科技大学,2006
    [276]北京飞箭软件有限公司编.FEPG中级教程,2005年3月.
    [277]北京飞箭软件有限公司编.FEPG初级教程,2005年3月.
    [278]张东日等.拉格朗日元法及其应用软件FLAC[J].矿山压力与顶板管理,1997,3(4):224-226
    [279]梁海波,张明,李仲奎,谷兆祺.快速拉格朗日差分法及其应用[J].红水河,1997,16(2):21-24
    [280]朱建明等.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,9(4):78-82
    [281]毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003.9:395-401
    [282]方涛,柴军瑞,胡海浪等.Monte-Carlo方法在岩体裂隙结构面模拟中的应用[J].露天采矿技术.2007,(1):7-9.
    [283]杨米加,贺永年.蒙特卡洛模拟的随机性及裂隙岩体渗透张量分析[J].岩土工程学报.1999,21(4):492-494
    [284]何杨,李康宏,柴军瑞.由统计规律模拟生成的岩体裂隙网络的非稳定渗流数值分析[J].应用基础与工程科学学报.2005,13(1)
    [285]柴军瑞.岩体裂隙网络非线性渗流分析[J].水动力学研究与进展,A辑,2002,17(2):217-221.
    [286]何萌.水工渗流数值分析应用软件开发[硕士学位论文][D].西安:西安理工大学,2006.
    [287]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:45-48
    [288]毛昶熙,段祥宝,李定方.网络模型程序化及应用[J].水利水运科学研究.1994,3:179-209.
    [289]Cacas, M.C., E. Ledoux, Q de Marsily, B. Tille, A. Barbreau, E. Durand, B. Feuga and P. Pesudecerf, Moedling fracture flow with a stochastic discrete fracture network:Calibration and validation, [J]. The flow model, Water Resour. Res.,1990,26(3):479-489
    [290]陈红江,李夕兵.考虑水压作用张开型裂纹起裂特性研究[J],水利与建筑工程学报(已录用)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700