用户名: 密码: 验证码:
脆性岩石热—力—损伤耦合机理及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放核废料深地质处置是一个关系到国计民生的综合性问题,具有多学科交叉的特点。它对岩石力学工程领域提出了许多挑战性的科学和技术课题,如复杂岩体及其赋存环境的热-水-力耦合问题等。其中,脆性岩石的热-力-损伤耦合问题作为复杂岩体多场耦合问题的一个重要方面也得到国内外学者的重点关注。本文以国际合作研究计划DECOVALEX-2011的B子课题“硬岩热-力耦合作用研究”、国家优秀青年科学基金项目“岩土体多场耦合效应与渗流控制(No.51222903)”、国家自然科学基金面上项目“考虑多场耦合效应的核废料深地质处置库围岩传输特性演化机制(No.51179136)"和国防科工委高放核废料地质处置研究项目“基于THMC耦合的高放废物地质处置安全性评价”为背景,以脆性岩石为研究对象,以脆性岩石热-力耦合作用诱发的损伤过程及热传导特性演化规律为出发点,采用理论分析和试验验证相结合的方法,重点研究了温度和应力耦合作用下脆性岩石的损伤演化特性和热传导特性演化规律,分析了岩石在耦合作用下的热能传输规律和渐进破坏过程。论文的主要研究工作和成果概括如下:
     (1)研究了脆性岩石在开挖、热应力耦合条件下的宏细观损伤机制。介绍了细观力学均匀化方法,研究了含微裂纹脆性岩石宏观有效弹性张量;将含微裂纹脆性岩石看作一个热力学系统,分析了描述岩石细观损伤演化过程的基本内变量,研究了非等温条件下考虑热-力耦合作用的细观损伤力学模型;采用瑞典Aspo闪长岩的三轴压缩试验数据对细观损伤力学模型有效性与合理性进行了验证。
     (2)研究了多场耦合条件下脆性岩石有效热传导特性的演化机制。分析了岩石有效热传导系数的影响因素,包括岩石的矿物组成、孔隙率、饱和流体及饱和度、温度和应力等;介绍了岩石有效热传导特性的、Viener界限和Hashin-Shtrikman界限;将岩石表征单元体看作无限大基质和非均匀椭球夹杂的混合物,从热传导问题基本方程出发,运用细观均匀化方法导出了有效热传导系数的一般表达式,并根据椭球夹杂问题基本解得到了基于不同均匀化方法的有效热传导特性张量;分析了有效热传导特性张量的Voigt界限和Reuss界限,讨论了有效热传导张量的各向异性特征,分析了岩石有效热传导特性与结构变化及损伤演化之间的内在联系;运用该模型研究了瑞典Aspo闪长岩在加载过程中的有效热传导特性的演化规律;基于膨润土细观结构特征,采用细观均匀化方法研究了我国高庙子膨润土的有效热传导特性。
     (3)研究了脆性岩石热-力-损伤耦合数值分析方法。从不可逆热力学的角度,考虑岩石在温度和应力作用下的损伤与有效热传导特性演化,基于等效连续介质分析模型,建立了脆性岩石的热-力-损伤耦合控制方程,采用Galerkin方法和有限差分法对控制方程组进行离散,建立了有限元计算格式,研发了三维应力场与温度场耦合分析程序。
     (4)结合国际合作项目DECOVALEX-2011计划B子课题,开展了脆性岩石热-力-损伤耦合数值模拟研究。介绍了在瑞典Aspo硬岩地下试验室开展的APSE(Aspo Pillar Stability Experiment)岩柱稳定性试验:研究了在开挖应力扰动和温度扰动共同作用下试验区域温度场、应力场和变形场的分布规律,揭示了试验岩柱在热-力耦合作用下的渐进破坏规律。
Geological disposal of radioactive wastes is a multi-disciplinary issue of importance for national interest. It stimulates many challenging scientific and technical issues in the rock mechanics engineering field, for example, the problem of thermo-hydro-mechanical (THM) coupling in the complex rock masses and their occurrence environment. As an important aspect of the issue of multi-field coupling for complex rock masses, the problem of thermo-mechanical-damage coupling for brittle rocks has been paid close attention by scholars throughout the world. The dissertation is based on Task B of the international cooperating project DECOVALEX-2011"Coupled mechanical thermal loading of hard rocks", and supported by National Science Foundation of China "Evolution mechanism of the transmission characteristics of surrounding rocks in the geological disposal of radioactive wastes with consideration of multi-field coupling effects (No.51179136)", and also supported by the commission of science technology and industry for national defense project "Safety assessment of the geological disposal of high-level radioactive wastes based on THMC coupling". This dissertation aims to study the damage process and the evolution of thermal conductivity induced by the thermo-mechanical coupling of brittle rock mass by means of the theory study and experimental validating, and specifically to study the evolution of damage process and thermal conductivity of brittle rocks under thermo-mechanical coupling. The main research work and achievements are summarized as follows:
     (1) The macro-microscopic damage mechanism of brittle rocks subjected to coupled excavation-induced and thermal-induced stresses is studied. In this paper, a micromechanical homogenization method is first introduced and the macro effective elastic tensors of cracked brittle rocks are studied. Futhermore, regarding cracked brittle rocks as a thermodynamic system, the basic internal variables which describes the process of microscopic damage for rocks are proposed. In the framework of irreversible thermodynamics, a micro-mechanical damage model based on the multi-scale homogenization method is established, and the thermal effect is taken into account in this model. Finally, the effectiveness and rationality of the proposed model is validated by by comparing with uniaxial/triaxial test results of an intact Aspo diorite sample.
     (2) With consideration of multi-field coupling, the evolution mechanism of the effective thermal conductivity characteristics of brittle rocks is studied in this paper. Factors which can affect the effective thermal conductivity of rocks are analyzed, including the mineral composition, porosity, saturated fluid, degree of saturation, temperature, stress and anisotropy, etc. The Wiener and Hashin-Shtrikman bounds for the effective thermal conductivity characteristics of rocks are introduced. Regarding the Representative Volume Element(RVE) of rocks as the mixture of infinite matrix and inhomogeneous ellipsoid inclusions and starting from the basic equations of the thermal conductivity problem, the general expression of the effective thermal conductivity is derived by taking use of the microscopic homogenization method, and moreover, based on the basic solution of the problem of ellipsoid inclusions, the effective thermal conductivity tensors are derived by using different homogenization schemes. The voigt and Reuss bounds of the effective thermal conductivity tensors are derived, the isotropy characteristics of the effective thermal conductivity are discussed and analyzed and the internal relations between the effective thermal conductivity characteristics and the damage process is established. The evolution law of the effective thermal conductivity characteristics of the Sweden Aspo diorite during the loading process is studied by taking use of this model. Moreover, this model is also adopted to study the effective thermal conductivity characteristics of the Gaomiaozi bentonite in our country.
     (3) The numerical analysis method of thermal-mechanical-damage coupling for brittle rocks is investigated. From the perspective of irreversible thermodynamics, the evolution of damage and the effective thermal conductivity characteristics are considered under conditions of temperature and stress. Based on the momentum conservation equation and the energy conservation equation and adopting the continuum analysis model, the governing equation of coupled thermo-mechanical-damage process for brittle rocks are established. The governing equations is discretized by employing the Galerkin finite element method in spatial domain and the finite difference scheme in temporal domain, the numerical model is established and a computer code is developed.
     (4) Specific numerical model for the thermo-mechanical-damage coupling with the Task B of international coopertive DECOVALEX-2011project is simulated. The Aspo Pillar Stability Experiment(APSE) conducted at the Aspo Hard Rock Laboratory(HRL), Sweden, is first introduced. Then, in order to review the progressive failure process of the rock pillar subjected to coupled excavation-induced and thermal-induced stresses, the distribution of temperature field, stress field and deformation field of APSE rock pillar is model, taking into account the perturbation caused by both the engineering excavation and thermal stress.
引文
[1]王驹,徐国庆,金远新.论高放废物地质处置库围岩[J].世界核地质科学,2006,23(4):10.
    [2]井兰如,冯夏庭.放射性废物地质处置中主要岩石力学问题[J].岩石力学与工程学报,2006,(4):833-841.
    [3]王驹,刘月妙.高放废物地质处置与岩石力学研究[J].岩土力学,2003,(2):636-638.
    [4]刘月妙,王驹.高放废物地质处置岩石力学研究进展;高放废物地质处置学术研讨会,中国北京,F,2004[C].
    [5]王驹.高放废物地质处置:进展与挑战[J].中国工程科学,2008,10(3):8.
    [6]佘诗刚,董陇军.从文献统计分析看中国岩石力学进展[J].岩石力学与工程学报,2013,(3):442-464.
    [7]Jing L, Tsang C F, Stephansson O. DECOVALEX—An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J]. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts,1995,32(5):389-398.
    [8]Tsang C-F, Stephansson O, Jing L, et al. DECOVALEX Project:from 1992 to 2007[J]. Environmental Geology,2009,57(6):1221-1237.
    [9]Tsang C-F. Introductory editorial to the special issue on the DECOVALEX-THMC project[J]. Environmental Geology,2009,57(6):1217-1219.
    [10]徐国庆.关于核素迁移研究的国际DECOVALEX计划[J].铀矿地质,1993,06):377-378.
    [11]Chan T, Khair K, Jing L, et al. International comparison of coupled thermo-hydro-mechanical models of a multiple-fracture bench mark problem:DECOVALEX phase I, bench mark test 2[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995, 32(5):435-452.
    [12]Jing L, Tsang C F, Stephansson O, et al. Validation of mathematical models against experiments for radioactive waste repositories — DECOVALEX experience[M]. Developments in Geotechnical Engineering. Elsevier.1996:25-56.
    [13]Chan T, Christiansson R, Boulton G S, et al. DECOVALEX Ⅲ BMT3/BENCHPAR WP4:The thermo-hydro-mechanical responses to a glacial cycle and their potential implications for deep geological disposal of nuclear fuel waste in a fractured crystalline rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(5-6):805-827.
    [14]Tsang C-F, Jing L, Stephansson O, et al. The DECOVALEX III project:A summary of activities and lessons learned[J]. International Journal of Rock Mechanics and Mining Sciences,2005, 42(5-6):593-610.
    [15]Hudson J, Tsang C, Jing L, et al. The DECOVALEX coupled modeling project-past, present and future; proceedings of the Proceedings of the ISRM-sponsored international symposium on rock mechanics-rock characterisaion, modeling and engineering design methods Hongkong, F,2009 [C].
    [16]刘泉声,许锡昌,山口勉等.三峡花岗岩与温度及时问相关的力学性质试验研究[J].岩石力学与工程学报,2001,05):715-719.
    [17]刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,04):408-411.
    [18]高小平,杨春和,吴文等.温度效应对盐岩力学特性影响的试验研究[J].岩十力学,2005,11):84-87.
    [19]高小平,杨春和,吴文等.盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报,2005,12):2054-2059.
    [20]高小平,杨春和,吴文.岩盐时效特性实验研究[J].岩土工程学报,2005,05):558-561.
    [21]谢卫,红高峰,李顺才等.石灰岩热损伤破坏机制研究[J].岩土力学,2007,05):1021-1025.
    [22]Chaki S, Takarli M, Agbodjan W P. Influence of thermal damage on physical properties of a granite rock:Porosity, permeability and ultrasonic wave evolutions[J]. Construction and Building Materials,2008,22(7):1456-1461.
    [23]Yavuz H, Demirdag S, Caran S. Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(1):94-103.
    [24]张渊,张贤,赵阳升.砂岩的热破裂过程[J].地球物理学报,2005,03):656-659.
    [25]左建平,谢和平,周宏伟等.温度-拉应力共同作用下砂岩破坏的断口形貌[J].岩石力学与工程学报,2007,12):2444-2457.
    [26]左建平,周宏伟,谢和平等.温度和应力耦合作用下砂岩破坏的细观试验研究[J].岩土力学,2008,06):1477-1482.
    [27]赵阳升,孟巧荣,康天合等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,01):28-34.
    [28]Clauser C, Huenges E. Thermal Conductivity of Rocks and Minerals[J]. Rock physics & phase relations:a handbook of physical constants,1995,105.
    [29]Campbell G S. Soil physics with BASIC:transport models for soil-plant systems[M]. Elsevier, 1985.
    [30]Tang A-M, Cui Y-J, Le T-T. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science,2008,41 (3-4):181-189.
    [31]Johansen O. Thermal Conductivity of Soils[D]; University of Trondheim, Norway,1975.
    [32]Cote J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal,2005,42(2):443-458.
    [33]Lu S, Ren T, Gong Y, et al. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature[J]. Soil Sci Soc Am J,2007,71(1):8-14.
    [34]Kersten M S. Thermal properties of soils[J]. Highway Research Board Special Report,1952,2):
    [35]Van R M, Winterkorn H F. Structural and textural influences on thermal conductivity of soils; proceedings of the Highway Research Board Proceedings, F,1959 [C].
    [36]Salomone L A, Kovacs W D, Kusuda T. Thermal performance of fine-grained soils[J]. Journal of Geotechnical Engineering,1984,110(3):359-374.
    [37]Rao M G, Singh D. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian geotechnical journal,1999,36(4):767-773.
    [38]Cote J, Konrad J-M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials[J]. International Journal of Heat and Mass Transfer,2009,52(3-4):796-804.
    [39]Cote J, Fillion M, Konrad J. Estimating Hydraulic and Thermal Conductivities of Crushed Granite Using Porosity and Equivalent Particle Size[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(9):834-842.
    [40]Cote J, Fillion M H, Konrad J M. Estimating hydraulic and thermal conductivities of crushed granite using porosity and equivalent particle size[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(9):834-842.
    [41]Demirci A, Gorgulu K, Duruturk Y S. Thermal conductivity of rocks and its variation with uniaxial and triaxial stress[J]. International Journal of Rock Mechanics and Mining Sciences,2004, 41(7):1133-1138.
    [42]Gorgulu K, Duruturk Y S, Demirci A, et al. Influences of uniaxial stress and moisture content on the thermal conductivity of rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1439-1445.
    [43]Cho W J, Kwon S, Choi J W. The thermal conductivity for granite with various water contents[J]. Engineering Geology,2009,107(3-4):167-171.
    [44]Cho W-J, Kwon S. Estimation of the thermal properties for partially saturated granite[J]. Engineering Geology,20/0,115(1-2):132-138.
    [45]Cho W-J, Lee J-O, Kwon S. An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture[J]. Heat Mass Transfer,2011,47(11):1385-1393.
    [46]Wiener O. Lamellare doppelbrechung[J]. Physikalische Zeitschrift,1904,5(12):332-338.
    [47]Woodside W, Messmer J. Thermal Conductivity of Porous Media. Ⅱ. Consolidated Rocks[J]. Journal of Applied Physics,1961,32(1699.
    [48]Woodside W, Messmer J H. Thermal Conductivity of Porous Media. Ⅰ. Unconsolidated Sands[J]. Journal of Applied Physics,1961,32(9):1688-1699.
    [49]Tarnawski V, Leong W. A Series-Parallel Model for Estimating the Thermal Conductivity of Unsaturated Soils[J]. International Journal of Thermophysics,2012,33(7):1191-1218.
    [50]Tong F, Jing L, Zimmerman R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(8):1358-1369.
    [51]Maxwell J C. A treatise on electricity and magnetism[M]. Clarendon Press,1881.
    [52]Fricke H. A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids[J]. Physical Review,1924,24(5):575-587.
    [53]Zimmerman R W. Thermal conductivity of fluid-saturated rocks[J]. Journal of Petroleum Science and Engineering,1989,3(3):219-227.
    [54]Giraud A, Gruescu C, Do D P, et al. Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities[J]. International Journal of Solids and Structures,2007,44(9):2627-2647.
    [55]Gruescu C, Giraud A, Homand F, et al. Effective thermal conductivity of partially saturated porous rocks[J]. International Journal of Solids and Structures,2007,44(3-4):811-833.
    [56]Chen Y, Li D, Jiang Q, et al. Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2011,0):
    [57]陈益峰,李典庆,荣冠等.脆性岩石损伤与热传导特性的细观力学模型[J].岩石力学与工程学报,2011,10):
    [58]Jing L, Hudson J A. Numerical methods in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):409-427.
    [59]Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(3):283-353.
    [60]Zienkiewicz O C, Taylor R L, Zhu J Z. The Finite Element Method:Its Basis and Fundamentals: Its Basis and Fundamentals[M]. Butterworth-Heinemann,2005.
    [61]Zienkiewicz O C, Taylor R L. The Finite Element Method:Solid Mechanics[M]. Butterworth-heinemann,2000.
    [62]李庆扬,王能超,易大义.数值分析[M].清华大学出版社有限公司,2001.
    [63]王元淳.边界元法基础[M].上海交通大学出版社,1988.
    [64]Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering:Theory and Applications:Theory and Applications[M]. Elsevier Science,2007.
    [65]石根华.数值流形方法与非连续变形分析[M].清华大学出版社,1997.
    [66]ITASCA Consulting Group I. FLAC Manuals[M].1993.
    [67]周创兵,陈益峰,姜清辉等.论岩体多场广义耦合及其工程应用[J].岩石力学与工程学报,2008,07):1329-1340.
    [68]Ohnishi Y, Shibata H, Kobayashi A. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behavior of a saturated-unsaturated medium[J]. Coupled processes associated with nuclear waste repositories Academic Press, London,1987,551-557.
    [69]Thomas H R, Sansom M R. Fully coupled analysis of heat, moisture, and air transfer in unsaturated soil[J]. Journal of engineering mechanics,1995,121(3):392-405.
    [70]Noorishad J, Tsang C-F. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks formulation and numerical solution[M] Developments in Geotechnical Engineering. Elsevier.1996:93-134.
    [71]Schrefler B A, Simoni L, Turska E. Standard staggered and staggered Newton schemes in thermo-hydro-mechanical problems[J]. Computer Methods in Applied Mechanics and Engineering,1997,144(1-2):93-109.
    [72]Zhou Y, Rajapakse R K N D, Graham J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J]. International Journal of Solids and Structures,1998,35(34-35): 4659-4683.
    [73]Neaupane K M, Yamabe T, Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(5):563-580.
    [74]Guvanasen V, Chan T. A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):89-106.
    [75]Khalili N, Loret B. An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media:formulation[J]. International Journal of Solids and Structures,2001, 38(46-47):8305-8330.
    [76]Rutqvist J, Borgesson L, Chijimatsu M, et al. Thermohydromechanics of partially saturated geological media:governing equations and formulation of four finite element models[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(1):105-127.
    [77]Collin F, Li X L, Radu J P, et al. Thermo-hydro-mechanical coupling in clay barriers[J]. Engineering Geology,2002,64(2-3):179-193.
    [78]Seetharam S C, Thomas H R, Cleall P J. Coupled thermo/hydro/chemical/mechanical model for unsaturated soils—Numerical algorithm[J]. International Journal for Numerical Methods in Engineering,2007,70(12):1480-1511.
    [79]Simoni L, Secchi S, Schrefler B A. Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media[J]. Computational Mechanics,2008,43(1):179-189.
    [80]Chijimatsu M, Borgesson L, Fujita T, et al. Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite[J]. Environmental Geology,2009, 57(6):1255-1261.
    [81]Wang W, Kosakowski G, Kolditz O. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media[J]. Computers & Geosciences,2009,35(8):1631-1641.
    [82]Chen Y, Zhou C, Jing L. Modeling coupled THM processes of geological porous media with multiphase flow:Theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics,2009,36(8):1308-1329.
    [83]Chen Y, Zhou C, Jing L. Numerical modeling of coupled thermo-mechanical response of a rock pillar[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,03):262-273.
    [84]Tong F, Jing L, Zimmerman R W.A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):205-217.
    [85]Gatmiri B, Maghoul P, Duhamel D. Two-dimensional transient thermo-hydro-mechanical fundamental solutions of multiphase porous media in frequency and time domains[J]. International Journal of Solids and Structures,2010,47(5):595-610.
    [86]Khalili N, Uchaipichat A, Javadi A A. Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for saturated homogeneous porous media[J]. Mechanics of Materials,2010,42(6):593-598.
    [87]Nowak T, Kunz H, Dixon D, et al. Coupled 3-D thermo-hydro-mechanical analysis of geotechnological in situ tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2011,48(1):1-15.
    [88]Tsang C F, Barnichon J D, Birkholzer J, et al. Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49(0):31-44.
    [89]Khoei A R, Moallemi S, Haghighat E. Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique[J]. Engineering Fracture Mechanics,2012,96(0):701-723.
    [90]仵彦卿,高荣芳.影响油气运移的应力场地温场渗流场耦合的双重介质模型[J].西安理工大学学报,1998,02):3-7+33.
    [91]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,05):529-533.
    [92]赵阳升,王瑞凤,胡耀青等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,12):1751-1755.
    [93]贺玉龙,杨立中,杨明.岩体温度场与应力场耦合作用的一种量化方法[J].西南交通大学学报,2002,01):10-13.
    [94]黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,01):77-82.
    [95]柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河,2003,02):18-20.
    [96]李宁,陈波,陈飞熊.寒区复合地基的温度场、水分场与变形场三场耦合模型[J].土木工程学报,2003,10):66-71.
    [97]刘亚晨,席道瑛.核废料贮存裂隙岩体中THM耦合过程的有限元分析[J].水文地质工程地 质,2003,03):81-87.
    [98]刘亚晨.核废料贮存围岩介质THM耦合过程的数值模拟[J].地质灾害与环境保护,2006,02):78-82.
    [99]马静嵘,杨更社.软岩冻融损伤的水-热-力耦合研究初探[J].岩石力学与工程学报,2004,S1):4373-4377.
    [100]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展(A辑),2005,02):269-275.
    [101]刘泉声,张程远,刘小燕DECOVALEX_Ⅳ TASK_D项目的热-水-力耦合过程的数值模拟(英文)[J].岩石力学与工程学报,2006,04):709-720.
    [102]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报,2004,21):3709-3713.
    [103]李锡夔,李荣涛,张雪珊等.高温下混凝土中热—湿—气—力学耦合过程数值模拟[J].工程力学,2005,04):171-178+240.
    [104]韦立德,杨春和.考虑饱和-非饱和渗流、温度和应力耦合的三维有限元程序研制[J].岩土力学,2005,06):1000-1004.
    [105]卢应发,吴延春,罗先启等.高放废物处置中的THM耦合理论及分析[J].岩石力学与工程学报,2007,S2):3939-3945.
    [106]王嫒,刘杰.裂隙岩体非恒定渗流场与弹性应力场动态全耦合分析[J].岩石力学与工程学报,2007,06):1150-1157.
    [107]朱志武,宁建国,马巍.土体冻融过程中水、热、力三场耦合本构问题及数值分析[J].工程力学,2007,05):138-144+137.
    [108]白冰.核废料储库周边介质热力耦合数值分析[J].岩土力学,2004,12):1989-1993.
    [109]白冰.循环温度荷载作用下饱和多孔介质热-水-力耦合响应[J].工程力学,2007,05):87-92.
    [110]冯夏庭,潘鹏志,丁梧秀,et a1.结晶岩开挖损伤区的温度-水流-应力-化学耦合研究[J].岩石力学与工程学报,2008,04):656-663.
    [111]陈益峰,周创兵,童富果等.多相流传输THM全耦合数值模型及程序验证[J].岩石力学与工程学报,2009,04):649-665.
    [112]陈益峰,周创兵,井兰如.THM耦合条件下多孔介质的多相流传输过程;中国力学学会学术大会,2009,中国河南郑州,F,2009[c].
    [113]刘文岗,王驹,周宏伟等.高放废物处置库花岗岩热-力耦合模拟研究[J].岩石力学与工程学报,2009,S1):2875-2883.
    [114]蒋中明,Hoxha D, Homand F.核废料地质贮存介质黏土岩的三维各向异性热-水-力耦合数值模拟[J].岩石力学与工程学报,2007,03):493-500.
    [115]蒋中明HOXHA D基于渗透非线性的黏土岩热-水-力耦合效应研究[J].岩土工程学报,2009,03):361-364.
    [116]秦冰,陈正汉,方振东等.基于混合物理论的非饱和土的热-水-力耦合分析模型I[J].应用数学和力学,2010,12):1476-1488.
    [117]赵延林,王卫军,曹平等.不连续面在双重介质热-水-力三维耦合分析中的有限元数值实现[J].岩土力学,2010,02):638-644.
    [118]曹胜飞,乔兰,刘月妙等.高庙子膨润土热-水-力耦合性能试验研究;proceedings of the第三届废物地下处置学术研讨会,中国浙江杭州,F,2010[C].
    [119]张玉军.核废料处置概念库工程屏障中热—水—应力耦合过程数值分析[J].工程力学,2007,05):186-192.
    [120]张玉军.模拟热-水-应力耦合作用的三维节理单元及其数值分析[J].岩土工程学报,2009,08):1213-1218.
    [121]张玉军,张维庆.裂隙剪胀效应对双重孔隙介质热-水-应力耦合现象影响的有限元分析[J].岩土力学,2011,05):1513-1522.
    [122]张玉军,徐刚,杨朝帅.应力腐蚀和压力溶解引起的裂隙开度-刚度变化对THMM耦合过程影响的数值模拟[J].岩土力学,2013,02):559-567.
    [123]Murakami S, Kamiya K. Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics[J]. International Journal of Mechanical Sciences,1997, 39(4):473-486.
    [124]Swoboda G, Shen X P, Rosas L. Damage model for jointed rock mass and its application to tunnel ling[J]. Computers and Geotechnics,1998,22(3^4):183-203.
    [125]杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,08):1275-1282.
    [126]杨强陈,周维垣.岩土材料弹塑性损伤模型及变形局部化分析[J].岩石力学与工程学报,2004,21):
    [127]陈新,杨强,周维垣.基于二阶损伤张量的节理岩体各向异性模型及其在井壁稳定分析中的应用;第八次全国岩石力学与工程学术大会,中国成都,2004[C].
    [128]Swoboda G, Yang Q. An energy-based damage model of geomaterials—Ⅰ. Formulation and numerical results[J]. International Journal of Solids and Structures,1999,36(12):1719-1734.
    [129]Swoboda G, Yang Q. An energy-based damage model of geomaterials—Ⅱ. Deductionof damage evolution laws[J]. International Journal of Solids and Structures,1999,36(12):1735-1755.
    [130]Halm D, Dragon A. An anisotropic model of damage and frictional sliding for brittle materials[J]. European Journal of Mechanics-A/Solids,1998,17(3):439-460.
    [131]Vychytil J, Horii H. Micromechanics-based continuum model for hydraulic fracturing of jointed rock masses during HDR stimulation[J]. Mechanics of Materials,1998,28(1-4):123-135.
    [132]Homand-Etienne F, Hoxha D, Shao J F. A continuum damage constitutive law for brittle rocks[J]. Computers and Geotechnics,1998,22(2):135-151.
    [133]Chiarelli A S, Shao J F, Hoteit N. Modeling of elastoplastic damage behavior of a claystone[J]. International Journal of Plasticity,2003,19(1):23-45.
    [134]Chen W, Zhu W, Shao J. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):669-677.
    [135]J.F S. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics of Materials,1998,30(1):41-53.
    [136]Shao J F, Hoxha D, Bart M, et al. Modelling of induced anisotropic damage in granites[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1001-1012.
    [137]Shao J, Lu Y, Lydzba D. Damage modeling of saturated rocks in drained and undrained conditions[J]. Journal of Engineering Mechanics,2004,130(733.
    [138]Gudry A A-C, Cormery F, Shao J F, et al. A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial[J]. International Journal of Solids and Structures,2008,45(5): 1406-1429.
    [139]Zhu Q, Kondo D, Shao J, et al. Micromechanical modelling of anisotropic damage in brittle rocks and application[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(4): 467-477.
    [140]Zhu Q Z, Kondo D, Shao J F. Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials:Role of the homogenization scheme[J]. International Journal of Solids and Structures,2008,45(5):1385-1405.
    [141]Zhu Q-z, Shao J-f, Kondo D. A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials[J]. Comptes Rendus Mecanique,2008,336(3):320-328.
    [142]Zhu Q Z, Kondo D, Shao J F. Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(6):749-772.
    [143]Jiang T, Shao J F, Xu W Y, et al. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(5):703-713.
    [144]Xie N, Zhu Q Z, Xu L H, et al. A micromechanics-based elastoplastic damage model for quasi-brittle rocks[J]. Computers and Geotechnics,2011,38(8):970-977.
    [145]Xie N, Zhu Q-Z, Shao J-F, et al. Micromechanical analysis of damage in saturated quasi brittle materials[J]. International Journal of Solids and Structures,2012,49(6):919-928.
    [146]江涛.丛于细观力学的脆性岩石损伤—渗流耦合本构模型研究[D];河海大学,2006.
    [147]褚卫江.低孔隙度岩石细观本构模型及损伤—渗流耦合研究[D];河海大学,2007.
    [148]张研,张子明.材料细观力学[M].科学出版社,2008.
    [149]Kachanov M. Effective Elastic Properties of Cracked Solids:Critical Review of Some Basic Concepts[J]. Applied Mechanics Reviews,1992,45(304.
    [150]朱其志,胡大伟,周辉等.基于均匀化理论的岩石细观力学损伤模型及其应用研究[J].岩石力学与工程学报,2008,02):266-272.
    [151]Pensee V, Kondo D, Dormieux L. Micromechanical analysis of anisotropic damage in brittle materials[J]. Journal of Engineering Mechanics,2002,128(889.
    [152]Willis J R. The stress field around an elliptical crack in an anisotropic elastic medium[J]. International Journal of Engineering Science,1968,6(5):253-263.
    [153]Stabler J, Baker G. Fractional step methods for thermo-mechanical damage analyses at transient elevated temperatures[J]. International Journal for Numerical Methods in Engineering,2000, 48(5):761-785.
    [154]Atkinson K. Numerical integration on the sphere[J]. J Austral Math Soc Ser B,1982,23(332-347.
    [155]Bazant P, Oh B H. Efficient Numerical Integration on the Surface of a Sphere[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 1986,66(1):37-49.
    [156]许模,王迪,蒋良文等.岩土体导热系数研究进展[J].地球科学与环境学报,2011,33(4):
    [157]Clauser C, Huenges E. Thermal conductivity of rocks and minerals[J].1995,
    [158]Zoth G, Haenel R. Appendix[M]. Handbook of Terrestrial Heat-Flow Density Determination. Springer.1988:449-468.
    [159]Sass J, Lachenbruch A H, Moses T, et al. Heat flow from a scientific research well at Cajon Pass, California[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1992,97(B4): 5017-5030.
    [160]Vosteen H-D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(9-11):499-509.
    [161]Seipold U. Temperature dependence of thermal transport properties of crystalline rocks—a general law[J]. Tectonophysics,1998,291(1):161-171.
    [162]陈益峰,周创兵,毛新莹等.瑞典Apso APSE岩柱热弹性耦合特性与数值模拟[J].岩土工程学报,2010,08):1200-1206.
    [163]Pan P, Feng X. Numerical study on coupled thermo-mechanical processes in Aspo Pillar Stability Experiment[J]. Journal of Rock Mechanics and Geotechnical Engineering,0):
    [164]Shafiro B, Kachanov M. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes[J]. Journal of Applied Physics,2000,87(12): 8561-8569.
    [165]刘月妙,蔡美峰,王驹.高放废物处置库缓冲材料导热性能研究[J].岩石力学与工程学报,2007,S2):3891-3896.
    [166]Lloret A, Villar M, Sanchez M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Geotechnique,2003,53(1):27-40.
    [167]Kahr G, Muller-Vonmoos M. Warmeleitfahigkeit von Bentonit MX 80 und von Montigel nach der Heizdrahtmethode[M]. NAGRA,1982.
    [168]Ould-Lahoucine C, Sakashita H, Kumada T. Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it[J]. Nuclear Engineering and Design, 2002,216(1-3):1-11.
    [169]Backblom G, Martin C D. Recent experiments in hard rocks to study the excavation response: Implications for the performance of a nuclear waste geological repository[J]. Tunnelling and Underground Space Technology,1999,14(3):377-394.
    [170]R.S R.20 years of excavation response studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
    [171]Mote C D. Global-local finite element[J]. International Journal for Numerical Methods in Engineering,1971,3(4):565-574.
    [172]张传队,周辉,冯夏庭等.局域地应力场获取的插值平衡方法[J].岩土力学,2008,08):2016-2024.
    [173]秦卫星,付成华,汪卫明等.基于子模型法的初始地应力场精细模拟研究[J].岩土工程学报,2008,06):930-934.
    [174]周华,陈胜宏.高拱坝坝址区初始地应力场的二次计算[J].岩石力学与工程学报,2009,04):767-774.
    [175]罗先启,葛修润,郑宏.水布垭电站地下厂房软岩置换效果初步分析[J].岩土工程学报,2003,04):463-467.
    [176]罗先启,葛修润,车爱兰.等参逆变换法及其在地下厂房原始地应力计算中的应用[J].长江科学院院报,2008,(02):51-53+57.
    [177]王海军,张社荣,练继建.大型水电站导流洞围岩稳定分析[J].岩土工程学报,2006,(07):869-873.
    [178]张雨霆,肖明,张志国.大型地下洞室群地震响应分析的动力子模型法[J].岩石力学与工程学报,2011,(S2):3392-3400.
    [179]Zimmerman D, Pavlik C, Ruggles A, et al. An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting[J]. Mathematical Geology,1999,31(4): 375-390.
    [180]McLean P, Leger P, Tinawi R. Post-processing of finite element stress fields using dual kriging based methods for structural analysis of concrete dams[J]. Finite Elements in Analysis and Design, 2006,42(6):532-546.
    [181]Joe B. Construction of three-dimensional Delaunay triangulations using local transformations[J]. Computer Aided Geometric Design,1991,8(2):123-142.
    [182]王德玲,李春光,葛修润.三维有限元位移场插值问题的研究和应用[J].岩土力学,2004,02):216-219.
    [183]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [184]Andersson J C, AB. S k. Aspo Hard Rock Laboratory:Aspo Pillar Stability Experiment, Final Report:Rock Mass Response to Coupled Mechanical Thermal Loading[M]. SKB,2007.
    [185]Andersson J C, Martin C D. The Aspo pillar stability experiment:Part Ⅰ—xperiment design[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):865-878.
    [186]Andersson J C, Martin C D, Stille H. The Aspo Pillar Stability Experiment:Part Ⅱ—Rock mass response to coupled excavation-induced and thermal-induced stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):879-895.
    [187]Andersson C, Rinne M, Staub I, et al. The on-going pillar stability experiment at the aspo hard rock laboratory, sweden[M]. Elsevier Geo-Engineering Book Series. Elsevier.2004:389-394.
    [188]Andersson J. Apso pillar stability experiment:Rock mass response to coupled mechanical thermal loading[D]; Ph. D. thesis, R. Inst. of Technol., Stockholm,2007.
    [189]Staub I, Andersson J C, Magnor B. Aspo pillar stability experiment:geology and mechanical properties of the rock in TASQ[M]. SKB,2004.
    [190]郑宏,葛修润,李焯芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报,1997,(01):9-22.
    [191]Zheng H, Liu D F, Lee C F, et al. Principle of analysis of brittle-plastic rock mass[J]. International Journal of Solids and Structures,2005,42(1):139-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700