用户名: 密码: 验证码:
铁氧化物/贵金属复合材料的制备及其SERS效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的迅速发展,磁性铁氧化物微纳结构因其独特的物化性能,在化学传感、生物技术/生物医学、环境治理、磁流体和数据存储等方面有着广泛的应用前景。其中,Fe3O4作为一种具有高磁饱和强度和低生物毒性的铁氧化物,在生物技术和生物医学领域具有独特的应用优势。而贵金属(Au、Ag)纳米粒子在激发光的作用下会产生独特的局域表面等离子体共振效应,这一发现有力地促进了表面增强拉曼光谱(SERS)技术的发展,使拉曼光谱在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的,可达到单分子检测水平的技术。若将磁性纳米粒子的快速分离与靶向作用和贵金属纳米粒子的SERS效应有机结合,则可以实现二者功能的互补和优化,在利用磁示踪目标分析物的同时,还可以对其组分进行实时的检测分析。本文在此前提下,围绕铁氧化物、铁氧化物/贵金属复合材料的制备、表征及其在有机染料分子检测与处理等方面开展了一系列的工作,其主要内容如下:
     一、在油酸的存在下,基于简单的溶剂热反应一步合成了粒径均一的a-Fe2O3介孔超结构(~2μm)。采用XRD、Raman、SEM、TEM、FT-IR、TG-DSC和N2等温吸附-脱附测试手段对获得样品的结构和形貌进行了表征。结果表明:由大量纳米尺度的颗粒通过稀疏组装而成的a-Fe2O3超结构不仅拥有较大的比表面积(78.3m2/g),还具有大量的介孔结构。研究了反应时间、表面活性剂及其用量、前躯体的量对样品结构、结晶性、形貌和尺寸的影响。基于上述的实验调查和分析,重点讨论了a-Fe2O3介孔超结构的形成机制以及随着反应时间的延长而出现的相转变(Fe3O4-a-Fe2O3-γ-Fe2O3),并给出了合理的解释。室温下,a-Fe2O3介孔超结构的磁饱和强度高达28.9emu/g,剩磁和矫顽力接近于零,呈现出少有的超顺磁行为。零场冷-场冷(ZFC-FC)测试证实:该材料在158K出现超顺磁转变温度一截止温度(TB),进一步证实了室温下α-Fe2O3介孔超结构的超顺磁行为。
     二、以前期获得的Fe3O4纳米粒子,Fe3O4微球为磁性载体,以贵金属纳米颗粒(Au、Ag)为负载对象,通过简单的液相自组装和进一步生长,先后获得了Fe3O4/Au、Fe3O4/Ag复合纳米结构和具有不同负载浓度的Fe3O4@Au复合微球;UV-vis和磁性测试表明上述复合结构不但继承了贵金属所具有的局域表面等离子体共振吸收性能,而且还保留了良好的磁响应行为。以罗丹明(R6G)、对巯基吡啶(4-Mpy)分子为例,以正常分散的贵金属纳米粒子为参照,利用磁诱导调整聚集状态的理念,调整了复合结构的聚集状态,并研究了相应的SERS效应;证实了磁诱导的复合结构团聚体不仅富集了吸附的探针分子,而且提供了更多的活性"hot spots",其SERS效果有明显的改善。尤其是具有良好结构形貌的Fe3O4@Au复合微球,可作为今后开展特定生物组织、细胞的追踪和分析工作的良好选材。
     三、采用一种简单、高效的化学液相方法合成了具有良好水溶性的Au纳米颗粒负载的Fe3O4@C光磁复合结构。通过改变Au纳米颗粒的加入量或进一步生长,可以有效的调节Au纳米颗粒的负载浓度(0.95%-5.93%, Au的原子百分数)。获得的复合结构对于废水中常见的染料分子表现出优异的SERS敏感性和催化降解能力。三种染料分子R6G、结晶紫(CV)和亚甲基蓝(MS)的SERS信号强度,随着Au的负载量的增加而提高。此外,催化实验表明:高负载量(5.93%)的Fe3O4@C@Au复合结构具有优秀的催化降解反应速率常数(0.331min-1),在10min内即可以实现MB溶液(1.0×10-5M)降解率高达98%,并且可以多次循环使用。上述结果表明Au负载的Fe3O4@C复合结构对于废水处理有一定的实际意义。
With the development of nanotechnology, iron oxide micro/nanostructures have displayed wide applications in chemical sensor, biotechnology/biomedicine, environmental treatment, magnetic fluids and data store due to their unique physicochemical properties. Especially, Fe3O4nanoparticles (NPs), which possess high saturation magnetization, low toxicity and good biocompatibility, have been comprehensively studied for a range of applications in biotechnology and biomedicine. Likewise, noble metal (Au, Ag) NPs can produce unique local surface plasmon resonance effect under the action of laser, which effectively improves the development of surface enhanced Raman spectroscopy (SERS). Nowadays, SERS technology has realized extreme sensitive detection and unwonted single molecular detection. It is easy to see that combination of magnetic NPs with noble metal NPs would endow possibilities for the development of interesting advanced composites as a result of bring together rapid separation, target and unique SERS effect. Not only can so advanced composites tract targeted analyte, also analyze them in time. In this dissertation, we reported some iron oxides and iron oxide/noble metal composites, mainly investigated their application in SERS detection and treatment of organic dyes. The main contents are included:
     1. Uniform mesoporous hematite superstructures (~2μm) have been obtained via an oleic acid-assisted one-pot solvothermal route. The as-obtained products were characterized by XRD, XPS, Raman, SEM, TEM, FT-IR, TG-DSC and N2absorption-desorption isotherm. These results indicate that hematite superstructures self-assembled by using large number of NPs have high surface area (78.3m2/g) and mesoporous structures. Some factors (reaction time, surfactant, the amount of surfactant and precursor) influencing the phase, crystallinity and morphology of the products were systematically investigated. Based on the experimental investigation and analysis, we mainly discussed the formation mechanism of mesoporous hematite superstructures, phase transition (magnetite-hematite-maghemite) induced by reaction time and gave a proper explaination. The magnetic study reveals a surprising phenomenon that the mesoporous. hematite superstructures exhibit a unique superparamagnetic behavior with a high saturation magnetization (28.9 emu/g) at room temperature, which is seldom reported thus far for. hematite micro/nanostructures. The Zero field cooled-field cooled (ZFC-FC) measurement verified the existence of superparamagnetic blocking temperature (Tb=158K), which further approves the superparamagnetic behavior of the mesoporous superstructures at room temperature.
     2. Fe3O4/Au, Fe3O4Ag and Fe3O4@Au composites with different Au content were obtained by phase-liquid assembly of Au, Ag NPs and further growth on Fe3O4supports. UV-visible absorption spectroscopy and magnetic measurements demonstrate not only do the obtained composites inherit local surface plasmon resonance effect of noble metal NPs, also keep excellent magnetic response behavior. Taking Rhodamine6G (R6G),4-mercaptopyridine (4-Mpy) model molecules for example and normal dispersed Au, Ag NPs for reference, a magnetic-induced idea was introduced to adjust aggregated states of above-mentioned composites and research their SERS performances. It indicates that magnetic-induced aggregated states of composites concentrate the adsorbed probe molecules, and create more "hot spots", which cause superior SERS performances. Especially, Fe3O4@Au composite microspheres with well-defined structures can be considered as candidates for track and analysis of special tissue and cell.
     3. Water-dispersive Au-loaded Fe3O4@C composite microspheres were controllably synthesized by a simple and efficient chemical liquid-phase route. The amount of Au loading can be effectively tuned (0.95%-5.93%atomic percent) by altering the feeding amounts of solution Au NPs or further growth. The obtained Au-loaded Fe3O4@C composites exhibit both superior SERS sensitivity and catalytic degradation activity for organic dyes. The SERS signal intensity of R6G, crystal violet (CV) and methylene blue (MB) distinctly enhance with the increase of Au loading. Furthermore, the catalytic experiments of the Fe3O4@C@Au composite microspheres with a5.93%of Au loading demonstrate that the model organic dye of MB solution (1.0×10-5M) could be degraded within10min and the catalytic activity could be recovered without sharp activity loss in six runs, which indicate their superior catalytic degradation efficiency (98%) and rate (0.331min-1). These results indicate that Au-loaded Fe3O4@C composite microspheres could be served as promising materials in wastewater treatment.
引文
[1]王辉.2011.磁性Fe3O4/C核壳纳米粒子的合成、组装和应用[D]:[博士].合肥:中国科学技术大学.1-3.
    [2]Du YW, Xu MX, Wu J, et al.1992. Magnetic of nickel ultrafine particles [J]. Acta Phys. Sin.41:149-153.
    [3]张文军.2006.磁性纳米粒子的液相制备新方法.区域限制部分还原沉淀路线[D]:[硕士].武汉:华中师范大学.3-4.
    [4]Tanwar S, Awana VPS, Singh SP, et al.2012. Magnetic Field Dependence of Blocking Temperature in Oleic Acid Functionalized Iron Oxide Nanoparticles [J]. J. Supercond. Nov. Magn.25:2041-2045.
    [5]Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials,2009, 55,22-45.
    [6]Jolivet JP, Chaneac C, Tronc E.2004. Iron oxide chemistry. From molecular clusters to extended solid networks [J]. Chem. Commun.5:481-487.
    [7]Welo LA, Baudisch O.1925. The two-stage transformation of magnetite into hematite [J]. Philos. Mag.50:399-408.
    [8]David I, Welch AJE.1956.The oxidation of magnetite and related spinels-constitution of gamma ferric oxide [J]. Trans. Faraday Soc.52: 1642-1650.
    [9]Qu SC, Yang HB, Ren DW, et al.1999. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. J. Colloid Interf. Sci.215: 190-192.
    [10]Lu AH, Salabas EL, Schiith F. Magnetic Nanoparticles:Synthesis, Production, Functionalization, and Application [J].2007. Angew. Chem. Int. Ed.46:1222-1244.
    [11]Bagwe RP, Kanicky JR, Palla BJ, et al.2001. Improved drug delivery using microemulsions: Rationale, recent progress, and new horizons [J]. Crit. Rev. Ther. Drug Carrier Syst.18: 77-140.
    [12]Zhou ZH, Wang J, Liu X, et al.2001. Synthesis of Fe3O4 nanoparticles from emulsion [J]. J. Mater. Chem.11:1704-1709.
    [13]Deng Y, Wang L, Yang W, et al.2003. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process [J]. J. Magn. Magn. Mater.257,69-78.
    [14]Gupta AK, Wells S.2004. Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies [J]. IEEE Trans. Nanobio. 3:66-73.
    [15]Wang X, Zhuang J, Peng Q, et al.2005. A general strategy for nanocrystal synthesis [J]. Nature 437:121-124.
    [16]Cheng W, Tang KB, Qi YX, et al.2010. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres [J]. J. Mater. Chem.20: 1799-1805.
    [17]Liu CT, Ma J, Chen HY.2012. Periodic structural conversion and its mechanism in hematite: from nanospindles, to nanotubes, to nanotires [J]. RSC Adv.2:1009-1013.
    [18]Rockenberger J, Scher EC, Alivisatos AP.1999. A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides [J]. J. Am. Chem. Soc.121:11595-11596.
    [19]Hyeon T, Lee SS, Park J, et al.2001. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process [J]. J. Am. Chem. Soc.123: 12798-12801.
    [20]Sun SH, Zeng H.2002. Size-Controlled Synthesis of Magnetite Nanoparticles [J]. J. Am. Chem. Soc.124:8204-8205.
    [21]Jana NR, Chen Y, Peng XG.2004. Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach [J]. Chem. Mater.16:3931-3935.
    [22]Li Z, Chen H, Bao H B, et al.2004. One-pot reaction to synthesize water-soluble magnetite nanocrystals [J]. Chem. Mater.16:1391-1393.
    [23]Azhar Uddin M, Tsuda H, Wu S, et al.2008. Catalytic decomposition of biomass tars with iron oxide catalysts [J]. Fuel 87:451-459.
    [24]Tartaj P, Morales MD, Veintemillas-Verdaguer S, et al.2003, The preparation of magnetic nanoparticles for applications in biomedicine [J]. J. Phys. D:Appl. Phys.36:182-197.
    [25]Teja AS, Holm LJ, Sun YP.2002. Supercritical Fluid Technology in Materials Science and Engineering:Synthesis, Properties, and Applications [M]. Elsevier.
    [26]Jurgons R, Seliger C, Hilpert A, et al.2006. Drug loaded magnetic nanoparticles for cancer therapy [J]. J. Phys. Condens. Mat.18:2893-2902.
    [27]Qiang Y, Antony J, Sharma A, et al.2006. Iron/iron oxide core-shell nanoclusters for biomedical applications [J]. J. Nanopart. Res.8:489-496.
    [28]Xu ZP, Zeng QH, Lu GQ, et al.2006. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci.61:1027-1040.
    [29]Li C, Shen Y, Jia M, et al.2008 [J]. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Cata. Commun.9:355-361.
    [30]Hibst H, Schwab E, Cahn RW.1994. Electronic and Magnetic Properties of Metals and Ceramics [M]. Weinheim:Wiley-VCH.
    [31]Sharrock MP, Bodnar RE.1985. Magnetic-materials for recording-an overview with special emphasis on particles [J]. J. Appl. Phys.57,3919-3924.
    [32]Cornell RM, Schwertmann U.2003. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses [M].2th ed. Weinheim:Wiley-VCH.
    [33]Camley RE, Stamps RL.1993. Magnetic multilayers-spin configurations, excitation and giant magnetoresistance [J]. J. Phys. Condens. Mat.5: 3727-3786.
    [34]Raj K, Moskowitz R.1989. Commercial applications of ferrofluids [J]. J. Magn. Magn. Mater.85:233-245.
    [35]Shi F, Tse MK, Pohl MM, et al.2007. Tuning catalytic activity between homogeneous and heterogeneous catalysis:Improved activity and selectivity of free nano-Fe203 in selective oxidations [J]. Angew. Chem. Int. Ed.46:8866-8868.
    [36]Zhang RJ, Huang JJ, Zhao HT, et al.2007. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization [J]. Energ. Fuel.21:2682-2687.
    [37]Wang CT, Willey RJ.1998. Oxidation of methanol over iron oxide based aerogels in supercritical CO2 [J]. J. Non-Cryst. Solids 225:173-177.
    [38]Al-Sayari S, Carley AF, Taylor SH, et al.2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature:comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation [J]. Top. Catal.44: 123-128.
    [39]Zhong Z, Ho J, Teo J, et al.2007. Synthesis of porous alpha-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO [J]. Chem. Mater.19: 4776-4782.
    [40]Jorgensen TL, Livbjerg H, Glarborg P. Homogeneous and heterogeneously catalyzed oxidation of SO2 [J]. Chem. Eng. Sci.2007,62:4496-4499.
    [41]Zhong Z, Lin J, Teh SP, et al.2007. A rapid and efficient method to deposit gold particles on catalyst supports and its application for CO oxidation at low temperatures [J]. Adv. Func. Mater.17: 1402-1408.
    [42]Kozlova AP, Sugiyama S, Kozlov AI, et al.1998. Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3):State and structure of the support [J]. J. Cata. 176:426-438.
    [43]Hutchings GJ, Hall MS, Carley AF, et al.2006. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold [J]. J. Cata,242:71-81.
    [44]Brebu M, Uddin MA, Muto A, et al.2001. Catalytic degradation of acrylonitrile-butadiene-styrene into fuel oil 1. The effect of iron oxides on the distribution of nitrogen-containing compounds [J]. Energ. Fuel.15:559-564.
    [45]Lam UT, Mammucari R, Suzuki K, et al.2008. Processing of iron oxide nanoparticles by supercritical fluids [J]. Ind. Eng. Chem. Res.47:599-614.
    [46]H. Gaedcke, Buxbaum G.1998. Industrial Inorganic Pigments [M]. Weinheim:Wiley-VCH.
    [47]Lubbe AS, Bergemann C, Brock J, et al.1999. Physiological aspects in magnetic drug-targeting [J]. J. Magn. Magn. Mater.194:149-155.
    [48]Lee H, Shao HP, Huang YQ, et al.2005. Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan [J]. IEEE Transactions on Magnetics 41: 4102-4104.
    [49]Sadeghiani N, Barbosa LS, Guedes MHA, et al.2005. Magnetic resonance of polyaspartic acid-coated magnetite nanoparticles administered in mice. IEEE T. Magn.41:4108-4110.
    [50]Majewski P, Thierry B.2007. Functionalized magnetite nanoparticles-Synthesis, properties, and bio-applications [J]. Crit. Rev. Solid State Mater. Sci.32:203-215.
    [51]Neuberger T, Schopf B, Hofmann H, et al. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep [J].2005. J. Magn. Magn. Mater.293:483-496.
    [52]Lubbe AS, Bergemann C, Riess H, et al.1996. Clinical experiences with magnetic drag targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors [J]. Cancer Res.56:4686-4693.
    [53]Kohler N, Sun C, Wang J, et al.2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells [J]. Langmuir 21: 8858-8864.
    [54]Kim JS, Yoon TJ, Kim BG, et al.2006. Toxicity and tissue distribution of magnetic nanoparticles in mice [J]. Toxicol. Sci.89:338-347.
    [55]Tartaj P, Morales MP, Gonzalez-Carreno T, et al.2005. Advances in magnetic nanoparticles for biotechnology applications [J]. J. Magn. Magn. Mater.290:28-34.
    [56]Yang HH, Zhang SQ, Chen XL, et al.2004. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.76:1316-1321.
    [57]Wang SX, Bae SY, Li G, et al.2005. Towards a magnetic microarray for sensitive diagnostics [J]. J. Magn. Magn. Mater.293:731-736.
    [58]Duanmu C, Saha I, Zheng Y, et al.2006. Dendron-functionalized superparamagnetic nanoparticles with switchable solubility in organic and aqueous media: Matrices for homogeneous catalysis and potential MRI contrast agents [J]. Chem. Mate.18:5973-5981.
    [59]Kaufner L, Cartier R, Wustneck R, et al.2007. Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles: in vitro characterization and in vivo behaviour [J]. Nanotechnology 18:115710.
    [60]Lee HY, Lim NH, Seo JA, et al.2006. Preparation and magnetic resonance imaging effect of polyvinylpyrrolidone-coated iron oxide nanoparticles [J]. J. Biomed. Mater. Res. B.79, 142-150.
    [61]Giri J, Pradhan P, Somani V, et al. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fel-xBxFe2O4, B=Mn, Co (x=0-1)] for biomedical applications [J]. 2008. J. Magn. Magn. Mater.320:724-730.
    [62]Jun YW, Choi JS, Cheon J.2007. Heterostructured magnetic nanoparticies:their versatility and high performance capabilities [J]. Chem. Commun.12:1203-1214.
    [63]Babes L, Denizot B, Tanguy G, et al.1999. Synthesis of iron oxide nanoparticles used as MRI contrast agents:A parametric study [J]. J. Colloid Interf. Sci.212:474-482.
    [64]Hu FQ, Zhou Z, Ran YL et al.2006. Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J]. Adv. Mater.18:2553-2556.
    [65]Leung KCFL, Xuan SH, Zhu XM, et al.2012. Gold and iron oxide hybrid nanocomposite materials [J]. Chem. Soc. Rev.41:1911-1928.
    [66]Kim J, Lee JE, Lee J, et al.2006. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angew. Chem. Int. Ed.45:4789-4793.
    [67]Sacanna S, Philipse AP.2006. Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and (dipolar) chain formation [J]. Langmuir 22,10209-10216.
    [68]Chen M, Kim YN, Lee HM, et al.2008. Multifunctional magnetic silver nanoshells with sandwichlike nanostructures [J]. J. Phys. Chem. C 112:8870-8874.
    [69]Nagao D, Yokoyama I, Yamauchi N, et al.2008. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell [J]. Langmuir,24,9804-9808.
    [70]Adler DC, Huang SW, Huber R, et al.2008. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography [J]. Opt. Express,16: 4376-4393.
    [71]Hirsch LR, Stafford RJ, Bankson JA, et al.2003. Nanoshell-mediated near-infrared thermal therapy of rumors under magnetic resonance guidance [J]. Proc. Natl. Acad. Sci. USA.100: 13549-13554.
    [72]Skrabalak SE, Chen J, Au L, et al.2007. Gold nanocages for biomedical applications [J]. Adv. Mater.19:3177-3184.
    [73]Yavuz MS, Cheng YY, Chen JY, et al.2009. Gold nanocages covered by smart polymers for controlled release with near-infrared light [J]. Nat. Mater.8:935-939.
    [74]Prodan E, Nordlander P, Halas NJ.2003. Effects of dielectric screening on the optical properties of metallic nanoshells [J]. Chem. Phys. Lett.368:94-101.
    [75]Levin CS, Hofmann C, Ali TA, et al.2009. Magnetic-Plasmonic Core-Shell Nanoparticles [J].ACS Nano 3:1379-1388.
    [76]Wang DS, Li YD.2010. One-pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. J. Am. Chem. Soc.132:6280-6281.
    [77]Xuan SH, Zhou YF, Xu HJ, et al.2011. One step method to encapsulate nanocatalysts within Fe3O4 nanoreactors [J]. J. Mater. Chem.21:15398-15404.
    [78]Guo SJ, Dong SJ, Wang EK.2009. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures [J]. Chem. Eur. J.15:2416-2414.
    [79]Zhang J, Liu XH, Guo XZ, et al.2010. A General Approach to Fabricate Diverse Noble-Metal (Au, Pt, Ag, Pt/Au)/Fe2O3 Hybrid Nanomaterials [J]. Chem. Eur. J.16: 8108-8116.
    [80]Zhang XY, Zhu SC, Deng CH, et al.2012. Highly sensitive thrombin detection by matrix assisted laser desorption ionization-time of flight mass spectrometry with aptamer functionalized core-shell Fe3O4@C@Au magnetic microspheres [J]. Talanta 88:295-302.
    [81]Hu HB, Wang ZH, Pan L, et al.2010. Ag-Coated Fe3O4@SiO2 Three-Ply Composite Microspheres:Synthesis, Characterization, and Application in Detecting Melamine with Their Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. C 114:7738-7742.
    [82]Jiang CF, Chen MW, Xuan SH, et al.2009. Magnetic separable PSA@Fe3O4/Ag composites Fabrication and catalytic properties [J]. Can. J. Chem.87: 502-506.
    [83]Xuan SH, Wang F, Gong XL, et al.2011. Hierarchical core/shell Fe3O4@SiO2@c-AlOOH@Au micro/nanoflowers for protein immobilization [J]. Chem. Comm.47: 2514-2516.
    [84]Yu H, Chen M, Rice PM, et al.2005. Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles [J]. Nano Lett.5:379-382.
    [85]Gu HW, Yang ZM, Gao JH, et al.2004. Heterodimers of Nanoparticles:Formation at Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.127:34-35.
    [86]Shi WL, Zeng H, Sahoo Y, et al.2006. A General Approach to Binary and Ternary Hybrid Nanocrystals [J]. Nano Lett.6:875-881.
    [87]Shen HX, Xu MM, Yan X, et al.2010. Synthesis and Surface Enhanced Optical Properties of Multibranched Spindle Particles and Core-Shell Structures [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.353:204-209.
    [88]Zhai YM, Zhai JF, Wang YL, et al.2009. Fabrication of Iron Oxide Core/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness for Efficient Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. C 113:7009-7014
    [89]Qi DW, Zhang HY, Tang J, et al.2010. Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core-Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins [J]. J. Phys. Chem. C 114: 9221-9226.
    [90]Bardhan R, Chen WX, Perez-Torres C, et al.2009. Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response [J]. Adv. Funct. Mater.19:3901-3909.
    [91]Chung BH, Lim YT, Cho MY, et al.2007. Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells [J]. ChemBioChem.8:2204-2209.
    [92]Lee J, Yang J, Ko H, et al.2008. Multifunctional magnetic gold nanocomposites:Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy [J]. Adv. Funct. Mater.18; 258-264.
    [93]Feldman MD, Ma LL, Tam JM, et al.2009. Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy [J]. ACS Nano 3:2686-2696.
    [94]Cho MH, Kim J, Park S, et al.2006. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy [J]. Angew. Chem. Int. Ed.45:7754-7758.
    [95]Sun S, Xu C, Xie J, et al.2008. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes [J]. Angew. Chem. Int. Ed.47:173-176.
    [96]Garcia I, Gallo J, Genicio N, et al.2011. Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells [J]. Bioconjugate Chem.22:264-273.
    [97]Jeong YY, Kim D, Yu MK, et al.2011. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents [J]. Nanotechnology 22:155101.
    [98]Xuan SH, Wang F, Lai JMY, et al.2011. Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications [J]. ACS Appl. Mater. Interfaces.3:237-244.
    [99]Xuan SH, Wang YXJ, Yu JC, et al.2009. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles [J]. Chem. Mater.21:5079-5087.
    [100]Xuan SH, Wang F, Wang YXJ, et al.2010. Facile synthesis of size-controllable monodispersed ferrite nanospheres [J]. J. Mater. Chem.20:5086-5094.
    [101]Kim D, Park S, Lee JH, et al.2007. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging [J]. J. Am. Chem. Soc. 129:7661-7665.
    [102]Kim D, Kim JW, Jeong YY, et al.2009. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI [J]. Bull. Korean Chem. Soc. 30:1855-1857.
    [103]Xu C, Wang B, Sun SH.2009. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery [J]. J. Am. Chem. Soc.131:4216-4217.
    [104]Bardhan R, Chen WX, Bartels M, et al.2010. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo [J]. Nano. Lett.10:4920-4928.
    [105]Bardhan R, Grady NK, Cole J, et al.2009. Fluorescence Enhancement by Au Nanostructures:Nanoshells and Nanorods [J]. ACS Nano 3:744-752.
    [106]Curleya SA, Cherukuri P, Glazer ES.2010. Targeted hyperthermia using metal nanoparticles [J]. Adv. Drug Delivery Rev.62:339-345.
    [107]Mohammad F, Balaji G, Weber A, et al.2010. Influence of Gold Nanoshell on Hyperthermia of Superparamagnetic Iron Oxide Nanoparticles [J]. J. Phys. Chem. C 114: 19194-19201.
    [108]Kirui DK, Rey DA, Batt CA.2010. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging [J]. Nanotechnology 21,105105.
    [109]Minelli C, Lowe SB, Stevens MM.2010. Engineering Nanocomposite Materials for Cancer Therapy [J]. Small 6:2336-2357.
    [110]Scherer F, Anton M, Schillinger U, et al.2002. Engineering Nanocomposite Materials for Cancer Therapy [J]. Gene Ther.9: 102-109.
    [111]Plank C, Scherer F, Schillinger U, et al.2003. Magnetofection: Enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields [J]. J. Liposome Res. 13:29-32.
    [112]Cho K, Wang X, Nie S, et al.2008. Therapeutic nanoparticles for drug delivery in cancer [J]. Clin. Cancer Res.14:1310-1316.
    [113]Kamei K, Mukai Y, Kojima H, et al.2009. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery [J]. Biomaterials 30:1809-1814.
    [114]Everts M, Saini V, Leddon JL, et al.2006. Covalently linked au nanoparticles to a viral vector:Potential for combined photothermal and gene cancer therapy [J]. Nano Lett.6: 587-591.
    [115]Thaxton CS, Georganopoulou DG, Mirkin CA.2006. Gold nanoparticle probes for the detection of nucleic acid targets [J]. Clin. Chim. Acta.363:120-126.
    [116]Stoeva SI, Huo FW, Lee JS.2005. Three-layer composite magnetic nanoparticle probes for DNA [J]. J. Am. Chem. Soc.127,15362-15363.
    [117]Zhao J, Zhang Y, Li H, et al.2011. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer-AuNPs-HRP conjugates [J]. Biosens. Bioelectron.26: 2297-2303.
    [118]Riedel F, Zaiss I, Herzog D, et al.2005. Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma [J]. Anticancer Res.25:2761-2765.
    [119]Tang DP, Yuan R, Chai YQ.2006. Magnetic Core-Shell Fe3O4@Ag Nanoparticles Coated Carbon Paste Interface for Studies of Carcinoembryonic Antigen in Clinical Immunoassay [J]. J. Phys. Chem. B 110:11640-11646
    [120]Liang CH, Wang CC, Lin YC, et al.2009. Iron Oxide/Gold Core/Shell Nanoparticles for Ultrasensitive Detection of Carbohydrate-Protein Interactions [J]. Anal. Chem.81: 7750-7756.
    [121]Qiu J D, Peng HP, Liang RP, et al.2010. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J]. Biosens. Bioelectron 25:1447-1453.
    [122]M. A. Nash, P. Yager, A. S. Hoffman, et al.2010. Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers [J]. Bioconjugate Chem.21:2197-2204
    [123]Wang C, Irudayaraj J.2010. Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens [J]. Small 6:283-289.
    [124]Liu HL, Sonn CH, Wu JH, et al.2008. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4(+) lymphocytes [J]. Biomaterials,29:4003-4011
    [125]Hashmi ASK, Hutchings G J.2006. Gold catalysis [J]. Angew. Chem. Int. Ed.45: 7896-7936.
    [126]Arcadi A.2008. Alternative synthetic methods through new developments in catalysis by gold [J]. Chem. Rev.108:3266-3325.
    [127]Corma A, Garcia H.2008. Supported gold nanoparticles as catalysts for organic reactions [J]. Chem. Soc. Rev.37: 2096-2126.
    [128]Lin FH, Doong RA.2011. Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction [J]. J. Phys. Chem. C 115:6591-6598.
    [129]Edwards JK, Solsona B, Landon P, et al.2005. Direct synthesis of hydrogen peroxide from H-2 andO(2) using Au-Pd/Fe2O3 catalysts [J]. J. Mater. Chem.15:4595-4600.
    [130]Lee Y, Garcia MA, Huls NAF, et al.2010. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles [J]. Angew. Chem., Int. Ed.49:1271-1274.
    [131]Qu JC, Ren CL, Dong YL,et al.2012. Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite:A highly integrated catalysts [J]. Chem. Eng. J.211-212: 412-420
    [132]Raman CV, Krishman KS.1928. A new type of secondary radiation [J]. Nature,121: 501-502
    [133]陈亚杰.2012.Ag(Au)纳米粒子在分级结构氧化物半导体上的沉积及表面增强拉曼光谱研究[D]:[博士].哈尔滨:黑龙江大学.4-5.
    [134]Fleischmann M, Hendra P J, McQuillan A.1974. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.26:163-166.
    [135]Jeanmaire D L, Van Duyne R P.1977. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver Electrode [J]. J. Electroanal. Chem.84:1-20
    [136]Albrecht M G, Creighton J A.1977. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc.99:5215-5217
    [137]Creighton J A, Blatchford C G, Albrecht M G.1979. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength [J]. J. Chem. Soc. Faraday Trans.2:Molecular and Chemical Physics 75:790-798.
    [138]Tian ZQ, Ren B, Wu DY, et al.2002. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B 106: 9463-9483.
    [139]Wu DY, Li JF, Ren B, et al.2008. Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews,37:1025-1041.
    [140]Zhao B, Xu WQ, Ruan WD, et al.2008. Advances in Surface-enhanced Raman Scattering-Semiconductor Substrates [J]. Chem. J. Chin. Chinese Universities 29:2591-2596.
    [141]Han XX, Zhao B, Ozaki Y.2009. Surface-enhanced Raman scattering for protein detection [J]. Anal. Bioanal. Chem.394:1719-1727.
    [142]沈红霞.2009.铁氧化物/金核壳粒子的制备及表面增强拉曼光谱研究[D]:[博士].苏州:苏州大学,12-15.
    [143]Schatz GC.1984. Theoretical studies of surface enhanced Raman scattering [J]. Ace. Chem. Res.17,370-376.
    [144]Chen S, Yuan YX, Yao JL, et al.2011. Magnetic separation and immunoassay of multi-antigen based on surface enhanced Raman spectroscopy [J]. Chem. Commun.47, 4225-4227.
    [145]Jun BH, Noh MS, Kim JY, et al.2010. Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications [J]. Small 6,119-125.
    [1]Chen J, Xu LN, Li WY, et al.2005. a-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications [J]. Adv. Mater.17:584-586.
    [2]Xi GC, Wang C, Wang X.2008. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur. J. Inorg. Chem.425-431.
    [3]Liu L, Li Y, Yuan SM, et al.2010. Nanosheet-Based NiO Microspheres:Controlled Solvothermal Synthesis and Lithium Storage Performances [J]. J. Phys. Chem. C 114: 251-255.
    [4]Hu JS, Zhang LS, Song WG, et al.2008. Synthesis of Hierarchically Structured Metal Oxides and their Application in Heavy Metal Ion Removal [J]. Adv. Mater.20:2977-2982.
    [5]Xu JS, Zhu YJ.2011. a-Fe2O3 hierarchically hollow microspheres self-assembled with nanosheets:surfactant-free solvothermal synthesis, magnetic and photocatalytic properties [J]. CrystEngComm 13:5162-5169.
    [6]Kang YS, Risbud S, Rabolt JF, et al.1996. Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles [J]. Chem. Mater.8:2209-2211.
    [7]Ghosh R, Pradhan L, Devi YP, et al.2011. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia [J]. J. Mater. Chem.21:13388-13398.
    [8]Whitesides GM, Boncheva M.2002. Beyond molecules:Self-assembly of mesoscopic and macroscopic components [J]. Proc. Natl. Acad. Sci. USA.99:4769-4774.
    [9]Hou YL, Kondoh H, Ohta T.2005. Self-assembly of Co nanoplatelets into spheres:Synthesis and characterization [J]. Chem. Mater.17:3994-3996.
    [10]Mo M, Yu JC, Zhang LZ, et al.2005. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres [J]. Adv. Mater.17:756-760.
    [11]Suber L, Imperatori P, Ausanio G, et al.2005. Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes [J]. J. Phys. Chem. B 109: 7103-7109.
    [12]Deng H, Li X, Peng Q, et al.2005. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed.44:2782-2785.
    [13]Yan A, Liu X, Qiu G, et al.2007. A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nanoparticles with adjustable sizes [J]. Solid State Commun. 144:315-318.
    [14]Bachmann J, Jing J, Knez M, et al.2007. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition [J]. J. Am. Chem. Soc.129: 9554-9555.
    [15]Reddy MV, Yu T, Sow CH, et al.2007. a-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries [J]. Adv. Funct. Mater.17:2792-2799.
    [16]Yu XL, Cao CB, An XQ.2008. Facile Conversion of Fe Nanotube Arrays to Novel a-Fe2O3 Nanoparticle Nanotube Arrays and Their Magnetic Properties [J]. Chem. Mater.20: 1936-1940.
    [17]Cesar I, Kay A, Maritinez JG, et al.2006. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping [J]. J. Am. Chem. Soc.128:4582-4583.
    [18]Zeng SY, Tang KB, Li TW, et al.2008. Facile Route for the Fabrication of Porous Hematite Nanoflowers:Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties [J]. J. Phys. Chem. C 112:4836-4843.
    [19]Wang B, Chen JS, Wu HB, et al.2011. Quasiemulsion-Templated Formation of a-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties [J]. J. Am. Chem. Soc.133: 17146-17148.
    [20]Hu XL, Yu JC, Gong JM, et al.2007. a-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties [J]. Adv. Mater.19:2324-2329.
    [21]Wang LL, Fei T, Lou Z, et al.2011. Three-Dimensional Hierarchical Flowerlike a-Fe2O3 Nanostructures:Synthesis and Ethanol-Sensing Properties [J]. ACS Appl. Mater. Interfaces 3: 4689-4694.
    [22]Pailhe N, Wattiaux A, Gaudon M, et al.2008. Impact of structural features on pigment properties of alpha-Fe2O3 haematite [J]. J. Solid State Chem.181:2697-2704.
    [23]Katsuki H, Komarneni S.2003. Role of alpha-Fe2O3 morphology on the color of red pigment for porcelain [J]. J. Am. Chem. Soc.86:183-185.
    [24]Qiu GH, Huang H, Genuino H, et al.2011. Microwave-Assisted Hydrothermal Synthesis of Nanosized a-Fe2O3 for Catalysts and Adsorbents [J]. J. Phys. Chem. C 115,19626-19631.
    [25]Lian JB, Duan XC, Ma JM, et al.2009. Hematite (a-Fe2O3) with Various Morphologies: Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties [J]. ACS Nano 3: 3749-3761.
    [26]Cvelbar U, Chen ZQ, Sunkara MK, et al.2008. Spontaneous Growth of Superstructure Fe2O3 Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma [J]. Small,4:1610-1614.
    [27]Liu CT, Ma J, Chen HY.2012. Periodical structural conversion and its mechanism in hematite:from nanospindles, to nanotubes, to nanotires [J]. RSC Adv.2:1009-1013.
    [28]Mitra S, Das S, Manda K, et al.2007. Synthesis of a a-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties [J]. Nanotechnology 18:275608.
    [29]Chen YL, Zou BL, Wang CJ, et al.2011. Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties [J]. CrystEngComm 13:2863-2870.
    [30]Wang X, Chen XY, Ma XC, et al.2004. Low-temperature synthesis of alpha-Fe2O3 nanoparticles with a closed cage structure [J]. Chem. Phys. Lett.384:391-393.
    [31]Yan B, Tao JG, Pang C, et al.2008. Reversible UV-Light-Induced Ultrahydrophobic-to-Ultrahydrophilic Transition in an a-Fe2O3 Nanoflakes Film [J]. Langmuir 24:10569-10571.
    [32]Hu XL, Yu JC, Gong JM,2007. Fast Production of Self-Assembled Hierarchical a-Fe2O3 Nanoarchitectures [J]. J. Phys. Chem. C 111:11180-11185.
    [33]Hsu LC, Yu HC, Chang TH, et al.2011. Formation of Three-Dimensional Urchin-like a-Fe2O3 Structure and Its Field-Emission Application [J]. ACS Appl. Mater. Interfaces 3:3084-3090.
    [34]Teia AS, Koh PY.2009. Synthesis, properties, and applications of magnetic iron oxide nanoparticles [J]. Prog Cryst Growth Ch.55:22-45.
    [35]Raming TP, Winnubst AJA, van Kats CM, et al.2002. The synthesis and magnetic properties of nanosized hematite (alpha-Fe2O3) particles [J]. J. Colloid Interf. Sci.249:346-350.
    [36]Wang XZ, Zhao ZB, Qu JY, et al.2010. Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route [J]. Cyst. Growth& Des.10:2863-2869.
    [37]Moulder JF, Stickle WF, Sobol PE, et al.1992. Handbook of X-ray photoelectron spectroscopy. Eden Prairie:Physical Electronics Division, Perkin-Elmer Corp.
    [38]Chemyshova IV, Hochella Jr MF, Madden AS.2007. Size-dependent structural transformations of hematite nanoparticles.1. Phase transition. Phys. Chem. Chem. Phys.9: 1736-1750.
    [39]Hu XL, Yu JC, Gong JM.2007. Fast production of self-assembled hierarchical alpha-Fe2O3 nanoarchitectures [J]. J. Phys. Chem. C 111:11180-11185.
    [40]Cvelbar U, Chen ZQ, Sunkara MK, et al.2008. Spontaneous Growth of Superstructure alpha-Fe2O3 Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma [J]. Small 4: 1610-1614.
    [41]Daou TJ, Pourroy G, B6gin-Colin S, et al.2006. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles [J]. Chem. Mater.18:4399-4404.
    [42]Zboril R.2002. Iron(Ⅲ) Oxides from Thermal ProcessessSynthesis, Structural and Magnetic Properties, Molssbauer Spectroscopy Characterization, and Applications [J]. Chem. Mater. 14:969-982.
    [43]Zhou W, Lin LJ, Wang WJ, et al.2011. Hierarchial Mesoporous Hematite with "Electron-Transport Channels" and Its Improved Performances in Photocatalysis and Lithium Ion Batteries [J]. J. Phys. Chem. C 115:7126-7133.
    [44]Lan Q, Liu C, Yang F, et al.2007. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions [J]. J. Colloid Interf. Sci.310: 260-269.
    [45]Deligoz H, Baykal A, Tanriverdi EE, et al.2012. Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs [J]. Mater. Res. Bull. 47:537-543.
    [46]Gao G, Huang P, Zhang YX, et al.2011. Gram scale synthesis of superparamagnetic Fe3O4 nanoparticles and fluid via a facile solvothermal route [J]. CrystEngComm 13:1782-1785.
    [47]Mao D, Yao JX, Lai XY, et al.2011. Hierarchically Mesoporous Hematite Microspheres and Their Enhanced Formaldehyde-Sensing Properties [J]. Small 7:578-582.
    [48]Sing KSW, Everett DH, Haul RAW, et al.1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity [J]. Pure Appl. Chem.57:603-619.
    [49]Nigam S, Barick KC, Bahadur D, et al.2011. Development of citrate-stabilized Fe3O4 nanoparticles:Conjugation and release of doxorubicin for therapeutic applications [J]. J. Magn. Magn. Mater.323:237-243.
    [50]Jin YH, Seo SD, Shim HW, et al.2012. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes [J]. Nanotechnology 23:125402.
    [51]Xie Y, Zheng XW, Jiang XC, et al.2002. Sonochemical synthesis and mechanistic study of copper selenides Cu2-xSe, beta-CuSe, and Cu3Se2 [J]. Inorg. Chem.41:387-392.
    [52]Hu QT, Gan ZB, Zheng XW, et al.2011. High-density attachment of FePt nanoparticles on carbon nanotubes by a facile microwave-assisted polyol method [J]. J. Nanopart. Res.13: 3191-3197.
    [53]Qu XF, Yao QZ, Zhou GT. et al.2010. Formation of Hollow Magnetite Microspheres and Their Evolution into Durian-like Architectures [J]. J. Phys. Chem. C 114:8734-8740.
    [54]Zhou GT, Yao QZ, Ni J, et al.2009. Formation of aragonite mesocrystals and implication for biomineralization [J]. Am. Minera 94:293-302.
    [55]Heaven MW, Cave GWV, McKinlay RM, et al.2006. Hydrogen-bonded hexamers self-assemble as spherical and tubular superstructures on the sub-micron scale [J]. Angew. Chem. Int. Ed.45:6221-6224.
    [56]Colfen H, Antonietti M.2005. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment [J]. Angew. Chem. Int. Ed.44: 5576-5591.
    [57]Colfen H, Mann S.2003. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures [J]. Angew. Chem. Int. Ed.42:2350-2365.
    [58]Shenhar R, Norsten TB, Rotello VM, et al.2005. Polymer-mediated nanoparticle assembly: Structural control and applications [J]. AdV. Mater.17:657-669.
    [59]Yang HG, Zeng HC.2004. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening [J]. J. Phys. Chem. B 108: 3492-3495.
    [60]Amin N, Arajs S, Matijevic E.1987. Magnetic-properties of submicronic alpha--Fe2O3 particles of uniform size distribution at 300. Phys. Status Solidi A 104:K65-K68.
    [61]B(?)dker F, Hansen MF, Koch CB, et al.2000. Magnetic properties of hematite nanoparticles [J]. Phys. Rev. B,61:6826-6838.
    [62]Raaming TP, Winnubst AJA, van Kats CM, et al.2002. The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles [J]. J. Colloid Interf. Sci.249:346-350.
    [63]Tang B, Wang GL, Zhuo LH, et al.2006. Facile Route to y-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods [J]. Inor. Chem.45:5196-5200.
    [1]Shi WL, Zeng H, Sahoo Y, et al.2006. A general approach to binary and ternary hybrid nanocrystals [J]. Nano. Lett.6:875-881.
    [2]Xu ZC, Hou YL, Sun SH.2007. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties [J]. J. Am. Chem. Soc.129:8698-8699.
    [3]Jiang J, Gu HW, Shao HL, et al.2008. Manipulation bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation [J]. Adv. Mater.20:4403-4407.
    [4]Zhou X, Xu WL, Wang Y, et al.2010. Fabrication of cluster/Shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method [J]. J. Phys. Chem. C 114: 19607-19613.
    [5]Leung KC, Xuan SH, Zhu XM, et al.2012. Gold and iron oxide hybrid nanocomposite materials [J]. Chem. Soc. Rev.4:1911-1928.
    [6]Goon IY, Lai L, Lim M, et al.2009. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles:systematic control using polyethyleneimine [J]. Chem Mater 21: 673-681
    [7]Prucek R, Tucek J, Kilianova M, Panacek A, Kvitek L, Filip J, Kolaf M, Tomankova K, Zboril R (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles [J]. Biomaterials 32:4704-4713
    [8]Mornet S, Vasseur S, Grasset F, et al.2004. Magnetic nanoparticle design for medical diagnosis and therapy [J]. J. Mater. Chem.14:2161-2175
    [9]Lee JH, Huh YM, Jun YW, et al.2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nat. Med.13:95-99
    [10]Hu FQ, MacRenaris KW, Waters EA, et al.2010. Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging [J]. Chem. Commun.46:73-75.
    [11]Park HY, Schadt MJ, Wang LY, et al.2007. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation [J]. Langmuir 23: 9050-9056.
    [12]Son SJ, Reichel J, He B, Schuchman M, et al.2005. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery [J]. J. Am. Chem. Soc.127: 7316-7317.
    [13]Krebs MD, Erb RM, Yellen BB, et al.2009. Formation of ordered cellular structures in suspension via label-free negative magnetophoresis [J]. Nano. Lett.9:1812-1817.
    [14]Wilson R.2008. The use of gold nanoparticles in diagnostics and detection [J]. Chem. Soc. Rev.37:2028-2045.
    [15]Erathodiyil N, Ying JY.2011. Functionalization of inorganic nanoparticles for bioimaging applications [J]. Acc. Chem. Res.44:925-935.
    [16]Kennedy LC, Bickford LR, Lewinski NA, et al.2011. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169-183.
    [17]Lu W, Zhang GD, Zhang R, et al.2010, Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection [J]. Cancer Res.70: 3177-3188.
    [18]Cao YWC, Jin RC, Mirkin CA.2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science 297:1536-1540.
    [19]Niazov T, Pavlov V, Xiao Y, et al.2004. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity [J]. Nano. Lett.4:1683-1687.
    [20]Guven B, Basaran-Akgul N, Temur E, et al.2011. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration [J]. Analyst 136: 740-748.
    [21]Gong P, Li HM, He XX, et al.2007. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles [J]. Nanotechnology 18:285604
    [22]Nie SM, Emory SR.1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science 275:1102-1106.
    [23]Li JF, Huang YF, Ding Y, et al.2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature 464:392-395.
    [24]Kim H, Kosuda KM, Van Duyne RP, et al.2010. Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions [J]. Chem. Soc. Rev.39:4802-4844.
    [25]Lombardi JR, Brike RL, Lu T, et al.1986. Charge-transfer theory of surface enhanced Raman-spectroscopy-herzberg-teller contributions [J]. J. Chem. Phys.84:4174-4180.
    [26]Arenas JF, Fernandez MD, Soto J, et al.2003. Role of the electrode potential in the charge-transfer mechanism of surface-enhanced Raman scattering [J]. J. Phys. Chem. B 107:13143-13149.
    [27]Shalaev VM, Sarychev AK.1998. Nonlinear optics of random metal-dielectric films [J]. Phys.Rev. B 57:13265-13288.
    [28]McFarland AD, Young MA, Dieringer JA, et al.2005. Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J]. J. Phys. Chem. B 109:11279-11285.
    [29]Etchegoin P, Cohen LF, Hartigan H, et al.2003. Electromagnetic contribution to surface enhanced Raman scattering revisited [J]. J. Chem. Phys.119:5281-5289.
    [30]Schwartzberg AM, Grant CD, Wolcott A, et al.2004. Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate [J]. J. Phys. Chem. B 108:19191-19197.
    [31]Sun LL, Song YH, Wang L, et al.2008. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection [J]. J. Phys. Chem. C 112:1415-1422.
    [32]Ahonen P, Laaksonen T, Nykanen A, et al.2006. Formation of stable Ag-nanoparticle aggregates induced by dithiol cross-linking [J]. J. Phys. Chem. B 110: 12954-12958.
    [33]Hu JW, Zhao B, Xu WQ, et al.2002. Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates [J]. Langmuir 18:6839-6844.
    [34]Yang LB, Liu HL, Wang J, et al.2011. Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection [J]. Chem. Commun.47:3583-3585.
    [35]Chrimes AF, Khashayar K, Stoddart PR, et al.2012. Active control of silver Nanoparticles spacing using Dielectrophoresis for surface-enhanced Raman scattering.[J]. Anal. Chem. 84:4029-4035.
    [36]Frens G.1973. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions [J]. Nature Phys. Sci.241:20-22.
    [37]Lee PC, Melsel D.1982. Adsorption and surface-enhanced Raman of dyes on silver and gold sols [J]. J. Phys. Chem.86:3391-3395.
    [38]Deng H, Li XL, Peng Q, et al.2005. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed.44:2782-2785.
    [39]Guo SJ, Dong SJ, Wang EK.2009. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanoparticles [J]. Chem. Eur. J.15:2416-2424.
    [40]Li YS, Church JS, Woodhead AL.2012. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications [J]. J. Magn. Magn. Mater.324: 1543-1550.
    [41]Zhou T, Wu BY, Xing D.2012. Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells [J]. J. Mater. Chem.22:470-477.
    [42]Chen G, Wang Y, Yang MX, et al.2010. Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers [J]. J. Am. Chem. Soc.132,3644-3645.
    [43]Zhang MF, Zhao AW, Guo HY, et al.2011. Green synthesis of rosettelike silver nanocrystals with textured surface topography and highly efficient SERS performances [J]. CrystEngComm 13:5709-5717.
    [44]Watanabe H, Hayazawa N, Inouye Y, et al.2005. DFT vibrational calculations of Rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy [J]. J. Phys. Chem. B 109:5012-5020.
    [45]Xu HX, Bjerneld EJ, Kall M, et al.1999. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering [J]. Phy. Rev. Lett.83:4357-4360.
    [46]An Q, Zhang P, Li JM, et al.2012. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants [J]. Nanoscale 4:5210-5216.
    [47]Cai WB, Ren B, Li XQ, et al.1998. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope:dependence of surface [J]. Surf. Sci. 406:9-22.
    [48]Huh S, Park J, Kim YS, et al.2011. UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering [J]. ACS Nano 5: 9799-9806.
    [49]Zhai WL, Li DW, Qu LL, et al.2012. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy [J]. Nanoscale 4:137-142.
    [50]Sun LL, Zhao DX, Ding M, et al.2011. Controllable Synthesis of Silver Nanoparticle Aggregates for Surface-Enhanced Raman Scattering Studies [J]. J. Phys. Chem. C 115: 16295-16304.
    [51]Kho KW, Shen ZX, Zeng HC, et al.2005. Deposition method for preparing SERS-active gold nanoparticle substrates [J]. Anal. Chem.77:7462-7471.
    [52]Su Y, He Q, Yan X H, et al.2011. Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties [J]. Chem. Eur. J.17: 3370-3375.
    [53]Guo H, Li D, Mo YJ.2011. Adsorption of 4-mercaptopyridine onto laser-ablated gold, silver and copper oxide films:A comparative surface-enhanced Raman scattering investigation [J]. J. Mol. Struc.991:103-107.
    [54]Gan ZB, Zhao AW, Zhang MF, et al.2012. A facile strategy for obtaining fresh Ag as SERS active substrates [J]. J. Colloid Interf. Sci.366:23-27.
    [1]Arnold WA, Roberts AL.1998. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0) [J]. Environ. Sci. Technol.32:3017-3025.
    [2]Zhang WX.2003. Nanoscale iron particles for environmental remediation: An overview [J]. J. Nanopart. Res.5:323-332.
    [3]Kalme SD, Parshetti GK, Jadhav SU, et al.2007. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112 [J]. Bioresource Tech.98, 1405-1410.
    [4]Carneiro PA, Nogueira RFP, Zanoni MVB.2007. Homogeneous photodegradation of CI Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation Dye [J]. Pigment.74:127-132.
    [5]Amin NK.2009. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics [J]. J. Hazardous Mater.165:52-62.
    [6]Siebel E, Fischer RD, Davies NA, et al.2000. The organometallic double metal cyanide [(Me-2 Sn)(3){Co(CN)(6)}(2)center dot 6H(2)O]. A three-dimensional framework of infinite, stapled ribbons [J]. J. Organomet. Chem.604:34-42.
    [7]Hasegawa S, Horike S, Matsuda R, et al.2007. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:Selective sorption and catalysis [J]. J. Am. Chem. Soc.129:2607-2614.
    [8]Etaiw SHE, El-bendary MM.2012. Degradation of methylene blue by catalytic and photo-catalytic processes catalyzed by the organotin-polymer3oo[(Me3Sn)4Fe(CN)6] [J]. Appl. Catal. B-Environ.126:326-333.
    [9]Pang CL, LindsayR, Thornton G.2008. Chemical reactions on rutile TiO2(110) [J]. Chem. Soc. Rev.37:2328-2353.
    [10]Mohapatra SK, Kondamudi N, Banerjee S, et al.2008. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination [J]. Langmuir 24:11276-11281.
    [11]Zhang YX, Yu XY, Jin Z, et al.2011. A Facile Approach for the Synthesis of Ag-Coated Fe3O4@TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts [J]. Eur. J. Inor. Chem.2011:5096-5104.
    [12]Zhang LH, Li PJ, Gong ZQ, et al.2008. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light [J]. J. Hazardous Mater.158: 478-484.
    [13]Min YL, Zhang KY, Chen C, et al.2012. Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation [J]. Ultrason. Sonochem.19: 883-889.
    [14]Cui YJ, Ding ZX, Liu P, et al.2012. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants [J]. Phys. Chem. Chem. Phys.14: 1455-1462.
    [15]Wittstock A, Wichimann A, Biener J, et al.2011. Nanoporous gold: a new gold catalyst with tunable properties [J]. Faraday Discuss.152: 87-98.
    [16]Xiao SL, Xu WL, Ma H, et al.2012. Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol [J]. RSC Adv.2:319-327.
    [17]Chen JY, Lim B, Lee EP, et al.2009. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J]. Nano Today 4:81-95.
    [18]Fendler JH.1987. Atomic and molecular clusters in membrane mimetic chemistry [J]. Chem. Rev.87:887-899.
    [19]Ahmadi T, Wang ZL, Green TC, et al.1996. Shape-controlled synthesis of colloidal platinum nanoparticles [J]. Science,272:1924-1926.
    [20]Bratlie KM, Lee H, Komvopoulos K, et al.2007. Platinum nanoparticle shape effects on benzene hydrogenation selectivity [J]. Nano. Lett.7:3097-3101.
    [21]Thomson DT.2007. Using gold nanoparticles for catalysis [J]. Nano Today,2:40-43.
    [22]Zhang HJ, Li XY, Chen GH.2009. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2 [J]. J. Mater. Chem.19:8223-8231.
    [23]WangY, Ren JW, Deng K, et al.2000. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media [J]. Chem. Mater.12: 1622-1627.
    [24]Rao YY, Tao Q, An M, et al.2011. Novel and Simple Route to Fabricate 2D Ordered Gold Nanobowl Arrays Based on 3D Colloidal Crystals [J]. Langmuir 27:13308-13313.
    [25]Frens G.1973. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions [J]. Nature Phys. Sci.241:20-22.
    [26]Guo JR, Suslick KS.2012. Gold nanoparticles encapsulated in porous carbon [J]. Chem. Commun.48:11094-11096.
    [27]Azad UP, Ganesan V, Pal M.2011. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials:influence of functional groups and surfactants [J]. J. Nanopart. Res.13:3951-3959.
    [28]Tsoncheva T, Tvanova L, Lotz AR, et al.2007. Gold and iron nanoparticles in mesoporous silicas:Preparation and characterization [J]. Catal. Commun.8:1573-1577.
    [29]Lunawat PS, Kumar R, Gupta NM.2008. Structure sensitivity of nano-structured CdS/SBA-15 containing Au and PtCo-catalysts for the photocatalytic splitting of water [J]. Catal. Lett.121:226-233.
    [30]Wang YF, Zhao D, Ma WH, et al.2008. Enhanced Sonocatalytic Degradation of Azo Dyes by Au/TiO2 [J]. Environ. Sci. Technol.42:6173-6178.
    [31]Wang ZJ, Zhang QX, Kuehner D, et al.2008. The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis [J]. Carbon 46:1687-1692.
    [32]Huang J, Zhang LM, Chao BA, et al.2010. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SERS and catalysis [J]. Nanoscale 2:2733-2738.
    [33]Feral-Martin C, Birot M, Deleuze H, et al.2007. Integrative chemistry toward the first spontaneous generation of gold nanoparticles within macrocellular polyHIPE supports (Au@polyHIPE) and their application to eosin reduction [J]. React. Funct. Polym.67: 1072-1082.
    [34]Lin FH, Doong RA.2011. Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction [J]. J. Phys. Chem. C 115:6591-6598.
    [35]Li L, Choo ESG, Tang XS, et al.2010. Ag/Au-decorated Fe3O4/SiO2 composite nanospheresfor catalytic applications [J]. Acta. Mater.58:3825-3831.
    [36]Fleischmann M, Hendra PJ, McQuillan AJ.1974. Raman-spectra of pyridine of adsorbed at a silver electrode [J]. Phys. Chem. Lett.26:163-166.
    [37]Zhao XM, Zhang BH, Ai KL, et al.2009. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy [J]. J. Mater. Chem.19:5547-5553.
    [38]Wang H, Sun YB, Chen QW, et al.2010. Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property [J]. Dalton Tran.39:9565-9569.
    [39]Guo SJ, Dong SJ, Wang EK.2009. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures [J]. Chem. Eur. J.15:2416-2424.
    [40]Nigam S, Barick KC, Bahadur D.2011. Development of citrate-stabilized Fe3O4 nanoparticles:Conjugation and release of doxorubicin for therapeutic applications [J]. J. Magn. Magn. Mater.323:237-243.
    [41]An Q, Yu M, Zhang YT, et al.2012. Fe3O4@Carbon Microsphere Supported Ag-Au Bimetallic Nanocrystals with the Enhanced Catalytic Activity and Selectivity for the Reduction of Nitroaromatic Compounds [J]. J. Phys. Chem. C 116:22432-22440.
    [42]Zhang MF, Zhao AW, Guo HY, et al.2011. Green synthesis of rosettelike silver nanocrystals with textured surface topography and highly efficient SERS performances [J]. CrystEngComm 13:5709-5717.
    [43]Watanabe H, Hayazawa N, Inouye Y, et al.2005. DFT vibrational calculations of Rhodamine 6G adsorbed on silver:Analysis of tip-enhanced Raman spectroscopy [J]. J. Phys. Chem. B 109:5012-5020.
    [44]Xu HX, Bjerneld EJ, Kall M, et al.1999. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering [J]. Phys. Rev. Lett.83:4357-4360.
    [45]Qian K, Liu HL, Yang LB, et al.2012. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly [J]. Nanoscale 4:6449-6451.
    [46]Su L, Jia WZ, Manuzzi DP, et al.2012. Highly sensitive surface-enhanced Raman scattering using vertically aligned silver nanopetals [J]. RSC Adv.2:1439-1433.
    [47]Canamares MV, Chenal C, Birke RL, et al.2008. SERS and Single-Molecule SERS of Crystal Violet [J]. J. Phys. Chem. C,112:20295-20300.
    [48]Jena BK, Mishra BK, Bohidar S.2009. Synthesis of Branched Ag Nanoflowers Based on a Bioinspired Technique:Their Surface Enhanced Raman Scattering and Antibacterial Activity [J]. J. Phys. Chem. C 113:14753-14758.
    [49]Dong X, Gu HM, Kang J, et al.2010. Effects of the surface modification of silver nanoparticles on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid [J]. J. Mol. Struct.984:396-401.
    [50]Sinha G, Depero LE, Alessandri I.2011. Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods [J]. ACS Appl. Mater. Interfaces 3:2557-2563.
    [51]Mezohegyi G, van der Zee FP, Font J, et al.2012. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon [J]. J. Environ. Manage. 102:148-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700