用户名: 密码: 验证码:
变压器励磁涌流的分析与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器是发电厂和变电站中的主要电气设备,它的安全运行与否直接关系到电力系统能否连续稳定地工作。随着电力容量及电压等级的增加,变压器造价愈趋昂贵,一旦因故障而遭到损坏,其检修难度大,检修时间长,经济损失也相当惨重。因此,寻求一个安全、可靠、灵敏的变压器保护方案,一直是国内外电力系统学者们研究的热点问题。
     电力系统中变压器保护存在非正确动作现象,其中励磁涌流是引起变压器差动保护误动的主要原因之一。因此,为避免保护误动,人们对励磁涌流的产生机理进行了长期研究,由此发展成了两个研究方向:励磁涌流发生时避免保护误动和抑制励磁涌流。实际应用证明这两种研究方向都有着自己的局限性,并不能很好的解决变压器保护误动问题。
     本文查阅、分析了国内外大量文献资料,并结合我国电网实际情况,对变压器励磁涌流的产生机理和抑制策略进行了系统深入的研究,提出了一种新的变压器励磁涌流抑制思想,并设计研制了相应的励磁涌流抑制装置。经实验和实际应用的效果表明本文所提出的研究思想和抑制策略是有效的。
     本文应用磁滞回线对交变磁场中磁性材料的交变磁化过程进行了分析。并以此为基础,研究分析了单相变压器空投时变压器铁芯中磁通的变化规律,得出了励磁涌流形成的原因机理,并提出了变压器空投的合闸角控制律。依据此规律,进行单相变压器、三相芯式电力变压器励磁涌流的抑制分析。
     本文以变压器投切时偏磁和剩磁相互抵消的思路为基础提出了差动保护中励磁涌流抑制的新算法(Inrush Eliminating Algorithm, IEA)。算法演算过程为基于Preisach原理建立变压器的磁滞模型,根据变压器上次的切出时间估算出剩磁的大小,进而计算出变压器的合闸角。为验证算法的有效性,本文基于H_TCPN方法建立了IEA的涌流抑制原理模型,进行MATLAB仿真研究,实验结果证明IEA通过控制合闸角能够有效地抑制变压器合闸时涌流的出现。
     为满足电力变压器工作现场复杂多变的电磁环境,使IEA算法更具有鲁棒性,本文在剩磁计算的理论算法基础上提出了一种基于模糊推理的合闸时间优化算法。此模糊推理是根据人类思维而形成的一种推理方法,充分考虑了人类认识事物的模糊性和逻辑性,因此该方法具有很强的鲁棒性和适应性。构建实用模型对提出的优化算法进行仿真研究,通过多种情况的仿真实验对比分析,证明了本文提出的基于模糊推理的合闸时间优化算法能够很好地确定合闸时间,从而提高了涌流抑制算法的鲁棒性和稳定性。
     基于变压器励磁涌流抑制原理与算法的理论推导与分析,本文根据变压器励磁涌流抑制器的设计思想,研制开发了变压器励磁涌流抑制器,使得对变压器涌流抑制的分析研究与新算法能够运用到实际电网,从而将学术研究实践化,将研究成果产业化。
     涌流抑制器在多家电厂进行了现场试验,以检验和证明本文所提出的变压器励磁涌流抑制思想的正确性以及本文所设计的变压器励磁涌流抑制器的有效性。文中以杭州江东富丽达热电厂5#变压器S10-40000/35,2#变压器S9-6300/10为例,分析了现场试验结果。通过对试验记录波形和结果的分析,表明本文研制的变压器励磁涌流抑制器确实能够有效抑制实际电网中的变压器空投时产生的励磁涌流。
     本文对变压器的铁芯磁学特性,铁芯剩磁,变压器励磁涌流的成因进行了系统深入地研究,提出了变压器励磁涌流抑制方案,并结合实际工况,对变压器合闸时间进行了优化计算。在理论推导的基础上,本文又进行了变压器励磁涌流抑制器的具体设计和研制,现场测试和应用受到了用户的好评,认为所取得的创新成果,对变压器励磁涌流的抑制进一步研究具有理论参考价值,更具有工程应用意义。
Power transformers are the major electric equipments in power plants and substations. Whether they are safely operated or not is directly responsible for the continuous stability of the power system. Now, along with the increasing of their power capacity and voltage level, the manufacturing cost of power transformers is growing also. In case a transformer is broken down, the repair process can be very complicated and time-consuming. In addition, the economic loss can be enormous. Therefore, a lot of worldwide research has focused on the issue of seeking a better scheme to ensure the transformers be protected more safely, reliably and sensitively.
     Practically, misoperations do exist in the transformer protection. Under most circumstances, it is due to the exciting surge current, which is one of the major reasons that can cause the misoperations. Aiming to aviod this phenomenon, a lot of research has been done to demonstrate a clear mechanism of how the exciting surge current is generated. There are two main methods. One is to avoid the misoperations of the protection when the exciting surge current occurs; the other one is to restrain the exciting surge current itself. Practical applications prove that the function of these two methods are limited and can not resolve the misoperations thorouly.
     Based on the systematically and thoroughly researching work and the analysing work of profound literatures and materials at home and abroard, this paper proposes a new theory on inrush exciting current limitation and more significantly, a current limitation device is correspongdingly designed according to the real practice in China's present power grids. Experiments and practical applications have strongly proved the effectiveness of the research idea and the current restraining strategy which are proposed in this paper.
     Utilizing hysteresis loop theory, the paper analyzes the magnetization process of magnetic materials by AC sources. Based on this analysis and considering the construction of the transformer, further research is done on the core flux in the single phase transformer. Thus, the mechanism of the generation of the inrush exciting current is obtained. This paper also proposes another theory on inrush exciting current control based on the switching angle. Furthermore, simulation experiments on single phase transformer switching are done to prove the effectiveness of the theory. The results show that, under the switching angle control method, the inrush exciting current can be restrained if the transformer is switched on the appropriate switching angle. At last, based on the further research on the inrush current in three-phase transformer, a method on restraining the inrush exciting current in three-phase transformer is also proposed.
     The new method this paper proposed is to restrain the inrush current based on the thoughts that magnetic bias and remanence will offset each other while transformer being put into or cut out of the system. In this method, the switching angle is calculated with the established magnetic hysteresis model of the transformer based on the Preisach, and the estimated remanence based on the last cutting time. This paper sets up the IEA inrush exciting current limitation model based on H_TCPN. The simulation results in MATLAB show that:with the control of switching angle, the IEA can effectively restrain the inrush current which will happen when the transformer is connected in the system.
     In order to satisfy the requirements of the real engineering practice, and to enhance the robustness of the method-control switching time which restrains the transformer inrush exciting current, this paper proposed a switching time optimization method based on fuzzy reasoning with the remanence calculation method. This fuzzy reasoning derives from human thinking pattern, sufficiently considering the fuzziness and logic when human are in the process of cognition. Therefore, the method is strongly robust and adaptive. What's more, the author simulates the proposed optimization method with the established practical model. The comparing analysis of experiments under different conditions proves that the fuzzy reasoning based switching time optimization method can appropriately determine the switching time. The inrush current restraining method is promoted to be more robust and reliable.
     Based on the theoretical derivation and analysis of transformer inrush exciting current restraint principle and algorithm, and bear the aim to apply this method to the power grid, this paper proposes a design method of the transformer inrush exciting current suppressor, including both hardware and software design. A detailed analysis is also conducted on the structure, operating principle and the performance of the suppressor.
     In order to prove the correctness of the design method of transformer inrush exciting current suppressor proposed in this paper and the effectiveness of the device designed in this paper, the field experiment is conducted at the 5# transformer S10-40000/35 and 2# transformer S9-6300/30 in Jiangdong Fulida Themal Power Plant in Hongzhou City. According to the analysis of the results and the wave forms recorded in the experiment, it is concluded that this transformer inrush exciting current suppressor can effectively restrain the inrush exciting current generated when the transformer is switched on without load.
     This paper conducts a systematic and profound research on the transformer ferrite core magnetism characteristics, ferrite core residual magnetism and the original reason of the inrush exciting current generation. It proposes a restraint scheme of transformer inrush exciting current and an optimization computation of the switching time of the transformer under actual operating circumstances. Based on all these above, this paper demonstrates the designing and the manufacturing details of the transformer inrush exciting current suppressor. This device has been highly favored by the customer in the field testing and the application. It is regarded to be an innovation achievement, which is valuable to be referenced by other research on restraint of transformer inrush exciting current. And also it is considered to be of great value in the real power engineering.
引文
[1]吕高幸.变压器过电流保护的整定必须考虑励磁涌流的影响[J].农村电气化,2000,(1):41
    [2]刘永松.变压器合闸时的励磁涌流[J].电气开关,2002,(2):34-35
    [3]贺家李,宋从矩.电力系统继电保护原理[M](增定版).北京:中国电力出版社,2004,277-293
    [4]国家电力调度中心.发电机变压器继电保护的应用[M](第二版).北京:中国电力出版社,2005,48-82
    [5]王维俭.主设备保护的几个理论运行问题[J].电力系统自动化,1999,1(11):1-5
    [6]周玉兰,1990-1999年220kV及以上变压器保护运行情况[J].电力自动化设备,2001(05):51-53
    [7]周玉兰,许勇,王俊永等,2000年全国电力系统继电保护与安全自动装置运行情况[J].电网技术,2001(08):63-67
    [8]周玉兰,王俊永,王玉玲等,2001年全国电网继电保护与安全自动装置运行情况与分析[J].电网技术,2002(09):58-63
    [9]周玉兰,王俊永,舒治淮等,2002年全国电网继电保护与安全自动装置运行情况[J].电网技术,2003(09):55-60
    [10]周玉兰,詹荣荣,舒治淮等,2003年全国电网继电保护与安全自动装置运行情况与分析[J].电网技术,2004(20):48-53
    [11]周玉兰,王玉玲,赵曼勇,2004年全国电网继电保护与安全自动装置运行情况[J].电网技术,2005(16):43-49
    [12]Bronzeado H, Yaeamini R. Phenomenon of sympathetic interaction between transformer caused by inrush transients[J].Science, Measurement and Technology, IEEE Proceedings, 1995,142(4):323-329
    [13]Bronzeado H, Brogan P, Yaeamini R.Harmonic analysis of transient Currents during sympathetic interaction[J].IEEE Transactions on Power Systems,1996, 11(4):2051-2056
    [14]Saied M M. A Study on the Inrush Current Phenomena in Transformer Substations[C]. Industry Applications Conference,2001.Chicago, Thirty- Sixth IAS Annual Meeting, Vol2. Piscataway(NJ):IEEE,2001.1180-1187。
    [15]HAYWARD C D. Prolonged Inrush Currents with Parallel Transformer Affect Differential Relaying [J].AIEE Trans,1941,60:1096-1101
    [16]张雪松,何奔腾,张建松.变压器和应涌流的产生机理及其影响因素研究[J].电力系统自动化,2005,29(22):15-19
    [17]毕大强,王祥晰,李德佳等.变压器和应涌流的理论探讨[J].电力系统自动化,2005,29(6):1-8
    [18]张雪松,何奔腾.变压器和应涌流对继电保护影响的分析[J].中国电机工程学报,2006,26(14):12-17
    [19]束洪春,贺勋,李立新.变压器和应涌流分析[J].电力自动化设备,2006,26(10):7-11
    [20]袁宇波,李德佳,陆于平等.变压器和应涌流的物理机理及其对差动保护的影响[J].电力系统自动化,2005,29(6):9-14
    [21]李德佳,王维俭,毕大强.变压器暂态饱和与和应涌流实例分析[J].高压电器,2005,41(1):12-15.
    [22]杜继伟.变压器和应涌流影响因素的仿真研究[J].变压器,2008,45(1):19-23
    [23]徐习东,郭晓明,周全明.一次和应涌流造成过流保护动作的分析与对策[J].华东电力.2005,33(6):37-39.
    [24]徐策,马静.变压器励磁涌流识别技术及其发展方向[J].自动化技术与应用,2007,26(1): 91-92
    [25]邹兵,高月明,变压器励磁涌流鉴别方法[J].石油规划设计,2000,1
    [26]李永丽,贺家李.电力变压器新型微机保护原理的研究[J].电力系统自动化,1995,19(7):15-19
    [27]傅翔华,贾长朱.微机变压器保护装置现状分析及改进建议[J].电力系统自动化,1997,21(8):54-56
    [28]张举,黄少峰.我国微机继电保护的发展历史现状与展望[J].继电器,1996,24(1): 3-6
    [29]贺家李,宋从矩.电力系统继电保护原理[M](第三版).北京:水利电力出版社,1994.
    [30]孙志杰,陈云仑.波形对称原理的变压器差动保护[J].电力系统自动化,1996,21(12):30-33.
    [31]苗友忠,贺家李,孙雅明.变压器波形对称原理差动保护不对称度K的分析和整定[J].电力系统自动化,2001,25(16):26-29
    [32]焦邵华,刘万顺.区分变压器励磁涌流和短路电流积分型波形对称原理[J].中国电机工程学报,1999,19(8):35-38
    [33]马静,王增平,徐岩.用相关函数原理识别可变压器励磁涌流和短路电流的新方法[J].电网技术,2005,29(6):76-81
    [34]李贵存,刘万顺,腾林,郑涛.基于波形相关性分析的变压器励磁涌流识别新算法[J].电力系统自动化,2001,25(17):25-28
    [35]林湘宁.继电保护相关技术及新原理的研究一一若干问题的探讨及基于现代信号处理技术的保护新方案:[博士后研究报告][D].武汉:华中科技大学,2001,100-120
    [36]何奔腾,徐习东.波形比较法变压器差动保护原理[J].中国电机工程学报.1998,18(6):45-49
    [37]景胜.我国微机保护的现状与发展[J].继电器,29(100)
    [38]李贵存,刘万顺,刘建飞等,用波形拟合法识别变压器励磁涌流和短路电流的新原理[J].电力系统自动化,2001.25(14):15—18
    [39]邱文征,陈德树.两种励磁涌流二次谐波制动判据的比较[J].电力系统自动化,1998,(3):8—12
    [40]王国兴张传利黄益庄.变压器励磁涌流判别方法的现状及发展[J].中国电力,1998,10(31):20-22
    [41]R.L Sharp, W, E, Glassburn, A Transformer Differential Relay with Second Harmonic Rescruit Trans [J], A IEEE,1958.12.PT III
    [42]A.GPhadke and J.S.Trop, A New Computer-based Flux Restrained Current Differential Realy for Power Transformer Protection [J],IEEE Trans on Power Aparatus and System, Vol.102, NO.11, NOV.1983. P3624-3624
    [43]Pei Liu,O.P Malik, Deshu Chen, Improved Operation of Differential Protection of Power Transformers for Internal Faults [J], IEEE Trans. On Power Delivary, Vol.7,No.4,1992
    [44]Verma H K, et al.Algorithm for harmonic restraint differential relaying based on the discrete harthly transform [J].Electrical Power System Research.1990(18):125-129
    [45]Hermanto I, Murty Y V S, Rahman M A. A stand-alone digital protective relay for power transformers [J].IEEE Trans on Power Delivery,1991,6(1):85-92
    [46]Lin C E, Cheng C L, et al. Investigation of magnetizing inrush current in transformers. Ⅰ. Numerical simulation[J].IEEE Trans on Power Delivery,1993,8(1):246-254
    [47]Lin C E, Cheng C L, et al. Investigation of magnetizing inrush current in transformers. II.Harmonic analysis [J].IEEE Trans on Power Delivery,1993,8(1):255-263
    [48]Sidhu T S, Sachdev M S.Online identification of magnetizing inrush and internal faults in three-phase transformers [J].IEEE Trans on Power Delivery,1992,7(4):1885-1891
    [49]Y.V.V.S Murty, W.J. Smolinski, A Kalman Filter Based Digital Percentage Differentilal and Ground Fault Relay for A 3-Phase Power Transformer[J], IEEE Trans, on Power Delivery, Vol.5,No.3,July,1990
    [50]史世文。大机组继电保护[M]。水利电力出版社,1987
    [51]Blackburn J L et al. Applied Protection Relay[M].1979
    [52]许正亚.变压器及中低压网络数字式保护[M].北京:中国水利电力出版社,2004,150-169
    [53]朱亚明,郑玉平,叶锋等.间断角原理的变压器差动保护的性能特点及微机实现[J].电力系统自动化,1996,20(11):36-40
    [54]顾尚桐,董强.变压器励磁涌流识别方法及间断角原理应用[J].科技资讯,2008,12:43-44
    [55]任捷成,阎海明.变压器差动保护误动作分析[J].互感器通讯一继电保护,1997,1:13-17
    [56]刘建飞,马锁明,任冰.间断角原理变压器微机保护装置的实用化研究[J].现代电力,1998,15(3):1-6
    [57]邹兵,高月民.变压器励磁涌流鉴别方法[J].石油规划设计,2000,11(1):27-28
    [58]徐习东,何奔腾.变压器差动保护中CT饱和后间断角的测量[J].电力系统自动化,1998,22(5):22-25
    [59]葛宝明,苏鹏声,王祥珩,王维俭.基于瞬时励磁电感频率特性判别变压器励磁涌流[J].电力系统自动化,2002,26(17):35-39
    [60]唐跃中,徐进亮,郭勇,陈德树.变压器保护中几种励磁涌流判别方法的分析和评价[J].电力自动化设备,1995,1:1-7
    [61]G.D.Rockefella,Fault Protection with a Digital Computer, IEEE Trans. PAS88.No.4.1969
    [62]Thorp J S, Phadke A G. A Microprocessor Based Voltage Restrained Three Phase Transformer Differential Relav. Proceeding of the South Eastern Svmposium on Svstem Theorv,1982.4:312-316
    [63]Yabe K.Power differential method for discrimination between fault and magnetizing inrush current in transformer[J]. IEEE Trans.Power Deliv.,1997,13(3):1109-1118
    [64]Keizo Inagaki,etal,digital Protection Method for Power Transformers Based on and Equivalent Circuit Composed of Inverse Inductance[J],IEEE Trans on Power Delay, Vol.3,No.4,Oct 1988
    [65]唐跃中,刘勇,郭勇等,几种变压器励磁涌流判别方法的特点及其内在联系的分析[J].电力系统自动化,1995,19(9)
    [66]Phadke A G, Thorp J S. A New Computer-based Flux-restrained Current-differential Relay for Power Transformer Protection[J]. IEEE Trans on Power Apparatus and Systems,1983, 102(11):3624-3629
    [67]徐岩,王增平,杨奇逊.基于电压电流微分波形特性的变压器保护新原理的研究[J].中国电机工程学报,2004,(2):61-65.
    [68]宗洪良,金华烽,朱振飞等.基于励磁阻抗变化的变压器励磁涌流判别方法[J].中国电机工程学报,2001,21(7):91-94
    [69]焦绍华,等.用小波理论区分变压器励磁涌流和短路电流的新原理[J].中国电机工程学报.1999,19(7):1-6
    [70]李红岩,张璿;,侯媛彬.基于小波变换的变压器励磁涌流鉴别的新方法[J].高电压技术,2008,34(3):500-503
    [71]杨钟皓, 董新洲.基于小波变换的变压器励磁涌流识别方法[J].清华大学学报(自然科学版),2002,42(9):1184-1187
    [72]任震,小波分析及其在电力系统中的应用[M].中国电力出版社2003
    [73]ShengYong,5.M.Rovnyak, Decision trees and wavelet analysis for power transformer Protection.Power Delivery[J], IEEE Trans actions on,2002.17(2):429-433
    [74]M.M.Eissa. A novel digital directional transformer protection technique Based on wavelet Packet[J].Power Delivery, IEEE Transactions on,2005.20(3):1830-1836
    [75]全玉生,李洪杰,严璋.应用小波变换测量间断角的新方法[J].电力系统自动化,1998,22(1):33-35
    [76]张玉春,杨成峰,陈涛.基于小波分析的变压器励磁涌流识别[J].湖南电力,2007,27 (5): 5-8
    [77]Gomez-Morante, M.Nieoletti, D.W.A Wavelet-based differential transformer protection[J] IEEE Transactions on Power Delivery:Oct.1999,14(4):1351-1358
    [78]高华.新型继电保护发展现状综述[J].电力自动化设备,voL20,N,05,2000:50-53
    [79]宋芸.基于小波和神经网络的变压器励磁涌流识别的研究[D].河海大学硕士生毕业论文,2003,3
    [80]李世雄,刘家琦.小波变换贺反演数学基础[M].北京:地址出版社,1994
    [81]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999
    [82]冉启文.小波变换与分数傅立叶变换理论及应用[M].沈阳:哈尔滨工业大学出版社,2001
    [83]赵松年,熊小芸.小波变换与小波分析[M].北京:电子工业出版社,1996
    [84]徐佩霞,孙功宪.小波分析与应用实例[M].北京:中国科学技术大学出版社,1996
    [85]秦前清,杨宗凯.实用小波分析[M].陕西:西安电子科技大学出版社,1994
    [86]任震,黄群等.小波理论在电力系统微机保护中的应用研究[J].继电器,2001,29(1)
    [87]李贵存,刘万顺,贾清泉,等.一种利用小波原理防止变压器差动保护误动的新算法[J].电网技术,2001,25(7):48-51
    [88]李贵存,刘万顺,李鹏,等.一种利用小波原理防止差动保护误动的新方法[J].电力系统自动化,2002,26(2):45-48
    [89]刘庆云李志舜,小波变换的局部谱特征[J].电声基础2004.1:9-11
    [90]李士雄.小波变换及其应用[M].北京:高等教育出版社,1997
    [91]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999
    [92]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999
    [93]Bo Zhiqian, Weller Geoff, Lomas Tom.A new technique for transformer protection based on transient detection[J].IEEE Trans on Power Delivery,2000,15(3):870-875
    [94]Butler-Purry, Mustafa Bagriyanik.Characterization of transients in transformers using discrete wavelet transforms[J].IEEE Trans on Power Delivery,2003,18(2):648-656
    [95]Jiang F, BoZQ, Chin P S M, et al. Power transformer protection based on transient detection using discrete wavelet transform(DWT) [J].2000 IEEE Power Engineering Society Winter Meeting,23-27 Jan 2000, Singapore.vol.3:1855-1861
    [96]O A S.A wavelet-based technique for discrimination between faults and magnetizing inrush currents in transformers[J].IEEE Trans on Power Delivery,2003,18(1):170-176
    [97]蔡义明.小波分析在变压器励磁涌流识别中的研究[J].广西大学,2004.5
    [98]朱芸.基于小波理论的微机型变压器保护[J].河海大学,2004.3
    [99]廖泰长,王辉.小波变换在变压器励磁涌流识别中的应用[J]长沙电力学院学报,2000,15(4):47-49
    [100]赵红怡,武梦龙,曹淑琴.小波分析在突变信号检测中的应用[J].北方工业大学学报,2004,16(1):21-24
    [101]高如新,王福忠,余琼芳.小波信号奇异性分析在配电线路故障检测中的应用[J].电力科学与工程2003.45-8
    [102]董小刚,许林,奇异信号的小波分析[J].长春工业大学学,2003,24(6):38-40
    [103]刁彦华,王玉田,陈国通.基于小波变换模极大值的信号奇异性检测[J].河北工业科技,2004,21(1):1-3
    [104]王莉丽,荣雅君.基于小波神经网络的变压器励磁涌流和内部故障电流识别[J].继电器,2003,31(7):20-22
    [105]王增平,高中德,张举,李海英,王铁强,柳焯.模糊理论在变压器保护中的应用[J].电力系统自动化,1998,22(2):13-16.
    [106]黄登峰,郁惟镛,赵亮,王慧芬.基于模糊多判据的变压器励磁涌流识别新算法[J].继电器,2000,28(12):4-7
    [107]梁国坚,梁冠安.用模糊贴近度识别变压器故障电流和励磁涌流的研究[J].电工技术学报,1998,(3):61-64.
    [108]沈军,姚晴林,丁明.基于模糊原理的牵引变压器差动保护[J].继电器2000.28(12)
    [109]王昕,朱成柱,宋永明,等.模糊理论在识别变压器励磁涌流中的探讨[J].继电器,2000.28(8)
    [110]何正友,钱清泉.电力系统暂态信号的小波分析方法及其应用(一)小波变换在电力系统暂态信号分析中的应用综述[J].电力系统及其自动化学报,2002,14(4):1-5.
    [111]崔锦泰.小波分析导论[M].西安交通大学出版社,1995
    [112]徐丙莲,弈旭明.基于小波变换的信号奇异性分析[J].数学杂志,2000,24(6):661-664
    [113]熊军.基于励磁涌流模糊识别变压器保护装置的研究[D].保定,华北电力大学,1999
    [114]汪亮.模糊理论在变压器差动保护中的应用研究[D].北京,华北电力大学,1997
    [115]陈晓娟.模糊数学在计算机变压器差动保护中的应用[D].重庆,重庆大学,1998
    [116]Andrzej Wiszniewski, Bogdan Kasztenny.A multi-criteria differential transformer relay based on fuzzy logic[J].IEEE Trans on Power Delivery,1995,10(4):1786-1792
    [117]Kasztenny B, Rosolowski E, Saha M M, et al.A multi-criteria fuzzy logic transformer protection[J].Sixth International Conference on Developments in Power System Protection,25-27 Mar 1997, Page(s):143-146
    [118]Alessandro Ferrero, Silvia Sangiovanni, Ennio Zappitelli.A fuzzy-set approach to fault-type identification in digital relaying[J].IEEE Trans on Power Delivery,1995,10(1):169-175
    [119]Kasztenny B, Rosolowski E, Saha M M, et al.A self-organizing fuzzy logic based protective relay-an application to power transformer protection[J].IEEE Trans on Power Delivery,1997,12(3):1119-1127
    [120]Wiszniewski, A.KasZtemiy, B, A multi-criteria differential transformer relay based on fuzzy logic[J], IEEE Transaetions on Power Delivery, Oct.1995,10(4),1786-1792
    [121]Wiszniewski, A.Kasztenny, B. Fuzzy set approaeh to transformer differential relay[J], Fifth International Confereneeon Developments in Power System Protection 1993.:169-172 York, UK
    [122]Perez L G, Fleehsig A J, Meador J L, ete.Training an Artifieial Neural Network to Diseriminate Between Magnetizing Inrush and Internal Faults[J).IEEE Trans on Power Delivery,1994,9(1):434-441
    [123]Orllle- Fernandez A L, Ghonaim N K I, Valeneia J A. A FIRANN as a Differential Relay for Three Phase Power Transformer Proteetion[J].IEEE Trans on Power Delivery,2001, 16(2):215-218
    [124]陈金莉,于飞,刘喜梅.基于人工神经网络的电力变压器励磁涌流判别[J].青岛科技大学学报,2004,25(1):65-68
    [125]胡晓鹏,易理刚.基于小波预处理的人工神经网络实现微机变压器保护的新方法[J].继电器,2004,32(6):22-26
    [126]刘喜梅,魏婉韵,于飞.基于人工神经网络的变压器励磁涌流的鉴别[J].低压电器,2007,19:59-60
    [127]J.Pihler, B.Gracar, D.Dolinar. ImProved Operation of Power Transformer Protection Using Artificial Neural Network[J].IEEE Transactions on Power Delivery, VOI. 12, NO. .July,1997
    [128]Zaman, M.R.Rahnlan, M.A., Experimental testing of the artificial neural Network based Protection of Power transformers [J]. IEEE Transactions on Power Delivery, April 1998, 13(2):510-517
    [129]LUIS G.Perez, ALFRED J.FIECHSIG, JACK L.MEADOR. Training an Artificial neural network to discriminate between magnetizing inrush and Internal faults [J]. IEEE Transactions on Power Delivery, Vol.9, No.1, January 1994
    [130]范文涛,王广延.基于模糊集理论的变压器微机差动保护新判据[J].中国电机工程学报.1997,11(6)
    [131]徐建政,王广延.基于模糊集理论变压器微机差动保护系统构成[J].电力系统及其自动化学报.2001,3(3)
    [132]徐建政.模糊标积制动原理的变压器微机差动保护[J].继电器.2001.30(9)
    [133]袁宇波.基于人工神经网络的变压器励磁涌流识别[D].河海大学硕士生毕业论文,2000,3
    [134]陈深.基于人工神经网络的变压器故障诊断研究[D].华北电力大学硕士生毕业论文,2004,3
    [135]潘荣贞,郁惟镛,田寿龙.基于波形记忆和模糊极小—极大神经网络的变压器励磁涌流和内部短路的鉴别[J].电网技术,2002,26(5):4-9
    [136]李海峰,王钢,李晓华,等.电力变压器励磁涌流判别的白适应小波神经网络方法[J].中国电机工程学报,2005,25(7):144-150
    [137]Bastard P, Meunier M, Regal H. Neural network-based algorithm for power transformer differential relays Generation [J].IEEE Proceedings of Transmission and Distribution, 1995,142(4):386-392
    [138]I.Bogdan Kasztenny, Mladen Kezunovic. Digital Relays Improve Protection of Large Transformers [J]. IEEE Computer Applications in Power,1998,11(4):39-45
    [139]王维俭.电气主设备继电保护原理与应用(第二版)[M].北京:中国电力出版社,2002
    [140]陈季权,王如玫.动态磁化特性模拟[J]变压器,2001,38(5):7-9
    [141]J. Jesus Rico, Enrique Acha,The Study of Inrush Current Phenomenon Using Operational Matrices [J]. IEEE TRANSACTIONS ON POWER DELIVERY, VOL.16, NO.2, APRIL 2001.231-237]
    [142]J. Jesus Rico, Enrique Acha,The Study of Inrush Current Phenomenon Using Operational Matrices[J].IEEE Transactions on Power Delivery, Vol.16, NO.2, APRIL 2001.231-237
    [143]Nasar S A, Unnewehr L E.Electric mechanics and Electric Machines [J]. John Wiley & Sons Inc,1983.1
    [144]北京大学物理系《铁磁学》编写组[M],铁磁学,科学出版社,1976.3,222-224
    [145]张新刚,王泽忠.基于Preisach理论的电流互感器建模研究[J].中国电机工程学报.2005,25(16):68-72.
    [146]赵国生,李朗如.一种考虑磁滞可逆性的非线性矢量Preisach模型[J].中国电机工程学报.2000,20(1):4-7.
    [147]Naidu S R. Simulation of the hysteresis phenomenon using Preisach's theory [J]. Sicence, Measurement and Technology, IEE Proceedings,1990,137(2):73-79.
    [148]Germay N, Mastero S, Vroman J. Review of ferroresonance phenomena in high-voltage power system and presentation of voltage transformer model for predetermining them[J]. Cigre, Paris,1974,33-18.
    [149]杜新伟,刘涤尘,袁荣湘,等.基于高级Petri网的继电保护建模方案研究[J].电力自动化设备,2008,28(2):33-37.
    [150]袁崇义.Petri网原理与应用[M].北京:高等教材出版社,2005.
    [151]吴晓莉,林哲辉MATLAB辅助模糊系统设计[M].西安电子科技大学出版社,2002.8
    [152]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [153]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.8
    [154]潘晓晟,郝世勇。MATLAB电机仿真精华50例[M].北京:电子工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700