用户名: 密码: 验证码:
油溶性Fe_3O_4纳米颗粒—脂质体的结构、性质及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由脂质体(liposomes)和磁性纳米颗粒(magnetic nanoparticles, MNPs)组合而成的磁性脂质体(magnetoliposomes, MLs)被认为是生物医学领域最具应用前景的药物载体之一在以往的研究中,包载亲水性磁性纳米颗粒的脂质体是研究的主要对象,而关于磷脂膜中包载油溶性磁性纳米颗粒脂质体的研究则鲜见报导。本文的工作则是围绕磷脂膜中包载油溶性磁性纳米颗粒的脂质体展开,主要内容包括:
     1本文运用微乳法合成Fe3O4磁性纳米颗粒,并通过一系列操作使其具有疏水性表面。这种油溶性磁性纳米颗粒直径为6nm,能长期稳定分散于氯仿中,且具有良好的超顺磁性。在此基础上,采用优化的成膜-超临界二氧化碳法制得磷脂膜中包夹油溶性磁性纳米颗粒的脂质体。通过对脂质体形貌,磷脂膜表面性质及微观流动性的研究,可以确定油溶性磁性纳米颗粒已成功包载于磷脂双分子层的疏水区域中。
     2本文综合运用原子力显微镜,静态/瞬态荧光探针技术及计算机模拟方法对油溶性磁性纳米颗粒与磷脂双分子层之间的相互作用进行研究。实验观察到当油溶性磁性纳米颗粒的尺寸比磷脂膜厚度稍大时,其包载会导致磷脂膜出现扭曲现象。疏水性磁性纳米颗粒扰乱了磷脂膜中原本紧密的分子排列。其不仅提高磷脂膜的微观流动性,还扩大了膜中的非极性区域和自由体积。此外,本文还就磁性纳米颗粒浓度对磷脂膜性质的影响开展了一系列研究。结果表明,磷脂双分子层对油溶性磁性纳米颗粒的包载能力有限,当纳米颗粒与磷脂质量比为0.002时,膜中纳米颗粒己达饱和。通过计算机模拟可以发现油溶性磁性纳米颗粒的包载使磷脂膜面积发生收缩,且纳米颗粒的浓度会对收缩程度产生影响。
     3本文还重点研究了该磁性脂质体的粒度分布,包封率,磁场响应性和释放行为等性质,旨在揭示其潜在应用价值。由于磁性纳米颗粒对磷脂膜微结构的扰乱作用,脂质体的相变温度明显降低。此外,疏水性磁性纳米颗粒的包载使磁性脂质体的包封率增加,这是因为更多比例的磷脂自发形成了包封率较高的大单层囊泡。本文制备的磁性脂质体矫顽力和剩磁都为零,具有超顺磁性。因此,它在磁场中表现出良好的可控磁响应性。在具备靶向性的同时,该磁性脂质体可通过两种机制促发释放,分别是温度和交变电磁场(alternating current electromagnetic field, AMF)。磁性脂质体具有温敏特性,当环境温度高于其相变温度时,脂质体发生释放,且磁性脂质体的最终释放率基本能达到90%左右。外加交变电磁场也能促发磁性脂质体的释放,脂质体释放的开始/结束可通过施加/撤销磁场往复进行。结果表明,磁场促使的脂质体释放并不破坏脂质体结构,其为一个可逆变化。在不引起本体溶液大幅升温的情况下,磁致热现象导致磁性纳米颗粒周围的磷脂膜升温至相变温度,磷脂膜转变为结构较为松散的液晶态,这有利于内含物的向外扩散。此外,交变磁场中纳米颗粒的扰动作用会导致磷脂膜流动性增加,渗透性提高,也有助于内含物的释放。
     本文研究成果进一步丰富了国内外磁性脂质体的研究内容,在磁性脂质体开发方面作出了有益的探索。
Magnetoliposomes(MLs), consisting of liposomes and magnetic nanoparticles (MNPs), have been tailored as very promising delivery vehicles in biotechnology and biomedicine applications. Liposomes with hydrophilic MNPs in their inner water are the major targets of numerous studies, while liposomes with hydrophobic MNPs in membrane were scarcely reported. In this paper, researches were carried out on magnetoliposomes with the latter structure. The main contents are as follows:
     1Hydrophobic MNPs coated with AOT was synthesized by microemulsion method, which was followed by rotary evaporation treatment in order to coat the synthesized MNPs with hydrophobic surface. The superparamagnetic MNPs are spherical in shape with the diameter of about6nm, and it can be dispersed stably in chloroform. Liposomes with hydrophobic MNPs in membrane were prepared by modified supercritical carbon dioxide method. The hydrophobic MNPs were successfully embedded in the lipid bilayer, which was proved by the distorted lipid bilayer and the changed membrane fluidity.
     2The interaction between hydrophobic MNPs and lipid bilayer was investigated applying atomic force microscope, steady-state/time-resolved fluorescence probe method and computer simulation method. The microstructure research indicated that the hydrophobic MNPs in the lipid bilayer not only improved membrane fluidity but also enlarged the nonpolar domain and the free volume in membrane. Moreover, systematic researches were carried out to investigate the effects of hydrophobic MNPs concentration on the morphology and microstructure of liposomes. The results show that the lipid bilayer was saturated with the hydrophobic MNPs when the mass ratio of MNPs to lipid reached0.002. The computer simulation results showed that the membrane area shrank after the MNPs embedment, because the diameter of MNPs was larger than the thickness of lipid bilayer.
     3In addition, the size distribution, encapsulation efficiency, release properties and magnetic response were also studied, which shed light on the potential applications of the magnetoliposomes. The phase transition temperature(Tm) of lipid bilayer was decreased due to the disordered membrane microstructure. The hydrophobic MNPs improved the encapsulation efficiency of MLs, because the portion of large unilamelar vesicle with higher encapsulation efficiency was enlarged. The hydrophobic MNPs exhibited superparamagnetic behavior with zero coercivity and zero remanence. As a result, they showed high and controllable magnetic responses. Cargo can be released from MLs by two triggered agents, temperature and alternating current electromagnetic field (AMF). The content release from liposomes could be triggered when the temperature was higher than Tm. The cargo could be repetitively released from liposomes controlled by switching on and off the AMF. The results indicated that the release from the liposomes is due to the magnetocaloric effect resulting in the liposome phase transition and the magnetic-impelled motions leading to the improved bilayer permeability, rather than the destruction of the liposome structure.
     The results of this study enriches the research of magnetoliposomes at home and abroad, and they make a useful exploration in the development of magnetoliposomes.
引文
[1]A. D. Bangham. Lipid bilayers and biomembranes. Annual review of biochemistry.1972, 41(1):753-776.
    [2]G. Sessa, G. Weissmann. Phospholipid spherules (liposomes) as a model for biological membranes. Journal of lipid research.1968,9(3):310-318.
    [3]D. D. Lasic, S. Walker, C. J. Bode, K. J. Paquet. Kinetic and thermodynamic effects on the structure and formation of phosphatidylcholine vesicles. Hepatology.1991,13(5):1010-1013.
    [4]A. S. Ulrich. Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports.2002,22(2):129-150.
    [5]M. Riaz. Liposomes preparation methods. Pakistan Journal of Pharmaceutical Sciences. 1996,19(1):65-77.
    [6]G. Gregoriadis, P. D. Leathwood, B. E. Ryman. Enzyme entrapment in liposomes. FEBS letters.1971,14(2):95-99.
    [7]Y. E. Rahman, M. W. Rosenthal, E. A. Cerny, E. S. Moretti. Preparation and prolonged tissue retention of liposome-encapsulated chelating agents. The Journal of laboratory and clinical medicine.1974,83(4):640-647.
    [8]C. Tikshdeep, A. Sonia, P. Bharat, C. Abhishek. Liposome Drug Delivery:A Review. International Journal of Pharmaceutical and Chemical Sciences.2012,1(3):754-764.
    [9]G. Storm, D. J. A. Crommelin. Liposomes:quo vadis? Pharmaceutical Science & Technology Today.1998,1(1):19-31.
    [10]徐辉碧,杨祥良,纳米医药1 ed.;清华大学出版社:北京,2004.
    [11]A. Wagner, K. Vorauer-Uhl. Liposome technology for industrial purposes. Journal of drug delivery.2010,2011:1-9.
    [12]M. Mansoori. A REVIEW ON LIPOSOME. International Journal of Advanced Research in Pharmaceutical & Bio Sciences.2012,1(4):453-464.
    [13]A. Samad, Y. Sultana, M. Aqil. Liposomal drug delivery systems:an update review. Current drug delivery.2007,4(4):297-305.
    [14]A. Sharma, U. S. Sharma. Liposomes in drug delivery:progress and limitations. International journal of pharmaceutics.1997,154(2):123-140.
    [15]K. Sharma Vijay, D. N. Mishra, A. K. Sharma, B. Srivastava. Liposomes:Present Prospective and Future Challenges. International Journal of Current Pharmaceutical Review and Research.2010,1(2):6-16.
    [16]L. Zhang, J. Hu, Z. Lu. Preparation of liposomes with a controlled assembly procedure. Journal of colloid and interface science.1997,190(1):76-80.
    [17]G. M. Barratt. Therapeutic applications of colloidal drug carriers. Pharmaceutical Science & Technology Today.2000,3(5):163-171.
    [18]P. Goldbach, S. Dumont, R. Kessler, P. Poindron, A. Stamm. Preparation and characterization of interferon-r-containing liposomes. International journal of pharmaceutics. 1995,123(1):33-39.
    [19]M. Gabriels, J. Plaizier-Vercammen. Physical and chemical evaluation of liposomes, containing artesunate. Journal of pharmaceutical and biomedical analysis.2003,31(4): 655-667.
    [20]M. Knobel, W. C. Nunes, L. M. Socolovsky, E. De Biasi, J. M. Vargas, J. C. Denardin. Superparamagnetism and other magnetic features in granular materials:a review on ideal and real systems. Journal of nanoscience and nanotechnology.2008,8(6):2836-2857.
    [21]J. Dobson. Magnetic nanoparticles for drug delivery. Drug Development Research.2006, 67(1):55-60.
    [22]F. Gazeau, M. Levy, C. Wilhelm. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine.2008,3(6):831-844.
    [23]L. LaConte, N. Nitin, G. Bao. Magnetic nanoparticle probes. Materials today.2005,8(5): 32-38.
    [24]C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A. S. Luebbe. Locoregional cancer treatment with magnetic drug targeting. Cancer research.2000,60(23):6641-6648.
    [25]Y. Zhu, W. Zhao, H. Chen, J. Shi. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property. The Journal of Physical Chemistry C.2007,111(14):5281-5285.
    [26]T. Sugimoto, E. Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of colloid and interface science.1980, 74(1):227-243.
    [27]R. Massart, V. Cabuil. Preparation properties of an aqueous ferrofluid. J Phys Chem. 1987,84(7):967-973.
    [28]J. Lee, T. Isobe, M. Senna. Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. Journal of colloid and interface science.1996,177(2): 490-494.
    [29]N. Feltin, M. P. Pileni. New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir.1997,13(15):3927-3933.
    [30]M. A. Lopez-Quintela, J. Rivas. Chemical reactions in microemulsions:a powerful method to obtain ultrafine particles. Journal of colloid and interface science.1993,158(2): 446-451.
    [31]X. M. Lin, A. Samia. Synthesis, assembly and physical properties of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials.2006,305(1):100-109.
    [32]M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi. Intracellular hyperthermia for cancer using magnetite cationic liposomes:an in vivo study. Cancer Science.1998,89(4):463-470.
    [33]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society.2001,123(51):12798-12801.
    [34]J. Rockenberger, E. C. Scher, A. P. Alivisatos. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. Journal of the American Chemical Society.1999,121(49):11595-11596.
    [35]W. Wu, Q. He, C. Jiang. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies. Nanoscale research letters.2008,3(11):397-415.
    [36]J. W. M. Bulte, S. C. Zhang, P. Van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, J. A. Frank. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proceedings of the National Academy of Sciences.1999,96(26):15256-15261.
    [37]J. W. M. Bulte, T. Douglas, B. Witwer, S. C. Zhang, E. Strable, B. K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B. M. Moskowitz. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature biotechnology.2001,19(12):1141-1147.
    [38]M. Hoehn, E. Kustermann, J. Blunk, D. Wiedermann, T. Trapp, S. Wecker, M. F 枚 eking, H. Arnold, J. Hescheler, B. K. Fleischmann. Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proceedings of the National Academy of Sciences.2002,99(25):16267-16272.
    [39]E. M. Shapiro, S. Skrtic, K. Sharer, J. M. Hill, C. E. Dunbar, A. P. Koretsky. MRI detection of single particles for cellular imaging. Proceedings of the National Academy of Sciences of the United States of America.2004,101(30):10901-10906.
    [40]A. Jordan, R. Scholz, K. Maier-Hauff, F. K. H. van Landeghem, N. Waldoefner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of neuro-oncology.2006,78(1): 7-14.
    [41]C. Wilhelm, J. P. Fortin, F. Gazeau. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. Journal of nanoscience and nanotechnology.2007,7(8): 2933-2937.
    [42]S. Takamatsu, O. Matsui, T. Gabata, S. Kobayashi, M. Okuda, T. Ougi, Y. Ikehata, I. Nagano, H. Nagae. Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials:feasibility study in rabbits. Radiation medicine.2008,26(4):179-187.
    [43]B. L. Lin, X. D. Shen, S. Cui. Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Biomedical Materials.2007,2(2): 132-134.
    [44]C. Sun, J. S. H. Lee, M. Zhang. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews.2008,60(11):1252-1265.
    [45]M. H. Hsu, Y. C. Su. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomedical Microdevices.2008,10(6):785-793.
    [46]R. Mejias, R. Costo, A. G. Roca, C. F. Arias, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, M. del Puerto Morales, C. J. Serna, S. Manes, D. F. Barber. Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery. Journal of controlled release.2008,130(2):168-174.
    [47]T. Buerli, C. Pellegrino, K. Baer, B. Lardi-Studler, I. Chudotvorova, J. M. Fritschy, I. Medina, C. Fuhrer. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nature protocols.2007,2(12):3090-3101.
    [48]S. R. Bhattarai, S. Y. Kim, K. Y. Jang, K. C. Lee, H. K. Yi, D. Y. Lee, H. Y. Kim, P. H. Hwang. N-hexanoyl chitosan-stabilized magnetic nanoparticles:enhancement of adenoviral-mediated gene expression both in vitro and in vivo. Nanomedicine: Nano techno logy, Biology and Medicine.2008,4(2):146-154.
    [49]C. H. Lee, E. Y. Kim, K. Jeon, J. C. Tae, K. S. Lee, Y. O. Kim, M. Y. Jeong, C. W. Yun, D. K. Jeong, S. K. Cho. Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem cells and development.2008,17(1):133-142.
    [50]J. R. Slotkin, K. S. Cahill, S. A. Tharin, E. M. Shapiro. Cellular magnetic resonance imaging:nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics.2007,4(3):428-433.
    [51]A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials.2005,26(18):3995-4021.
    [52]C. C. Berry, A. S. G. Curtis. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D:Applied Physics.2003,36(13):198-206.
    [53]S. J. H. Soenen, M. Hodenius, T. Schmitz-Rode, M. De Cuyper. Protein-stabilized magnetic fluids. Journal of Magnetism and Magnetic Materials.2008,320(5):634-641.
    [54]M. De Cuyper, M. Hodenius, G. Ivanova, M. Baumann, E. Paciok, T. Eckert, S. J. H. Soenen, T. Schmitz-Rode. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field. Journal of Physics:Condensed Matter.2008, 20(20):204131-204135.
    [55]M. Cuyper, M. Joniau. Magnetoliposomes. European Biophysics Journal.1988,15(5): 311-319.
    [56]V. P. Torchilin. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng.2006,8:343-375.
    [57]K. Kostarelos. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine.2007,2(1):85-98.
    [58]L. B. Margolis, V. A. Namiot, L. M. Kljukin. Magnetoliposomes:another principle of cell sorting. Biochimica et Biophysica Acta (BBA)-Biomembranes.1983,735(1):193-195.
    [59]S. J. H. Soenen, J. Baert, M. De Cuyper. Optimal conditions for labelling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability. Chembiochem.2007, 8(17):2067-2077.
    [60]M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau, V. Cabuil, S. Lesieur. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society.2005,127(30):10676-10685.
    [61]W. J. M. Mulder, G. J. Strijkers, G. A. F. van Tilborg, A. W. Griffioen, K. Nicolay. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR in Biomedicine.2006,19(1):142-164.
    [62]S. Viswanathan, Z. Kovacs, K. N. Green, S. J. Ratnakar, A. D. Sherry. Alternatives to Gadolinium-based MRI Metal Chelates. Chemical reviews.2010,110(5):2960-3018.
    [63]S. Mornet, J. Portier, E. Duguet. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. Journal of Magnetism and Magnetic Materials.2005,293(1):127-134.
    [64]C. Wilhelm, F. Gazeau. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials.2008,29(22):3161-3174.
    [65]S. Mornet, S. Vasseur, F. Grasset, E. Duguet. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem.2004,14(14):2161-2175.
    [66]L. Kostura, D. L. Kraitchman, A. M. Mackay, M. F. Pittenger, J. W. M. Bulte. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR in Biomedicine.2004,17(7):513-517.
    [67]V. A. P. G. L. M. L. S. Kuckelhaus, M. M. De Cuyper, Z. G. M. Lacava. Magnetoliposome evaluation using cytometry and micronucleus test. European Cells and Materials.2002,3(2):154-155.
    [68]Z. G. M. Lacava, V. A. P. Garcia, L. M. Lacava, R. B. Azevedo, O. Silva, F. Pelegrini, M. De Cuyper, P. C. Morais. Biodistribution and biocompatibility investigation in magnetoliposome treated mice. Journal of Spectroscopy.2004,18(4):597-603.
    [69]S. Jain, V. Mishra, P. Singh, P. K. Dubey, D. K. Saraf, S. P. Vyas. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. International journal of pharmaceutics.2003,261(1):43-55.
    [70]M. De Cuyper, J. W. M. Bulte. Preparation and characterization of a phospholipid membrane-bound tetrapeptide that corresponds to the C-terminus of the gastrin/cholecystokinin hormone family. Journal of colloid and interface science.2000, 227(2):421-426.
    [71]J. Cocquyt, S. J. H. Soenen, P. Saveyn, P. Van Der Meeren, M. De Cuyper. Partitioning of propranolol in the phospholipid bilayer coat of anionic magnetoliposomes. Journal of Physics: Condensed Matter.2008,20(20):204102-204106.
    [72]J. P. Fortin-Ripoche, M. S. Martina, F. Gazeau, C. Menager, C. Wilhelm, J. C. Bacri, S. Lesieur, O. Clement. Magnetic Targeting of Magnetoliposomes to Solid Tumors with MR Imaging Monitoring in Mice:Feasibilityl. Radiology.2006,239(2):415-424.
    [73]E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, K. Tazawa, I. Horikoshi. Magnetic targeting of thermosensittve magnetoliposomes to mouse livers in an in situ on-line perfusion system. Life sciences.1996,58(24):2251-2261.
    [74]H. Chen, R. Langer. Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharmaceutical research.1997,14(4):537-540.
    [75]E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, J. Murata, I. Saiki, K. Tazawa, I. Horikoshi. Microdialysis assessment of 5-fluorouracil release from thermosensitive magnetoliposomes induced by an electromagnetic field in tumor-bearing mice. Journal of drug targeting.1998,5(5):379-390.
    [76]M. Babincova. Targeted and controlled release of drugs using magnetoliposomes]. Ceska Slov Farm.1999,48(1):27-29.
    [77]G. N. C. Chiu, S. A. Abraham, L. M. Ickenstein, R. Ng, G. Karlsson, K. Edwards, E. K. Wasan, M. B. Bally. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. Journal of controlled release.2005, 104(2):271-288.
    [78]S. B. Tiwari, N. Udupa, B. Rao, D. P. Uma. Thermosensitive liposomes and localised hyperthermia-an effective bimodality approach for tumour management. Indian Journal of Pharmacology.2000,32(3):214-220.
    [79]M. Babincova, D. Leszczynska, P. Sourivong, P. Babinec, J. Leszczynski. Principles of magnetodynamic chemotherapy. Medical hypotheses.2004,62(3):375-377.
    [80]M. Babincova, P. Sourivong, D. Leszczynska, P. Babinec. Fullerenosomes:Design of a novel nanomaterial for laser controlled topical drug release. Physica Medica.2003,19(3): 213-216.
    [81]S. Simoes, J. N. Moreira, C. Fonseca, N. Duzgunes, M. C. Pedroso de Lima. On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews.2004,56(7):947-965.
    [82]J. Q. Zhang, Z. R. Zhang, H. Yang, Q. Y. Tan, S. R. Qin, X. L. Qiu. Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration:in vitro and in vivo studies. Pharmaceutical research.2005,22(4): 573-583.
    [83]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews.2008,108(6):2064-2110.
    [84]J. P. Fortin, C. Wilhelm, J. Servais, C. Menager, J. C. Bacri, F. Gazeau. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society.2007,129(9):2628-2635.
    [85]S. Nie, Y. Xing, G. J. Kim, J. W. Simons. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.2007,9:257-288.
    [86]A. Ito, M. Shinkai, H. Honda, T. Kobayashi. Medical application of functionalized magnetic nanoparticles. Journal of bioscience and bioengineering.2005,100(1):1-11.
    [87]N. Kawai, A. Ito, Y. Nakahara, M. Futakuchi, T. Shirai, H. Honda, T. Kobayashi, K. Kohri. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats. The Prostate.2005, 64(4):373-381.
    [88]M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi. Intracellular hyperthermia for cancer using magnetite cationic liposomes:in vitro study. Cancer Science.1996,87(11):1179-1183.
    [89]S. Hamaguchi, I. Tohnai, A. Ito, K. Mitsudo, T. Shigetomi, M. Ito, H. Honda, T. Kobayashi, M. Ueda. Selective hyperthermia using magnetoliposomes to target cervical lymph node metastasis in a rabbit tongue tumor model. Cancer Science.2003,94(9): 834-839.
    [90]B. Le, M. Shinkai, T. Kitade, H. Honda, J. U. N. Yoshida, T. Wakabayashi, T. Kobayashi. Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia. Journal of chemical engineering of Japan.2001,34(1):66-72.
    [91]M. Shinkai, B. Le, H. Honda, K. Yoshikawa, K. Shimizu, S. Saga, T. Wakabayashi, J. Yoshida, T. Kobayashi. Targeting hyperthermia for renal cell carcinoma using human MN antigenspecific magnetoliposomes. Cancer Science.2001,92(10):1138-1146.
    [92]H. Matsuno, I. Tohnai, K. Mitsudo, Y. Hayashi, M. Ito, M. Shinkai, T. Kobayashi, J. Yoshida, M. Ueda. Interstitial hyperthermia using magnetite cationic liposomes inhibit to tumor growth of VX-7 transplanted tumor in rabbit tongue. Jpn J Hyperthermic Oncol.2001, 17:141-149.
    [93]M. Suzuki, M. Shinkai, H. Honda, T. Kobayashi. Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma research.2003,13(2):129-135.
    [94]F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, T. Kobayashi. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn. Res. Technol.2004, 2(3).
    [95]J. Motoyama, N. Yamashita, T. Morino, M. Tanaka, T. Kobayashi, H. Honda. Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles. Biomagn. Res. Technol.2008,6(2).
    [96]N. Kawai, M. Futakuchi, T. Yoshida, A. Ito, S. Sato, T. Naiki, H. Honda, T. Shirai, K. Kohri. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. The Prostate.2008,68(7):784-792.
    [97]A. Ito, M. Fujioka, T. Yoshida, K. Wakamatsu, S. Ito, T. Yamashita, K. Jimbow, H. Honda. 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Science.2007,98(3): 424-430.
    [98]M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Cancer Science.1998,89(7):775-782.
    [99]J. Caldwell, P. A. Kollman. A method to extend the domain of convergence for difficult multicomponent. Biopolymers.1986,25(6):249-258.
    [100]C. Joseph. Enumeration of perfect matchings of graphs with reflective symmetry by pfaffians. J Chem Educ.1993,70(11):904-936.
    [101]A. K. Rappe, W. A. Goddard Iii. Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry.1991,95(8):3358-3363.
    [102]S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G Alagona, S. Profeta, P. Weiner. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society.1984,106(3):765-784.
    [103]T. Liljefors, J. C. Tai, S. Li. Corrigendum to "Optimization of semi continuous emulsion polymerization reactions by IDP procedure with variable time intervals". Journal of Computational Chemistry.1987,8(3):1051-1078.
    [104]S. J. Weiner, P. A. Kollman, D. T. Nguyen. Temperature-enthalpy curve for energy targeting of distillation columns. Journal of Computational Chemistry.1986,7(6):230-245.
    [105]H. L. Scott. Modeling the lipid component of membranes. Current opinion in structural biology.2002,12(4):495-502.
    [106]L. S. Vermeer, B. L. de Groot, V. Reat, A. Milon, J. Czaplicki. Acyl chain order parameter profiles in phospholipid bilayers:computation from molecular dynamics simulations and comparison with 2 H NMR experiments. European Biophysics Journal.2007, 36(8):919-931.
    [107]H. Ohvo-Rekila, B. Ramstedt, P. Leppimaki, J. Peter Slotte. Cholesterol interactions with phospholipids in membranes. Progress in lipid research.2002,41(1):66-97.
    [108]S. R. Wassall, W. Stillwell. Docosahexaenoic acid domains:the ultimate non-raft membrane domain. Chemistry and Physics of Lipids.2008,153(1):57-63.
    [109]S. A. Pandit, H. L. Scott. Multiscale simulations of heterogeneous model membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes.2009,1788(1):136-148.
    [110]S. R. Wassall, W. Stillwell. Polyunsaturated fatty acid-cholesterol interactions:Domain formation in membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes.2009, 1788(1):24-32.
    [111]M. C. Pitman, F. Suits, A. D. MacKerell Jr, S. E. Feller. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol. Biochemistry.2004,43(49):15318-15328.
    [112]M. Carrillo-Tripp, S. E. Feller. Evidence for a mechanism by which w-3 polyunsaturated lipids may affect membrane protein function. Biochemistry.2005,44(30): 10164-10169.
    [113]J. Zidar, F. Merzel, M. Hodoscek, K. Rebolj, K. Sepcic, P. Macek, D. Janezic. Liquid-Ordered Phase Formation in Cholesterol/Sphingomyelin Bilayers:All-Atom Molecular Dynamics Simulations. The Journal of Physical Chemistiy B.2009,113(48): 15795-15802.
    [114]M. Franova, J. Repakova, P. Capkova, J. M. Holopainen, I. Vattulainen. Effects of DPH on DPPC-Cholesterol Membranes with Varying Concentrations of Cholesterol:From Local Perturbations to Limitations in Fluorescence Anisotropy Experiments. The Journal of Physical Chemistry B.2010,114(8):2704-2711.
    [115]L. Koubi, L. Saiz, M. Tarek, D. Scharf, M. L. Klein. Influence of anesthetic and nonimmobilizer molecules on the physical properties of a polyunsaturated lipid bilayer. The Journal of Physical Chemistry B.2003,107(51):14500-14508.
    [116]M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, B. W. Lee, J. Holopainen, M. Karttunen. Under the influence of alcohol:the effect of ethanol and methanol on lipid bilayers. Biophysical journal.2006,90(4):1121-1135.
    [117]C. J. Hogberg, A. Maliniak, A. P. Lyubartsev. Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. Biophysical chemistry.2007,125(2): 416-424.
    [118]R. D. Porasso, W. F. Drew Bennett, S. D. Oliveira-Costa, J. J. Lopez Cascales. Study of the benzocaine transfer from aqueous solution to the interior of a biological membrane. The Journal of Physical Chemistry B.2009,113(29):9988-9994.
    [119]P. L. Chau, P. Jedlovszky, P. N. M. Hoang, S. Picaud. Pressure reversal of general anaesthetics:a possible mechanism from molecular dynamics simulations. Journal of Molecular Liquids.2009,147(1):128-134.
    [120]P. L. Chau, P. N. M. Hoang, S. Picaud, P. Jedlovszky. A possible mechanism for pressure reversal of general anaesthetics from molecular simulations. Chemical physics letters. 2007,438(4):294-297.
    [121]S. Vemparala, C. Domene, M. L. Klein. Computational Studies on the Interactions of Inhalational Anesthetics with Proteins. Accounts of Chemical Research.2009,43(1):103-110.
    [122]C. J. Hogberg, A. P. Lyubartsev. Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. Biophysical journal.2008,94(2):525-531.
    [123]B. Griepernau, S. Leis, M. F. Schneider, M. Sikor, D. Steppich, R. A. Bockmann. 1-Alkanols and membranes:A story of attraction. Biochimica et Biophysica Acta (BBA) Biomembranes.2007,1768(11):2899-2913.
    [124]T. Sugii, S. Takagi, Y. Matsumoto. A molecular-dynamics study of lipid bilayers:effects of the hydrocarbon chain length on permeability. The Journal of chemical physics.2005,123: 184714.
    [125]Z. Zhang, M. L. Berkowitz. Orientational dynamics of water in phospholipid bilayers with different hydration levels. The Journal of Physical Chemistry B.2009,113(21): 7676-7680.
    [126]S. Y. Bhide, M. L. Berkowitz. The behavior of reorientational correlation functions of water at the water-lipid bilayer interface. The Journal of chemical physics.2006,125: 094713-094719.
    [127]M. L. Berkowitz, D. L. Bostick, S. Pandit. Aqueous Solutions next to Phospholipid Membrane Surfaces:Insights from Simulations. Chemical reviews.2006,106(4):1527-1539.
    [128]R. Notman, W. K. Den Otter, M. G Noro, W. J. Briels, J. Anwar. The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophysical journal.2007,93(6):2056-2068.
    [129]S. Poyry, T. Rog, M. Karttunen, I. Vattulainen. Mitochondrial membranes with mono-and divalent salt:Changes induced by salt ions on structure and dynamics. The Journal of Physical Chemistry B.2009,113(47):15513-15521.
    [130]D. Bemporad, C. Luttmann, J. W. Essex. Computer simulation of small molecule permeation across a lipid bilayer:dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophysical journal.2004,87(1):1-13.
    [131]D. Bemporad, J. W. Essex, C. Luttmann. Permeation of Small Molecules through a Lipid Bilayer:A Computer Simulation Study. The Journal of Physical Chemistry B.2004, 108(15):4875-4884.
    [132]D. Bemporad, C. Luttmann, J. W. Essex. Behaviour of small solutes and large drugs in a lipid bilayer from computer simulations. Biochimica et Biophysica Acta (BBA) Biomembranes.2005,1718(1-2):1-21.
    [133]P. Mukhopadhyay, H. J. Vogel, D. P. Tieleman. Distribution of pentachlorophenol in phospholipid bilayers:a molecular dynamics study. Biophysical journal.2004,86(1): 337-345.
    [134]J. Ulander, A. D. J. Haymet. Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid. Biophysical journal.2003,85(6): 3475-3484.
    [135]A. Debnath, K. G. Ayappa, V. Kumaran, P. K. Maiti. The influence of bilayer composition on the gel to liquid crystalline transition. The Journal of Physical Chemistry B. 2009,113(31):10660-10668.
    [136]A. Cordomi, J. Prades, J. Frau, O. Vogler, S. S. Funari, J. J. Perez, P. V. Escriba, F. Barcelo. Interactions of fatty acids with phosphatidylethanolamine membranes:X-ray diffraction and molecular dynamics studies. Journal of lipid research.2010,51(5): 1113-1124.
    [137]A. A. Gurtovenko, I. Vattulainen. Molecular mechanism for lipid flip-flops. The Journal of Physical Chemistry B.2007,111(48):13554-13559.
    [138]D. P. Tieleman. The molecular basis of electroporation. BMC biochemistry.2004,5(1): 10-21.
    [139]P. T. Vernier, M. J. Ziegler, Y. Sun, W. V. Chang, M. A. Gundersen, D. P. Tieleman. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. Journal of the American Chemical Society.2006,128(19): 6288-6289.
    [140]E. Falck, M. Patra, M. Karttunen, M. T. Hyvonen, I. Vattulainen. Lessons of slicing membranes:interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophysical journal.2004,87(2):1076-1091.
    [141]A. L. Rabinovich, N. K. Balabaev, M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, P. Jedlovszky. Computer simulation study of intermolecular voids in unsaturated phosphatidylcholine lipid bilayers. The Journal of chemical physics.2005,122: 084906-084917.
    [142]S. J. Marrink, A. H. de Vries, A. E. Mark. Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B.2004,108(2):750-760.
    [143]S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries. The MARTINI force field:coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B.2007,111(27):7812-7824.
    [144]L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, S. J. Marrink. The MARTINI coarse-grained force field:extension to proteins. Journal of Chemical Theoiy and Computation.2008,4(5):819-834.
    [145]C. A. Lopez, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hunenberger, S. J. Marrink. Martini coarse-grained force field:extension to carbohydrates. Journal of Chemical Theoiy and Computation.2009,5(12):3195-3210.
    [146]H. J. Risselada, S. J. Marrink. The molecular face of lipid rafts in model membranes. Proceedings of the National Academy of Sciences.2008,105(45):17367-17372.
    [147]W. F. D. Bennett, J. L. MacCallum, D. P. Tieleman. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. Journal of the American Chemical Society.2009,131(5):1972-1978.
    [148]L. Monticelli, E. Salonen, P. C. Ke, I. Vattulainen. Effects of carbon nanoparticles on lipid membranes:a molecular simulation perspective. Soft Matter.2009,5(22):4433-4445.
    [149]S. Esteban-Martin, H. J. Risselada, J. Salgado, S. J. Marrink. Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations. Journal of the American Chemical Society.2009,131(42):15194-15202.
    [150]H. J. Risselada, S. J. Marrink. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Physical Chemistry Chemical Physics.2009,11(12):2056-2067.
    [151]H. J. Risselada, S. J. Marrink. The freezing process of small lipid vesicles at molecular resolution. Soft Matter.2009,5(22):4531-4541.
    [152]S. A. Sanders, A. Z. Panagiotopoulos. Micellization behavior of coarse grained surfactant models. The Journal of chemical physics.2010,132:114902-114910.
    [153]Y. SO, S. LV, S. D, M. SJ. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Comput Biol.2010,6(6):e1000810.
    [154]A. Y. Shih, A. Arkhipov, P. L. Freddolino, K. Schulten. Coarse grained protein-lipid model with application to lipoprotein particles. The Journal of Physical Chemistry B.2006, 110(8):3674-3684.
    [155]A. Arkhipov, Y. Yin, K. Schulten. Four-scale description of membrane sculpting by BAR domains. Biophysical journal.2008,95(6):2806-2821.
    [156]M. Orsi, D. Y Haubertin, W. E. Sanderson, W. Jonathan. A quantitative coarse-grain model for lipid bilayers. The Journal of Physical Chemistry B.2008,112(3):802-815.
    [157]M. Orsi, J. Michel, J. W. Essex. Coarse-grain modelling of DMPC and DOPC lipid bilayers. Journal of Physics:Condensed Matter.2010,22(15):155106.
    [158]J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, M. L. Klein. A coarse grain model for phospholipid simulations. The Journal of Physical Chemistry B.2001, 105(19):4464-4470.
    [159]A. P. Lyubartsev. Multiscale modeling of lipids and lipid bilayers. European Biophysics Journal.2005,35(1):53-61.
    [160]S. Izvekov, G. A. Voth. Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. Journal of Chemical Theory and Computation.2006,2(3):637-648.
    [161]S. Izvekov, G. A. Voth. A multiscale coarse-graining method for biomolecular systems. The Journal of Physical Chemistry B.2005,109(7):2469-2473.
    [162]W. G. Noid, J. W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, H. C. Andersen. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. The Journal of chemical physics.2008,128(24):244114.
    [163]S. Izvekov, G. A. Voth. Solvent-free lipid bilayer model using multiscale coarse-graining. The Journal of Physical Chemistry B.2009,113(13):4443-4455.
    [164]G. S. Ayton, G. A. Voth. A hybrid coarse-graining approach for lipid bilayers at large length and time scales. The journal of physical chemistry. B.2009,113(13):4413.
    [165]A. P. Lyubartsev, A. Laaksonen. Calculation of effective interaction potentials from radial distribution functions:A reverse Monte Carlo approach. Physical Review E.1995,52(4): 3730-3737.
    [166]D. Reith, M. Putz, F. Muller-Plathe. Deriving effective mesoscale potentials from atomistic simulations. Journal of Computational Chemistry.2003,24(13):1624-1636.
    [167]A. Lyubartsev, Y. Tu, A. Laaksonen. Hierarchical multiscale modelling scheme from first principles to mesoscale. Journal of Computational and Theoretical Nanoscience.2009, 6(5):951-959.
    [168]K. R. Hadley, C. McCabe. A coarse-grained model for amorphous and crystalline fatty acids. The Journal of chemical physics.2010,132(13):134505.
    [169]T. Murtola, E. Falck, M. Karttunen, I. Vattulainen. Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. The Journal of chemical physics.2007,126:075101.
    [170]W. K. den Otter. Free energies of stable and metastable pores in lipid membranes under tension. The Journal of chemical physics.2009,131:205101.
    [171]B. West, F. L. H. Brown, F. Schmid. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophysical journal.2009,96(1):101-115.
    [172]F. De Meyer, B. Smit. Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences.2009,106(10):3654-3658.
    [173]K. Otake, T. Imura, H. Sakai, M. Abe. Development of a New Preparation Method of Liposomes Using Supercritical Carbon Dioxide. Langmuh:2001,17(13):3898-3901.
    [174]K. Otake, T. Shimomura, T. Goto, T. Imura, T. Furuya, S. Yoda, Y. Takebayashi, H. Sakai, M. Abe. Preparation of Liposomes Using an Improved Supercritical Reverse Phase Evaporation Method. Langmuir.2006,22(6):2543-2550.
    [175]X. An, F. Zhang, Y. Zhu, W. Shen. Photoinduced drug release from thermosensitive AuNPs-liposome using a AuNPs-switch. Chemical Communications.2010,46(38): 7202-7204.
    [176]L. Frederiksen, K. Anton, P. v. Hoogevest, H. R. Keller, H. Leuenberger. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. Journal of pharmaceutical sciences.1997,86(8):921-928.
    [177]S.-H. Park, S.-G. Oh, J.-Y. Mun, S.-S. Han. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids and Surfaces B: Biointerfaces.2006,48(2):112-118.
    [178]M. B. Yatvin, J. N. Weinstein, W. H. Dennis, R. Blumenthal. Design of liposomes for enhanced local release of drugs by hyperthermia. Science.1978,202(4374):1290-1293.
    [179]D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer. Nanocarriers as an emerging platform for cancer therapy. Nat Nano.2007,2(12):751-760.
    [180]T. M. Allen, P. R. Cullis. Drug delivery systems:entering the mainstream. Science.2004, 303(5665):1818-1822.
    [181]W. T. Al-Jamal, K. Kostarelos. Liposomes:From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine. Accounts of Chemical Research.2011,44(10):1094-1104.
    [182]W. T. Al-Jamal, K. Kostarelos. Liposomes-Nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine.2007,2(1):85-98.
    [183]K. Elersic, J. I. Pavlic, A. Iglic, A. Vesel, M. Mozetic. Electric-field controlled liposome formation with embedded superparamagnetic iron oxide nanoparticles. Chemistry and Physics of Lipids.2011,165(1):120-124.
    [184]V. J. Mohanraj, T. J. Barnes, C. A. Prestidge. Silica nanoparticle coated liposomes:A new type of hybrid nanocapsule for proteins. International journal of pharmaceutics.2010, 392(1-2):285-293.
    [185]L. Paasonen, T. Sipila, A. Subrizi, P. Laurinmaki, S. J. Butcher, M. Rapport, A. Yaghmur, A. Urtti, M. Yliperttula. Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. Journal of controlled release.2010,147(1): 136-143.
    [186]K. C. Weng, C. O. Noble, B. Papahadjopoulos-Sternberg, F. F. Chen, D. C. Drummond, D. B. Kirpotin, D. Wang, Y. K. Hom, B. Hann, J. W. Park. Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo. Nano letters.2008,8(9):2851-2857.
    [187]V. P. Torchilin, V. G. Omelyanenko, M. I. Papisov, A. A. Bogdanov Jr, V. S. Trubetskoy, J. N. Herron, C. A. Gentry. Poly (ethylene glycol) on the liposome surface:on the mechanism of polymer-coated liposome longevity. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1994,1195(1):11-20.
    [188]V. P. Torchilin, M. I. Shtilman, V. S. Trubetskoy, K. Whiteman, A. M. Milstein. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochimica et Biophysica Acta (BBA)-Biomembranes.1994,1195(1):181-184.
    [189]O. K. Kutsenko, V. M. Trusova, G. P. Gorbenko, T. Deligeorgiev, A. Vasilev, S. Kaloianova, N. Lesev. Fluorescence Study of Lipid Bilayer Interactions of Eu (III) Coordination Complexes. Journal of Fluorescence.2010,21(4):1-7.
    [190]I. Ahmad, M. Longenecker, J. Samuel, T. M. Allen. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer research.1993,53(7):1484-1488.
    [191]A. N. Lukyanov, T. A. Elbayoumi, A. R. Chakilam, V. P. Torchilin. Tumor-targeted liposomes:doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. Journal of controlled release.2004,100(1):135-144.
    [192]J. Zhao, S. S. Jedlicka, J. D. Lannu, A. K. Bhunia, J. L. Rickus. Liposome-Doped Nanocomposites as Artificial-Cell-Based Biosensors:Detection of Listeriolysin O. Biotechnology progress.2006,22(1):32-37.
    [193]P. Pradhan, J. Giri, R. Banerjee, J. Bellare, D. Bahadur. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. Journal of Magnetism and Magnetic Materials.2007,311(1):208-215.
    [194]D. V. Volodkin, A. G. Skirtach, H. M hwald. Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angewandte Chemie International Edition. 2009,48(10):1807-1809.
    [195]J. H. Wu, S. P. Ko, H. L. Liu, M. H. Jung, J. H. Lee, J. S. Ju, Y. K. Kim. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313:268-272.
    [196]Y. Chen, A. Bose, G. D. Bothun. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS nano.2010,4(6):3215-3221.
    [197]E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, K. Tazawa, I. Horikoshi. Release of 5-fluorouracil from thermosensitive magnetoliposomes induced by an electromagnetic field. Journal of controlled release.1997,46(3):263-271.
    [198]A. D. Bangham, D. H. Heard, R. Flemans, G. V. Seaman. An apparatus for microelectrophoresis of small particles. Nature.1958,182(4636):642-644.
    [199]M. Kullberg, K. Mann, J. L. Owens. Improved drug delivery to cancer cells:a method using magnetoliposomes that target epidermal growth factor receptors. Medical hypotheses. 2005,64(3):468-470.
    [200]M. Babincov, P. Sourivong, D. Chorvt, P. Babinec. Laser triggered drug release from magnetoliposomes. Journal of Magnetism and Magnetic Materials.1999,194(1-3):163-166.
    [201]M. Shinkai, M. Suzuki, S. Iijima, T. Kobayashi. Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia. Biotechnology and Applied Biochemistry.1995,21(2):125-137.
    [202]A. Skouras, S. Mourtas, E. Markoutsa, M. C. De Goltstein, C. Wallon, S. Catoen, S. G. Antimisiaris. Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomedicine:Nanotechnology, Biology and Medicine.2011,7(5): 572-579.
    [203]P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Doblinger, R. Banerjee, D. Bahadur, C. Plank. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of controlled release.2009,142(1):108-121.
    [204]S. J. H. Soenen, M. Hodenius, M. De Cuyper. Magnetoliposomes:versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine.2009,4(2):177-191.
    [205]A. Wijaya, K. Hamad-Schifferli. High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir.2007,23(19):9546-9550.
    [206]E. Amstad, J. Kohlbrecher, E. Muller, T. Schweizer, M. Textor, E. Reimhult. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano letters.2011,11(4):1664-1670.
    [207]S. Nappini, M. Bonini, F. Ridi, P. Baglioni. Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter.2011,7(10):4801-4811.
    [208]L. Liz, M. A. Lopez Quintela, J. Mira, J. Rivas. Preparation of colloidal Fe3O4 ultrafine particles in microemulsions. Journal of materials science.1994,29(14):3797-3801.
    [209]Z. H. Zhou, J. Wang, X. Liu, H. S. O. Chan. Synthesis of Fe3O4 nanoparticles from emulsions.J. Mater. Chem.2001,11(6):1704-1709.
    [210]H. Egawa, K. Furusawa. Liposome adhesion on mica surface studied by atomic force microscopy. Langmuir.1999,15(5):1660-1666.
    [211]T. Kaasgaard, C. Leidy, J. H. Ipsen, O. G. Mouritsen, K. J rgensen. In situ atomic force microscope imaging of supported lipid bilayers. Single Molecules.2001,2(2):105-108.
    [212]X. Han, J. Hu, H. Liu, Y. Hu. SEBS aggregate patterning at a surface studied by atomic force microscopy. Langmuir.2006,22(7):3428-3433.
    [213]X. Han, L. Zhou, H. Liu, Y. Hu. Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes. Polymer Degradation and Stability. 2007,92(1):75-85.
    [214]D. Tang, D. Borchman, N. Harris, S. Pierangeli. Lipid interactions with human antiphospholipid antibody,[beta] 2-glycoprotein 1, and normal human IgG using the fluorescent probes NBD-PE and DPH. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1998,1372(1):45-54.
    [215]Frenkel, Smit,汪文川(译),分子模拟-从算法到应用Understanding Molecular Simulation From Algorithms to Applications[M]化学工业出版社:北京,2002.
    [216]LeachA. R, Molecular modelling principles and applications 2rid ed [M].. Pearson Education Limited:Beijing,2003.
    [217]P. R. Leroueil, S. A. Berry, K. Duthie, G. Han, V. M. Rotello, D. Q. McNerny, J. R. Baker Jr, B. G. Orr, M. M. B. Holl. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano letters.2008,8(2):420-424.
    [218]钟文定,铁磁学(中).科学出版社:上海,1987;p 8.
    [219]J. B. Hall, M. A. Dobrovolskaia, A. K. Patri, S. E. McNeil. Characterization of nanoparticles for therapeutics. Nanomedicine.2007,2(6):789-803.
    [220]S. H. Park, S. G. Oh, J. Y. Mun, S. S. Han. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids and Surfaces B:Biointerfaces.2005,44(2): 117-122.
    [221]S. H. Park, S. G. Oh, K. D. Suh, S. H. Han, D. J. Chung, J. Y. Mun, S. S. Han, J. W. Kim. Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles. Colloids and Surfaces B:Biointerfaces.2009,70(1):108-113.
    [222]M. Beckmann, P. Nollert, H. A. Kolb. Manipulation and molecular resolution of a phosphatidylcholine-supported planar bilayer by atomic force microscopy. Journal of Membrane Biology.1998,161(3):227-233.
    [223]M. F. Rosenberg, R. Callaghan, R. C. Ford, C. F. Higgins. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. Journal of Biological Chemistry.1997,272(16):10685.
    [224]B. R. Lentz, Y. Barenholz, T. E. Thompson. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers.1. Single component phosphatidylcholine liposomes. Biochemistry.1976,15(20):4521-4528.
    [225]C. Socaciu, R. Jessel, H. A. Diehl. Competitive carotenoid and cholesterol incorporation into liposomes:effects on membrane phase transition, fluidity, polarity and anisotropy. Chemistry and Physics ofLipids.2000,106(1):79-88.
    [226]S. J. Kim, H. S. Wi, K. Kim, K. Lee, S. M. Kim, H. Yang, H. K. Pak. Encapsulation of CdSe nanoparticles inside liposome suspended in aqueous solution. JOURNAL-KOREAN PHYSICAL SOCIETY.2006,49:684.
    [227]C. Becker, M. Hodenius, G. Blendinger, A. Sechi, T. Hieronymus, D. Muller-Schulte, T. Schmitz-Rode, M. Zenke. Uptake of magnetic nanoparticles into cells for cell tracking. Journal of Magnetism and Magnetic Materials.2007,311(1):234-237.
    [228]L. Zhang, X. Sun, Y. Song, X. Jiang, S. Dong, E. Wang. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles:synthesis, characterization, and self-assembly. Langmuir.2006,22(6):2838-2843.
    [229]H. Jang, L. E. Pell, B. A. Korgel, D. S. English. Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. Journal of Photochemistiy and Photobiology A:Chemistry.2003,158(2-3):111-117.
    [230]S. Shrivastava, A. Chattopadhyay. Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes. Biochemical and biophysical research communications.2007,356(3):705-710.
    [231]J. R. Lakowicz, Principles of Fluorescence Spectroscopy. New York:Plenum:1983.
    [232]许金钧,王尊本,荧光分析法.3 ed.;科学出版社:2007;p 162.
    [233]M. Sutter, T. Fiechter, G. Imanidis. Correlation of membrane order and dynamics derived from time-resolved fluorescence measurements with solute permeability. Journal of pharmaceutical sciences.2004,93(8):2090-2107.
    [234]A. N. Diaz, F. Garcia Sanchez, M. M. Lopez Guerrero. Modulated anisotropy fluorescence for quantitative determination of carbaryl and benomyl. Talanta.2003,60(2-3): 629-634.
    [235]I. Gryczynski, M. L. Johnson, J. R. Lakowicz. Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry. Biophysical chemistry.1994,52(1):1-13.
    [236]J. R. Lakowicz, Principles of Fluorescence Spectroscopy.2 ed.; New York:Kluwer Academic/Plenum Press:1999.
    [237]S. Kawato, K. Kinosita, A. Ikegami. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry.1977,16(11):2319-2324.
    [238]C. R. Mateo, M. P. Lillo, J. C. Brochon, M. Martinez-Ripoll, J. Sanz-Aparicio, A. U. Acuna. Rotational dynamics of 1,6-diphenyl-1,3,5-hexatriene and derivatives from fluorescence depolarization. The Journal of Physical Chemistry.1993,97(14):3486-3491.
    [239]M. P. Heyn. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS letters.1979,108(2):359-364.
    [240]B. W. van der Meer, R. P. van Hoeven, W. J. van Blitterswijk. Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended Perrin equation for restricted rotation of fluorophores. Biochimica et Biophysica Acta (BBA) Biomembranes.1986,854(1):38-44.
    [241]V. Ioffe, G. P. Gorbenko. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophysical chemistry.2005,114(2-3):199-204.
    [242]R. Zana, M. In, H. Levy, G. Duportail. Alkanediyl-a,w-bis (dimethylalkylammonium bromide).7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity. Langmuir.1997,13(21):5552-5557.
    [243]B. Szczupak, A. G Ryder, D. M. Togashi, A. S. Klymchenko, Y. A. Rochev, A. Gorelov, T. J. Glynn. Polarity assessment of thermoresponsive poly (NIPAM-co-NtBA) copolymer films using fluorescence methods. Journal of Fluorescence.2010,20(3):719-731.
    [244]A. Arora, H. Raghuraman, A. Chattopadhyay. Influence of cholesterol and ergosterol on membrane dynamics:a fluorescence approach. Biochemical and biophysical research communications.2004,318(4):920-926.
    [245]C. D. Stubbs, C. Ho, S. J. Slater. Fluorescence techniques for probing water penetration into lipid bilayers. Journal of Fluorescence.1995,5(1):19-28.
    [246]C. Ho, C. D. Stubbs. Hydration at the membrane protein-lipid interface. Biophysical journal.1992,63(4):897-902.
    [247]M. Shinitzky, Y. Barenholz. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta.1978,515(4):367-394.
    [248]S. L. Huang, R. C. MacDonald. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochimica et Biophysica Acta (BBA)-Biomembranes.2004, 1665(1):134-141.
    [249]A. A. Kale, V. P. Torchilin. "smart" Drug Carriers:PEGylated TATp-Modified pH-Sensitive Liposomes. Journal of liposome research.2007,17(3-4):197-203.
    [250]H. Karanth, R. S. R. Murthy. pH-sensitive liposomes-principle and application in cancer therapy. Journal of pharmacy and pharmacology.2007,59(4):469-483.
    [251]D. Volodkin, Y. Arntz, P. Schaaf, H. Moehwald, J. C. Voegel, V. Ball. Composite multilayered biocompatible poly electrolyte films with intact liposomes:stability and temperature triggered dye release. Soft Matter.2007,4(1):122-130.
    [252]G. D. Bothun, M. R. Preiss. Bilayer heating in magnetite nanoparticle-liposome dispersions via fluorescence anisotropy. Journal of colloid and interface science.2011,357(1): 70-74.
    [253]P. Saarinen-Savolainen, T. Jarvinen, H. Taipale, A. Urtti. Method for evaluating drug release from liposomes in sink conditions. International journal of pharmaceutics.1997, 159(1):27-33.
    [254]N. Oku, R. C. MacDonald. Differential effects of alkali metal chlorides on formation of giant liposomes by freezing and thawing and by dialysis. Biochemistry.1983,22(4):855-863.
    [255]N. Oku, D. A. Kendall, R. C. MacDonald. A simple procedure for the determination of the trapped volume of liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1982,691(2):332-340.
    [256]A. P. C. O. Bahia, E. G. Azevedo, L. A. M. Ferreira, F. Frezard. New insights into the mode of action of ultradeformable vesicles using calcein as hydrophilic fluorescent marker. European Journal of Pharmaceutical Sciences.2010,39(1-3):90-96.
    [257]Z. V. Leonenko, A. Carnini, D. T. Cramb. Supported planar bilayer formation by vesicle fusion:the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochimica et Biophysica Acta (BBA) Biomembranes.2000,1509(1-2):131-147.
    [258]W. H. Binder, R. Sachsenhofer, D. Farnik, D. Blaas. Guiding the location of nanoparticles into vesicular structures:a morphological study. Phys. Chem. Chem. Phys.2007, 9(48):6435-6441.
    [259]S. Segota, D. Tezak. Spontaneous formation of vesicles. Advances in Colloid and Interface Science.2006,121(1-3):51-75.
    [260]R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi. Biomembrane models and drug-biomembrane interaction studies:Involvement in drug design and development. Journal of Pharmacy And Bioallied Sciences.2011,3(1):4-14.
    [261]G. Kong, M. W. Dewhirst. Review hyperthermia and liposomes. International journal of hyperthermia.1999,15(5):345-370.
    [262]S. Nappini, M. Bonini, F. B. Bombelli, F. Pineider, C. Sangregorio, P. Baglioni, B. Norden. Controlled drug release under a low frequency magnetic field:effect of the citrate coating on magnetoliposomes stability. Soft Matter.2010,7(3):1025-1037.
    [263]T. Hoare, J. Santamaria, G. F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D. S. Kohane. A magnetically triggered composite membrane for on-demand drug delivery. Nano letters.2009,9(10):3651-3657.
    [264]D. K. Jackson, S. B. Leeb, A. H. Mitwalli, P. Narvaez, D. Fusco, E. C. Lupton Jr. Power electronic drives for magnetically triggered gels. Industrial Electronics, IEEE Transactions on. 1997,44(2):217-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700