用户名: 密码: 验证码:
金属基复合材料循环响应和疲劳破坏的理论和模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强金属基复合材料(MMC_f)是以金属或者合金为基体,以不同材料的纤维为增强相的复合材料,其特点在于有一个连续的金属或者合金基体,其它组元相则是均匀地分布在基体中。作为一种非均匀和各向异性材料,它具有传统单一材料不可具备的优越性能,在诸如先进涡轮发动机和超音速飞行器等航空结构中的应用具有令人鼓舞的前景。这些结构要求承受非常复杂的热/机械循环载荷。为了这类MMC_f结构的安全设计和有效使用,一个非常紧迫的任务是要深刻地认识MMC_f的热机械静力与疲劳渐进破坏过程的细观机理以及发展热机械强度和疲劳破坏分析的理论方法。
     复合材料的破坏过程,从本质上讲是损伤不断累积,材料性质不断退化,应力重新分布的动态过程。本文基于剪切滞后模型和影响函数叠加的方法,考虑纤维和基体同时承受轴向拉伸载荷,纤维和基体之间的应力通过两者之间的剪切层来传递,剪切层以剪应力为主,基体采用理想弹塑性模型。针对MMC_f在裂纹和界面附近可能产生局部循环热塑性变形及其诱导的纤维/基体脱粘(debonding)的特点,提出了纤维断裂伴随局部基体拉伸屈服、局部界面剪切屈服以及界面脱粘的细观破坏力学模型。将每一根纤维断裂及其相伴的基体屈服、界面屈服以及界面脱粘称为一个损伤实体,将多损伤实体相互作用的复杂问题转化为多个单纤维断裂与单基体断裂问题,从而发展了一套包含纤维的统计强度分布、基体的拉伸屈服特性、纤维和基体界面局部循环热塑性以及纤维/基体脱粘的多纤维断裂诱导应力与变形重分配的近似应力分析方法。研究证明:断裂纤维引起的应力扰动具有明显的局部化。因此本文取简化的有限根纤维模型进行了研究,即:将应力场的控制微分方程建立在仅受纤维断裂和基体断裂影响的有限区域之内。通过对在热/机械载荷作用下,金属基复合材料在多重损伤模式下应力响应特征的分析,发现材料的应力分布对机械载荷和温度的变化相当敏感,原因之一在于金属基体的屈服极限随着温度升高而快速地降低。实验结果进一步表明:即使对于处理非弹性这种复杂的破坏问题,这套发展的影响函数叠加方法仍然是可行的,它能够充分地考虑到破坏过程中缺陷之间的相互影响,同时保证简化后的问题经过加权叠加最终是同原问题等价的。
     复合材料的静力拉伸破坏过程表现为一种渐进的损伤过程:在加载的初始阶段,由于缺陷的存在,部分纤维会首先发生断裂,在纤维断裂附近的基体以及基体和纤维的界面会产生局部热塑性变形,细观应力变形重分配,伴随更多的纤维破坏及局部塑性,大量纤维的失稳破坏亦即复合材料的最终破坏。因此,在所建立的多重损伤实体细观力学模型及其应力分析方法的基础上,本文假设纤维的拉伸强度服从Weibull分布,同时考虑纤维断裂、基体拉伸屈服、界面剪切屈服和基体与界面同时发生塑性变形四种损伤模式,提出了一个能够较好地模拟复合材料在拉伸条件下损伤演化过程的Monte-Carlo二维模型,得到了材料的宏观应力-应变曲线,研究发现复合材料在热机械载荷条件下的最终拉伸强度不仅与复合材料的尺寸大小有关,而且取决于纤维强度分布的统计性质及其应力分布状况。另一方面,也分析了采用Weak-link原理能对不同尺寸复合材料的拉伸强度分布规律进行预测的适应范围,可以认为只有在一定的尺寸范围内,Weak-link原理才是适用的,而且还与纤维强度分布中的形状参数等有关。对复合材料静强度的研究,有助于从细观的破坏机理上理解和认识拉伸破坏过程,为进一步发展基于破坏机理分析的疲劳寿命预测理论奠定了基础。
     对于高应变、短寿命的复合材料热/机械疲劳,对应的主要细观破坏机理是纤维断裂。由于纤维拉伸强度的随机特性,在第一个循环载荷峰值点,部分纤维发生断裂,导致纤维断裂附近基体和基体/纤维界面产生局部循环热塑性变形,循环塑性引起基体/纤维界面脱粘,细观应力变形重分配。随着循环的增加,更多的纤维断裂及伴随的局部塑性和debonding,直至复合材料断裂破坏。这一区段的疲劳破坏特点是:破坏过程是渐进的、寿命具有随机性且对载荷大小非常敏感。本文从纤维增强金属基复合材料热/机械疲劳渐进破坏过程机理的分析出发,利用所建立的多纤维断裂诱导应力与变形重分配的细观损伤力学模型,考虑金属基体在热/机械载荷条件下循环响应的特征,引入一个循环周期内基体的塑性剪切应变的变化幅值作为判断纤维与基体发生脱粘的重要参数,发展了纤维断裂、局部基体拉伸循环塑性、局部界面剪切循环塑性以及基体/纤维脱粘等细观破坏模式控制的疲劳破坏分析模型,建立了一套能够预测复合材料热/机械疲劳寿命的理论体系和方法。通过采用Monte-Carlo方法较好地模拟了复合材料的热机械疲劳损伤演化过程,揭示了不同热机械载荷水平与疲劳破坏的细观机制之间的内在联系。研究结果反映:在不同热机械载荷水平作用下,材料的细观破坏模式是不一致的,因而使得解释和预测同相(in-phase)热机械疲劳(TMF)的S-N曲线与反相(out-of-phase)TMF的S-N曲线发生交叉成为可能,即高应变TMF加载时,同相TMF寿命比反向TMF寿命低,而在应变幅较低时,同相TMF寿命比反向TMF寿命高。同时,还研究了试件大小、纤维体积分数等细观结构参数对热机械疲劳寿命的影响,将热机械疲劳寿命S-N曲线与基体循环热塑性、体积分数、纤维统计强度以及纤维/基体界面特性定量地联系起来。
     纤维增强金属基复合材料热/机械变形与破坏的研究一直是国际固体力学和材料科学领域众多学者关注的热点,是一个非常具有挑战性的课题。其特点亦即难点在于如何概括某些对宏观力学行为起敏感作用的细观和微观因素,以及这些因素的演化,从而使得非均匀材料的强化、韧化以及破坏分析立足于科学的认识之上。本论文从纤维增强金属基复合材料热机械静力和疲劳渐进破坏过程机理的分析出发,发展了一种热/机械强度和疲劳破坏分析的理论方法。模型的最大特点之一是,通过多尺度的连续介质力学研究,将材料的宏观力学行为与细观破坏因素定性和定量地联系起来。这种方法为分析多尺度的材料/结构力学行为提供了新的途径。通过本文的研究,希望提升人们对纤维增强金属基复合材料变形与破坏的认识水平,从破坏机理上理解并预测其热/机械强度和疲劳寿命。因而,既具有工程应用价值又具有科学意义。
Continuous fiber-reinforced metal matrix composites, shortened by MMC_f, are made up of matrix and reinforcement. The former usually consists of metal or alloy and the latter is composed of many kinds of fibers. More distinctly, it is characterized by a continuous metal or alloy matrix which is equably crammed with other constituent phases. As a heterogeneous and anisotropic material, this composite has an inspiring prospect of wide practical applications, especially in aeronautic and aerospace structures, such as advanced turbine engines and ultrasonic aerocraft, which displays unique superior performance as compared to other conventional materials. In many typical applications, MMC_f are subjected to a cyclic mechanical loading along with a superimposed variation in temperature. This type of complicated loading condition is referred to as cyclic thermomechanical loading. To submit an efficient employment and to take advantage of the entire application potential, it is an urgent task to require a through understanding of the micro-mechanism for the progressive failure under thermo-mechanical static and cyclic loading and to develop methodology to predict their strength and fatigue life.
     As a matter of fact, the failure process of the composites includes the ceaseless accumulation of damage, gradual degradation of property and stress redistribution. Based upon the shear lag model, we have presented a micromechanically analytical model using an influence function superimposition technique to derive stress profiles for any configuration of breaks in MMC_f under thermo-mechanical loading, by considering the effect of variations in fiber strength, local matrix tensile yield and interface yield (or sliding). Compared with the other models, both the matrix tensile stress and the fiber tensile one have been taken into account. The shear stress is transferred through the interface between fiber and matrix. The local plasticity is modeled by the elastic, perfectly-plastic shear stress-strain relation. In this study, we have restricted our attention to establish a model characterizing progressive failure of MMC_f from the view of micromechanism, which are concerned with the both matrix tensile yield and interface yield and debonding around broken fibers. A broken fiber, accompanying with its yielding matrix and its yielding interface and its debonding interface is called as a damage entity. The case of the interactions among these multi entities is divided into two sub-cases: a single fiber break and a single matrix break, so the solution for the shear yield of interphase or matrix tensile yielding or matrix tensile yield and interface shear yield triggered by multiple fiber breaks can be availably obtained. According to the fact of dramatic localization of stress disturbance, a simplified model is adopted, through taking the governing differential equations controlled inside some limited regions which are affected by broken fibers. The characteristics of stress distribution for multiple damages under thermomechanical loading illustrate that the stress distribution is strongly sensitive to the outside surroundings, such as mechanical load and temperature, especially for in-phase and out-of-phase conditions. It is due to the sharp decline of the yield stress for the matrix with the rising temperature. The experimental observations can further emphasize that this superimposition is not merely simple but completely feasible. For such a non-elastic case, it is reasonable for the solved case to satisfy the origin condition through superimposition, more importantly, including the interactions among those disfigurements.
     Under static loading, the peculiarity of the tensile damage process appears to be progressive: Since the fiber strength exhibits large variability due to statistic distribution of defect, the first fiber break, usually, takes place at very early loading stage, leading to local thermo plasticity for matrix and interface around the broken fiber. Consequently, the microstress is redistributed due to local stress concentration. More fiber breaks and serious local plastic deformation occur as the applied load increases further, leading to the final failure of the composite at some loading level. In other word, the ultimate failure of the fiber-reinforced composites is largely dominated by accumulation of the large amounts of fiber breakage. Therefore, based upon the micromechanically analytical model under multiple damages, considering that the tensile strength of fibers follows a two-parameter Weibull distribution, a 2-D Monte-Carlo model is developed to simulate failure process for MMC_f under tensile thermo-mechanical loading, which is a combination of fiber fracture, local matrix tensile yield and interface yield throughout the application of applied loading. The macro stress-strain response for the composites shows that the microdamage mechanism is derived from a dominant "critical cluster" of breaks. The results from the several hundred Monte-Carlo simulations indicate that the ultimate tensile strength of the composites not only depends upon the composite length and width, but also is dominated by fiber strength statistics and stress redistribution due to progressive microdamage. Secondly, The mean tensile strength of the composite strongly depends on the magnitude ofβ. As the scatter of the fiber tensile strength increases the tensile strength for composites will dramatically decrease. On the other hand, it is shown that weak link scaling works very well within some limited range, which leads us to a significative conclusion that larger sizes are required to produce weak link scaling with smaller shape parameterβ. Modeling of the thermo-mechanical failure process of the fiber composite materials with ductile matrix helps us a comprehensive understanding of damage behavior and failure mechanism, which can be extended to approaches to fatigue life modeling of ductile matrix composites.
     In regime 1 for the fatigue life diagram of the maximum applied strain versus the cycles to failure, its corresponding failure micro-mechanism is rested with fiber breakage under high applied strain and low cycles. Just for the statistical particularity of fiber tensile strength, very small fiber break, usually, take places at peak values during the first loading cycle, stimulating local cyclic plasticity deformation for constituent material and interfacial debonding around the fiber break, then the microstress is redistributed in order to release the internal enriched force. Accompanying serious local plastic deformation and debonding, more and more fiber will continually be fractured as the number of load cycles increases further, leading to the fatigue failure of MMC_f. The distinctive property for this regime is the progressive failure and the sensitivity of fatigue life to the amplitude of applied loads. Based on the above characteristics of progressive damage mechanisms, a micromechanical model was then introduced to predict the evolution of fatigue damage, which described the development of a constituent micro-mechanical damage model and reflected the nonlinear cyclic response for the metal matrix, taking into account the behavior of each constituent (i.e. the fibers, the matrix and the interface) of the composite. The alternating plastic shear strain range of matrix is taken as an important index for debonding. Constitutive equations incorporating the effect of damage development and evolution are developed at the constituent level and then used to predict the overall behavior of the material system. The fatigue failure process is modeled by Monte-Carlo method. It is illustrated that the fatigue life of such a composite depends on the evolution of damage, which is a combination of fiber fracture, interfacial debonding, slipping and inelastic matrix deformation during the regular service life. Note that two curves for fatigue life cross over one another, i.e. the fatigue life for in-phase TMF conditions at higher stresses was considerably less than those obtained under the comparable out-of-phase TMF conditions. On the other hand, in the case of low-stress, the fatigue life for in-phase conditions is seen to increase considerably from that obtained under comparable out-of-phase conditions. This is due to the difference of the dominated failure mode for this two TMF conditions. Micro structural parameters are also studied to investigate the dependence of thermo-mechanical fatigue life on these factors. To our delight, the curve of fatigue life of MMC_f under thermo-mechanical loading is quantitatively related to the local thermo-plasticity of matrix properties, the volume fraction, the statistical strength of fiber and the interface characters between fiber and matrix.
     It is a very challenging task for fiber-reinforced metal matrix composites to be predicted the complex deformation behavior and to be controlled the damage tolerance characteristics under thermo-mechanical loading. To our surprise, it has engendered considerable scientific and technological interest for a long time. Its peculiarity and difficulty is how to gather up those meso and micro damage mechanisms, which can strongly affect the macro-mechanical behaviors, and its evolution, thereby the analysis of mechanical performance for heterogeneous materials can be established upon the scientific understanding. The project aims to develop a theoretic model that can predict thermomechanical strength and fatigue life of fiber reinforced metal-matrix composites and to preferably disclose the inherent relation between such thermo-mechanical propeties and the micromechanical mechanism of damage. The brightest point is that through multi-scale continuum mechanics the macro mechanical behavior can be qualitatively and quantitatively related to micro-factor of deformation and failure. It is shown that this adoptive method serves a new route for analyzing multi-scale mechanical behavior for materials/structures. Therefore, this research is expected to take an important effect on promoting our understanding ability of damage and failure behavior and enhancing our capability for comprehending and predicting the tensile strength and thermomechanical fatigue life for MMC_f. In a word, it is self-evident for the engineering application value and scientific significance.
引文
1.周履,王震鸣.复合材料及其结构的力学进展.广州:华南理工大学出版社,1991
    2.Talrejia R.A conceptual frame work for interpretation of MMC fatigue.Materials Science and Engineering A,1995,200(1-2):21-28
    3.Li C.S.,Ellyin F.Fatigue damage and its localization in particulate metal matrix composites.Materials Science and Engineering A,1996,214(1-2):115-121
    4.谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999
    5.赵玉庭,姚希曾.复合材料基体与界面.上海:华东化工学院出版社,1991
    6.Fish J.,Shek K.Multiscale analysis of composite materials and structures.Composites Science and Technology,2000,60(12-13):2547-2556
    7.Lee K.,Moorthy S.,Ghosh S.Multiple scale computational model for damage in composite materials.Computer Methods in Applied Mechanics and Engineering,1999,172(1-4):175-201
    8.McVeigh C.,Vernerey F.,Liu W.K.,et al.Multiresolution analysis for material design.Computer Methods in Applied Mechanics and Engineering,2006,195(37-40):5053-5076
    9.杜善义,王彪.复合材料细观力学.北京:科学出版社,1998
    10.Landis C.M.,McMeeking R.M.Stress concentrations in composites with interface sliding,matrix stiffness and uneven fiber spacing using shear lag theory.International Journal of Solids and Structures,1999,36(28):4333-4361
    11.Cox H.L.The elasticity and strength of paper and other fibrous materials.British Journal of Applied Physics,1952,3(1):72-79
    12.Hedgepeth J.M.Stress concentrations in filamentary structures.NASA Tech.1961,Note D-882
    13.Hedgepeth J.M.,Dyke V.P.Local stress concentrations in imperfect filamentary composite materials.Journal of Composite Materials,1967,1(3):294-305
    14.Beyerlein I.J.,Landis C.M.Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness.Mechanics of Materials,1999,31(5):331-350
    15.Landis C.M.,McMeeking R.M.A shear-lag model for a broken fiber embedded in a composite with a ductile matrix.Composites Science and Technology,1999,59(3):447-457
    16.Mahesh S.,Hanan J.C.,Ustundag E.,et al.Shear-lag model for a single fiber metal matrix composite with an elasto-plastic matrix and a slipping interface.International Journal of Solids and Structures,2004,41(15):4197-4218
    17.Okabe T.,Takeda N.,Kamoshida Y.,et al.A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites.Composites Science and Technology,2001,61(12):1773-1787
    18.Okabe T.,Takeda N.Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multifiber composites.Composites Part A,2002,33(10):1327-1335
    19.Zhang J.Q.,Wu J.,Liu S.L.Cyclically thermomechanical plasticity analysis for a broken fiber in ductile matrix composites using shear lag model.Composites Science and Technology,2002,62(5):641-654
    20.吴坚.在热/机械载荷作用下金属基复合材料纤维断裂分析.硕士学位论文,重庆:重庆大学,2002
    21.Beyerlein I.J.,Phoenix S.L.,Sastry A.M.Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina.International Journal of Solids and Structures,1996,33(18):2543-2574
    22.Sastry A.M.,Phoenix S.L.Load redistribution near non-aligned fiber breaks in a two-dimensional unidirectional composite using break-influence superposition.Journal of materials science letter,1993,12(20):1596-1599
    23.Zhou S.J.,Curtin W.A.Failure of fiber composites:A lattice Green function model.Acta Metalhtrgica et Materialia,1995,43(8):3093-3104
    24.Landis C.M.,Beyerlein I.J.,McMeeking R.M.Micromechanical simulation of the failure of fiber reinforced composites.Journal of the Mechanics and Physics of Solids,2000,48(3):621-648
    25.Suemasu H.Probabilistic aspects of strength of unidirectional fiber-reinforced composites with matrix failure.Journal of Materials Science,1984,19(2):574-584
    26.Beyerlein I.J.,Phoenix S.L.Stress concentrations around multiple fiber breaks in an elastic matrix with local yield or debonding using quadratic influence superposition.Journal of the Mechanics and Physics of Solids,1996,44(12):1997-2039
    27.Ohno N.,Okabe S.,Okabe T.Stress concentrations near a fiber break in unidirectional composites with interfacial slip and matrix yielding.International Journal of Solids and Structures,2004,41(16-17):4263-4277
    28.Beyerlein I.J.,Phoenix S.L.,Raj R.Time evolution of stress redistributions around multiple fiber breaks in a composite with viscous and viscoelastic matrix.International Journal of Solids and Structures,1998,35(24):3177-3211
    29.He J.,Clarke D.R.Determination of the piezospectroscopic coefficients for Chromium-Doped sapphire.Journal of the American Ceramic Society,1995,78(5):1347-1353
    30.Schadler L.S.,Amer M.S.,Iskandarani B.Experimental measurements of fiber/fiber interaction using Micro-Raman spectroscopy.Mechanics of Materials,1996,23(3):205-216
    31.Hanan J.C.,Mahesh S.,Ustundag E.,et al.Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading.Materials Science and Engineering A,2005,399(1-2):33-42
    32.Bennett J.,Sinclair R.,Preuss M.,et al.Measurement of the variation of interfacial shear stress in Ti/SiC composites as a function of temperature.In:Verijenko VE,editor.Extended Abstracts of Fifteenth International Conference on composite materials,Durban,South Africa,2005:527-528
    33.Ochiai S.,Tanaka H.,Kimura S.,et al.Modeling of residual stress-induced stress-strain behavior of unidirectional brittle fiber/brittle matrix composite with weak interface.Composites Science and Technology,2003,63(7):1027-1040
    34.Zhandarov S.,Mader E.Characterization of fiber/matrix interface strength:applicability of different tests,approaches and parameters.Composites Science and Technology,2005,65(1):149-160
    35.Beyerlein I.J.,Phoenix S.L.Stress profiles and energy release rates around fiber breaks in a lamina with propagating zoned of matrix yielding and debonding.Composites Science and Technology,1997,57(8):869-885
    36.Beaumont P.W.R.,Phillips D.C.Tensile strength of notched composites.Journal of Composite Materials,1972,6(1):32-46
    37.Nairn J.A.,Liu S.,Chen H.,et al.Longitudinal splitting in epoxy and K-polymer composites:shear lag analysis including the effect of fiber bridging.Journal of Composite Materials,1991,25(10):1086-1107
    38.Kelly A.,Tyson W.R.Tensile properties of fiber-reinforced metals:Copper/tungsten and copper/molybdenum.Journal of the Mechanics and Physics of Solids,1965,13(6):329-350
    39.连建设,江中浩,扬德庄等.短纤维增强金属基复合材料应力分布的剪切滞后模型.复合材料学报,1999,16(4):94-100
    40.McClintock F.A.Problems in the fracture of composites with plastic matrixes.Fourth symposium on high performance composites.St Louis,USA,1969
    41.Tirosh J.The effect of plasticity and crack blunting on the stress distribution in orthotropic composite materials.Journal of Applied Mechanics,1973,40(3):785-790
    42.Goree J.G.,Gross R.S.Stress in a three-dimensional unidirectional composite containing broken fibers.Engineering Fracture Mechanics,1980,13(2):395-405
    43.Nairn J.A.Fracture mechanics of unidirectional composites using the shear model Ⅰ:Theory.Journal of Composite Materials,1988,22(6):561-588
    44. Rossettos J.N., Olia M. Stress concentration and post matrix yield at fiber breaks in hybrid composites. In Proceeding of 13~(th) Army Symposium on Solid Mechanics, Plymouth Massachusetts, USA, 1993: 201-212
    45. Connell S.J., Zok F.W., Du Z.Z., et al. On the tensile properties of a fiber reinforced titanium matrix composite-II: Influences of notches and holes. Acta Metallurgica et Materialia, 1994, 42 (10): 3451-3461
    46. Goda K., Phoenix S.L. Reliability approach to the tensile strength of unidirectional CFRP composites by Monte-Carlo simulation in a shear-lag model. Composites Science and Technology, 1994, 50 (6): 457-468
    47. Goda K. The role of interfacial debonding in increasing the strength and reliability of unidirectional fibrous composites. Composites Science and Technology, 1999, 59 (12): 1871-1879
    48. Goree J.G., Gross R.S. Analysis of a unidirectional composite containing broken fibers and matrix damage. Engineering Fracture Mechanics, 1980,13 (3): 563-578
    49. Dharani L.R., Jones W.F., Goree J.G. Mathematical modeling of damage in unidirectional composites. Engineering Fracture Mechanics, 1983,17 (6): 555-573
    50. Fukuda H., Chou T.W. An advanced shear-lag model applicable to discontinuous fiber composites. Journal of Composite Materials, 1981,15 (1): 79-91
    51. Fukuda H., Chou T.W. Stress concentrations in a hybrid composite sheet. Journal of applied mechanics, 1983, 50 (4a): 845-848
    52. Rossetos J.N., Shishesaz M. Stress concentration in fiber composite sheets including matrix extension. Journal of applied mechanics, 1987, 54 (3): 723-724
    53. Wolla J.M., Goree J.G. Experimental evaluation of longitudinal splitting in unidirectional composites. Journal of Composite Materials, 1987, 21 (1): 49-67
    54. Ochiai S., Schulte K., Peters P.W.M. Strain concentration factors for fibers and matrix in unidirectional composites. Composites Science and Technology, 1991, 41 (3): 237-256
    55. Reedy E.D. Analysis of center notched mono-layers with application to Boron/Al composites. Journal of the Mechanics and Physics of Solids, 1980, 28 (5-6): 265-286
    56. Zweben C. An approximate method of analysis for notched unidirectional composites. Engineering Fracture Mechanics, 1974,6(1): 1-10
    57. Tripathi D., Chen F., Jones F.R. The effect of matrix plasticity on stress fields in a single-filament composite and the value of interfacial shear strength obtained from the fragmentation test. Proc Roy Soc Lond A, 1996, 452 (1946): 621-653
    58. Okabe T., Sekine H., Ishii K., et al. Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model.Composites Science and Technology,2005,65(6):921-933
    59.Nedele M.R.,Wisnom M.R.Three-dimensional finite element analysis of the stress concentration at a single fiber break.Composites Science and Technology,1994,51(4):517-524
    60.Zhou X.F.,Wagner H.D.Stress Concentrations caused by fiber failure in two-dimensional composites.Composites Science and Technology,1999,59(7):1063-1071
    61.Xia Z.,Curtin W.A.,Peters P.W.M.Multiscale modeling of failure in metal matrix composites.Acta Materialia,2001,49(2):273-287
    62.Du Z.Z.,McMeeking R.M.Control of strength anisotropy of metal matrix fiber composites.Journal of Computer Aided Materials,1994,1(3):243-264
    63.Nedele M.R.,Wisnom M.R.Stress concentration factors around a broken fiber in a unidirectional carbon fiber-reinforced epoxy.Composites,1994,25(7):549-557
    64.Chang C.I.,Conway H.D.,Weaver T.C.The elastic constants and bond stresses for a three-dimensional composite reinforced by discontinuous fibers.Fiber Science and Technology,1972,5(2):143-162
    65.张俊乾,张万平,吴坚.在热/机械循环载荷作用下金属基复合材料多纤维断裂问题.戴世强等主编,现代数学和力学MMM-LX,上海:上海大学出版社,2004:181-188
    66.张万平,张俊乾,吴坚.金属基复合材料纤维断裂脱落后的应力分析问题.重庆大学学报(自然科学版),2004,27(9):119-123
    67.Zhou Y.X.,Baseer M.A.,Mahfuz H.,et al.Monte-Carlo simulation on tensile failure process of unidirectional carbon fiber reinforced nano-phase epoxy.Materials Science and Engineering A,2006,420(1-2):63-71
    68.Wang X.F.,Chiang M.Y.M.,Snyder C.R.Monte-Carlo simulation for the fracture process and energy release rate of unidirectional carbon fiber-reinforced polymers at different temperatures.Composites Part A:Applied Science and Manufacturing,2004,35(11):1277-1284
    69.Beyerlein I.J.,Phoenix S.L.Statistics of fracture for an elastic notched composite lamina containing Weibull fibers-Part Ⅰ:Features from Monte-Carlo simulation.Engineering Fracture Mechanics,1997,57(2-3):241-265
    70.Beyerlein I.J.,Phoenix S.L.Statistics of fracture for an elastic notched composite lamina containing Weibull fibers-Part Ⅱ:Probability models of crack growth.Engineering Fracture Mechanics,1997,57(2-3):267-299
    71.Ibnabdeljalil M.,Curtin W.A.Strength and reliability of fiber-reinforced composites:localized load-sharing and associated size effects.International Journal of Solids and Structures,1997, 34(21):2649-2668
    72.Okabe T.,Takeda N.Estimation of strength distribution for a fiber embedded in a single-fiber composite:experiments and statistical simulation based on the elasto-plastic shear-lag approach.Composites Science and Technology,2001,61(12):1789-1800
    73.Kim J.K.,Kim C.S.,Song D.Y.Strength evaluation and failure analysis of unidirectional composites using Monte-Carlo simulation.Materials Science and Engineering A,2003,340(1-2):33-40
    74.Xia Y.M.,Wang Y.An improved dynamic Monte Carlo damage microscopic numerical constitutive model incorporating thermo-mechanical coupling for unidirectional GRP under tensile impact.Composites Science and Technology,2001,61(8):997-1003
    75.Herrmann K.P.,Zhang J.Q.,Fan J.H.An energy-based statistical model for multiple fractures in composite laminates.International Journal for Multiscale Computational Engineering,2003,1(1):1-21
    76.Suresh S.,王中光.材料的疲劳.北京:国防工业出版社,1993
    77.Owen M.J.,Howe R.J.The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading.Journal of Physics D:Applied Physics,1972,5(9):1637-1649
    78.Arnold S.M.,Kruch S.A differential CDM model for fatigue of unidirectional metal matrix composites.Technical Memorandum.NASA,1991,105726
    79.Arnold S.M.,Kruch S.Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites.Technical Memorandum.NASA,1991,105213
    80.齐红宇,温卫东.先进纤维增强复合材料疲劳寿命的预测.玻璃钢/复合材料,2000,27(5):6-13
    81.Shokrich M.M.,Lessard L.B.Multiaxial fatigue behaviour of unidirectional piles based on uniaxial fatigue experiments- I:Modelling.International Journal of fatigue,1997,19(3):201-207
    82.Kawai M.A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios.Composites Part A:Applied Science and Manufacturing,2004,35(7-8):955-963
    83.Sun Z.,Daniel I.M.,Luo J.J.Modeling of fatigue damage in a polymer matrix composite.Materials Science and Engineering A,2003,361(1-2):302-311
    84.Tserpes K.I.,Papanikos P.,Labeas G.,et al.Fatigue damage accumulation and residual strength assessment of CFRP laminates.Composite Structures,2004,63(2):219-230
    85.Haplin J.C.,Johnson T.A.,Waddoups M.E.Characterization of composites for the purpose of reliability evaluation.In:Whitney JM,ed.Analysis of Test Methods for High Modulus Fibers and Composites.ASTM STP 521.Philadelphia:ASTM,1973:5-64
    86.Hashin Z.Cumulative damage theory for composite materials:Residual life and residual strength methods.Composites Science and Technology,1985,23(1):1-19
    87.Yang J.N.,Liu M.D.Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates.Journal of Composite Materials,1977,11(2):176-203
    88.顾怡.复合材料拉伸剩余强度及其分布.南京航空航天大学学报,1999,31(2):164-170
    89.Hwang W.,Han K.S.Fatigue of composites-Fatigue modulus concept and life prediction.Journal of Composite Materials,1986,20(2):154-165
    90.Voyiadjis G.Z.,Echle R.High cycle fatigue damage evolution in uni-directional metal matrix composites using a micro-mechanical approach.Mechanics of Materials,1998,30(2):91-110
    91.董聪.疲劳损伤及其非线性规律的研究.机械强度,1993,15(1):39-41
    92.Virker D.The statistical nature of fatigue crack growth.Journal of Engineering Materials and Technology,1979,101(2):148-153
    93.Ghonem H.Experimental study of constant probability crack growth curves under constant amplitude loading.Engineering Fracture Mechanics,1987,27(1):1-25
    94.Bogdanoff J.L.A new cumulative model:Part Ⅰ.Journal of Applied Mechanics,1978,45;(2):246-250
    95.Kozin F.,Bogdanoff J.L.Recent thoughts on probabilistic fatigue crack growth.Applied Mechanics Reviews,1989,42(11):121-127
    96.Ganesan R.,Hoa S.V.,Zhang S.,et al.A stochastic cumulative damage model for the fatigue response of laminated composite.In:Proceedings of ICCM-11,1997:145-156
    97.Kruch S.,Carrere N.,Chaboche J.L.Fatigue damage analysis of unidirectional metal matrix composites.International Journal of Fatigue,2006,28(10):1420-1425
    98.Ferreira J.M.,Pires J.T.B.,Costa J.D.,et al.Fatigue damage analysis of aluminized glass fiber composites.Materials Science and Engineering A,2005,407(1-2):1-6
    99.Huang Z.M.Micromechanical modeling of fatigue strength of unidirectional fibrous composites.International Journal of Fatigue,2002,24(6):659-670
    100.Mall S.,Schubbe J.J.Thermo-mechanical fatigue behavior of a cross ply SCS-6/Ti-15-3 metal matrix composite.Composites Science and Technology,1994,50(1):49-57
    101.Ismar H.,Schroter F.,Streicher F.Finite element analysis of damage evolution in Al/Sic composite laminates under cyclic thermomechanical loadings.International Journal of Solids and Structures,2001,38(1):127-141
    102.Shi Z.F.,Chen Y.H.,Zhou L.M.Micromechanical damage modeling of fiber/matrix interface under cyclic loading.Composite Science and Technology,2005,65(7-8):1203-1210
    103.Majumdar B.S.,Newaz G.M.Constituent damage mechanisms in metal matrix composites under fatigue loading and their effects on fatigue life.Materials Science and Engineering A,1995,200(1-2):114-129
    104.Evans A.G.,Zok F.W.,McMeeking R.M.Fatigue of ceramic matrix composites.Acta Metallurgica et Materialia,1995,43(3):859-875
    105.吴学仁,郭亚军.纤维金属层板疲劳寿命预测的研究进展.力学进展,1999,29(3):304-316
    106.Begley M.R.,McMeeking R.M.Numerical analysis of fiber bridging and fatigue crack growth in metal matrix composite materials.Materials Science and Engineering A,1995,200(1-2):12-20
    107.Marshall D.B.,Cox B.N.,Evans A.G.The mechanics of matrix cracking in brittle-matrix fiber composites.Acta Metallurgica,1985,33(11):2013-2021
    108.Marshall D.B.,Cox B.N.Tensile fracture of brittle matrix composites:influence of fiber strength.Acta Metallurgica,1987,35(11):2607-2619
    109.McCartney L.N.Mechanics of matrix cracking in brittle-matrix fiber-reinforced composites.Proceedings of the Royal Society London A,1987,409(1837):329-350
    110.Hutchinson J.W.,Jensen H.M.Models of fiber debonding and pullout in brittle composites with friction.Mechanics of Materials,1990,9(2):139-163
    111.Gao Y.C.,Lau M.G.Analysis for enhancement of composite resistance to matrix cracking and interfacial debonding with rubber-coated reinforcement.Theoretical and Applied Fracure Mechanics,1994,20(3):181-191
    112.Bao G.,McMeeking R.M.Thermo-mechanical fatigue cracking in fiber reinforced metal-matrix composites.Journal of the Mechanics and Physics of Solids,1995,43(9):1433-1460
    113.Miracle D.B.Metal matrix composites - From science to technological significance.Composites Science and Technology,2005,65(15-16):2526-2540
    114.Liu S.L.,He Y.H.Thermomechanical fatigue behavior of a unidirectional B/Al metal matrix composite.In:Zhang Y,editor.Extended abstracts of 13th International Conference on Composite Materials,Beijing,China,2001:326
    115.廖力,吴效白,胡更开.金属基复合材料热应力疲劳寿命预测.兵工学报,2000,22(S1):59-61
    116.Curtin W.A.Stochastic damage evolution and failure in fiber-reinforced composites.Advances in Applied Mechanics,1999,36:162-253
    117.Wang Z.,Xia Y.M.Experimental evaluation of the strength distribution of fibers under high strain rates bimodal Weibull distribution.Composites Science and Technology,1997,57(12):1599-1607
    118.Beyerlein I.J.,Phoenix S.L.Statistics for the strength and size effects of micro-composites with four carbon fibers in epoxy resin.Composites Science and Technology,1996,56(1):75-92
    119.同济大学数学教研室.高等数学.北京:高等教育出版社,1996
    120.Hanan J.C.,Ustundag E.,Beyerlein I.J.,et al.Microscale damage evolution and stress redistribution in Ti-SiC fiber composites.Acta Materialia,2003,51(14):4239-4250
    121.赵渠森等.先进复合材料手册.北京:机械工业出版社,2003
    122.Pandey K.N.,Chand S.Deformation based temperature rise:a review.International Journal of Pressure Vessels and Piping,2003,80(10):673-687
    123.Fleming W.J.,Temis J.M.Numerical simulation of cyclic plasticity and damage of an aluminum metal matrix composite with particulate SiC inclusions.International Journal of Fatigue,2002,24(10):1079-1088
    124.Wu X.B.,Liao L.,Hu G.K.Thermal Cyclic Effects of Metal Matrix Composites.Journal of Beijing Institute of Technology,1998,7(4):351-358
    125。王斌团,杨庆雄.材料循环应力-应变行为及循环应变寿命的研究.航空学报,2000,21(2):171-174
    126.Meggiolaro M.A.,Castro J.T.P.Statistical evaluation of strain-life fatigue crack ignition predictions.International Journal of Fatigue,2004,26(5):463-476
    127.徐灏.疲劳强度设计.北京:机械工业出版社,1983
    128.Lissenden C.J.Fiber-matrix interfacial constitutive relations for metal matrix composites.Composites Part B:Engineering,1999,30(3):267-278
    129.Gao Y.C.,Zhou L.M.Numerical analysis of interface fatigue of fiber reinforced composites.Theoretical and Applied Fracture Mechanics,1998,30(3):235-241
    130.Sun L.Z.,Ju J.W.,Liu H.T.Elastoplastic modeling of metal matrix composites with evolutionary partial debonding.Mechanics of Materials,2003,35(3-6):559-569
    131.Raghavan P.,Ghosh S.A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding.Mechanics of Materials,2005,37(9):955-979
    132.Tsai K.H.,Lim K.S.The micromechanics of fiber pull-out.Journal of the Mechanics and Physics of Solids,1996,44(7):1147-1177
    133.Jiang X.Y.,Gao Q.Stress-transfer analysis for fiber/matrix interfaces in short-fiber-reinforced composites.Composites Science and Technology,2001,61(10):1359-1366
    134.Pochiraju K.V.,Tandon G.P.,Pagano N.J.Analyses of single fiber pushout considering interfacial friction and adhesion.Journal of the Mechanics and Physics of Solids,2001,49(10):2307-2338
    135.Dibenedetto A.T.,Gurvich M.R.Effect of friction between fiber and matrix on the fracture toughness of the composite interface.Journal of Materials Science,1998,33(16):4239-4248
    136.Lin G.,Geubelle P.H.,Sottos N.R.Simulation of fiber debonding with friction in a model composite pushout test.International Journal of Solids and Structure,2001,38(46-47):8547-8562
    137.Liu Y.F.,Kagawa Y.Analysis of debonding and frictional sliding in fiber-reinforced brittle matrix composites:basic problems.Materials Science and Engineering A,1996,212(1):75-86
    138.王仁,熊祝华,黄文彬.塑性力学基础.北京:科学出版社,1982
    139.张孝泽.蒙特卡罗方法在统计物理中的应用.郑州:河南科学技术出版社,1991
    140.裴鹿成.蒙特卡罗方法及其应用.长沙:国防科技大学出版社,1993
    141.齐欢.数学模拟方法.武汉:华中理工大学出版社,1996
    142.Kalos M.H.,Whitlock P.A.Monte Carlo Methods.New York:Wiley,1986
    143.Binder K.Monte Carlo Simulation in Statistical Physics.Berlin:Springer-Verlag,1988
    144.Herrador M.A.,Gonzalez A.G.Evaluation of measurement uncertainty in analytical assays by means of Monte-Carlo simulation.Talanta,2004,64(2):415-422
    145.郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社,2004
    146.Hui C.Y.,Phoenix S.L.,Shia D.The single-filament-composite test:A new statistical theory for estimating the interfacial shear strength and Weibull parameters for fiber strength.Composites Science and Technology,1997,57(12):1707-1725
    147.Hui C.Y.,Phoenix S.L.,Ibnabdeljalil M.,et al.An exact closed form solution for fragmentation of Weibull fibers in a single filament composite with applications to fiber-reinforced ceramics.Journal of the Mechanics and Physics of Solids,1995,43(10):1551-1585
    148.Coleman B.D.On the strength of classical fibers and fiber bundles.Journal of the Mechanics and Physics of Solids,1958,7(1):60-70
    149.王贤锋,赵建华,姜洪源等.玻纤和碳纤在低温下的强度统计特性.无机材料学报,2003,18(1):45-49
    150.Wang X.F.,Zhao J.H.Monte-Carlo simulation to the tensile mechanical behaviors of unidirectional composites at low temperature.Cryogenics,2001,41(9):683-691
    151.Wang Z.,Yuan J.M.,Xia Y.M.A dynamic Monte-Carlo simulation for unidirectional composites under tensile impact.Composites Science and Technology,1998,58(3-4):487-495
    152.DiBenedetto A.T.,Gurvich M.R.Statistical simulation of fiber fragmentation in a single-fiber composite.Composites Science and Technology,1997,57(5):543-555
    153.Zhou Y.X.,Huang W.,Xia Y.M.A microscopic dynamic Monte Carlo simulation for unidirectional fiber reinforced metal composites.Composites Science and Technology,2002,62(15):1935-1946
    154.Xia Y.M.,Wang Z.A dynamic Monte Carlo microscopic damage model incorporating thermo-mechanical coupling in a unidirectional composites.Composites Science and Technology,1999,59(6):947-955
    155.Zhou Y.X.,Xia Y.M.Experimental study of the rate-sensitivity of unidirectional fiber reinforced metal-matrix composite wires and the establishment of a dynamic constitutive equation.Composites Science and Technology,2001,61(14):2025-2031
    156.Zhou Y.X.,Xia Y.M.In situ strength distribution of carbon fibers in unidirectional metal-matrix composite-wires.Composites Science and Technology,2001,61(14):2017-2023
    157.Zhou Y.X.,Xia Y.M.Experimental study of the rate-sensitivity of SiC_p/Al composites and the establishment of a dynamic constitutive equation.Composites Science and Technology,2000,60(3):403-410
    158.Joffe R.,Krasnikovs A.,Vama J.COD-based simulation of transverse cracking and stiffness reduction in[S / 90_n]_s laminates.Composites Science and Technology,2001,61(5):637-656
    159.Ibnabdeljalil M.,Phoenix S.L.Scalings in the Statistical Failure of Brittle Matrix Composites with Discontinuous Fibers-Ⅰ.Analysis and Monte Carlo Simulations.Acta Metallurgica et Materialia,1995,43(8):2975-2983
    160.王放,张俊乾.复合材料拉伸断裂过程的Monte-Carlo模拟.力学季刊,2005,26(4):673-676
    161.Shia D.,Hui C.Y.,Phoenix S.L.Statistics of fragmentation in a single-fiber composite under matrix yielding and debonding with application to the strength of multi-fiber composites.Composites Science and Technology,2000,60(11):2107-2128
    162.Mahesh S.,Phoenix S.L.,Beyerlein I.J.Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix.International Journal of Fracture,2002,115(1):41-85
    163.Mahesh S.,Beyerlein I.J.,Phoenix S.L.Size and heterogeneity effects on the strength of fibrous composites.Physica D,1999,133(1-4):371-389
    164.Phoenix S.L.,Ibnabdeljalil M.,Hui C.Y.Size effects in the distribution for strength of brittle matrix fibrous composites.International Journal of Solids and Structure,1997,34(5):545-568
    165.Grigoriu M.Stochastic mechanics.International Journal of Solids and Structure,2000,37(1-2):197-214
    166.Curtin W.A.Dimensionality and size effects on the strength of fiber-reinforced composites.Composites Science and Technology,2000,60(4):543-551
    167.Parratt N.J.Defects in glass fibers and their effects on the strength of plastic mouldings.Rubber Plastics,1960,41(3):263-266
    168.Gucer D.E.,Gurland J.Comparison of the statistics of two fracture modes.Journal of the Mechanics and Physics of Solids,1962,10(4):365-373
    169.王玲,赵浩峰等。金属基复合材料及其浸渗制备的理论与实践.北京:冶金工业出版社,2005
    170.Rajan T.P.D.,Pillai R.M.,Pai B.C.Reinforcement coatings and interface in aluminium metal matrix composites.Journal Material Science,1998,33(14):3491-3503
    171.曾春花,邹十践.疲劳分析方法及应用.北京:国防工业出版社,1991
    172.刘绍伦,何玉怀,温井龙.纤维增强金属基复合材料层板热/机械疲劳性能试验研究.材料工程,2003,29(10):14-17
    173.Nicholas T.An approach to fatigue life modeling in titanium-matrix composites.Materials Science and Engineering A,1995,200(1-2):29-37
    174.Cheng G.X.,Plumtree A.A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion.International Journal of Fatigue,1998,20(7):495-501
    175.Legrand N.,Remy L.,Molliex L.,et al.Damage mechanisms and life prediction in high temperature fatigue of a unidirectional SiC-Ti composite.International Journal of Fatigue,2002,24(2-4):369-379
    176.Diao X.X.A statistical equation of damage evolution.Engineering Fracture Mechanics,1995,52(1):33-42
    177.Ding H.Z.,Biermann H.,Hartmann O.Low cycle fatigue crack growth and life prediction of short-fiber reinforced aluminum matrix composite.International Journal of Fatigue,2003,25(3):209-220
    178.Ding H.Z.,Hartmann O.,Biermann H.,et al.Modelling low-cycle fatigue life of particulate-reinforced metal-matrix composites.Materials Science and Engineering A,2002,333(1-2):295-305
    179.Gall K.,Horstemeyer M.F,Degner B.W.On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy.International Journal of Fracture,2001,108(3):207-233
    180.Srivatsan T.S.,Annigeri R.,Parkash A.An investigation of cyclic plastic strain response and fracture behavior of steel-based metal-matrix composites.Engineering Fracture Mechanics,1997,56(4):451-481
    181.航空工业部科学技术委员会.应变疲劳分析手册.北京:科学出版社,1987
    182.Srivatsan T.S.,Vasudevan V.K.Cyclic plastic strain response and fracture behavior of 2080aluminum alloy metal matrix composites.International Journal of Fatigue,1998,20(3):187-202
    183.Xia Z.H.,Curtin W.A.Life prediction of titanium MMC_s under low-cycle fatigue.Acta Materialia,2001,49(9):1633-1646
    184.何国求,陈成澍,丁向群等.新的多轴非比例加载低周疲劳寿命估算公式.机械强度,2004,26(S1):258-262
    185.Liu Y.F A 3-d micromechanical model of cyclic plasticity in a fiber-reinforced metal matrix composite.Journal of Materials Science Letters,2001,20(5):415-417
    186.Shkarayev S.,Krashanitsa R.Probabilistic method for the analysis of widespread fatigue damage in structures.International Journal of Fatigue,2005,27(3):223-234
    187.Foringer M.A.,Robertson D.D.,Mall S.A micromechanistic-based approach to fatigue life modeling of titanium-matrix composites.Composites Part B:Engineering,1997,28(5-6):507-521
    188.Rospars C.,Dantec E.L.,Lecuyer F A micromechanical model for thermostructural composites.Composites Science and Technology,2000,60(7):1095-1102
    189.Huang Z.M.Cyclic response of metal matrix composite laminates subjected to thermomechanical fatigue loads.International Journal of Fatigue,2002,24(2-4):463-475
    190.Fatemi A.,Yang L.Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials.International Journal of Fatigue,1998,20(1):9-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700