用户名: 密码: 验证码:
丙酮酸钠在缺氧缺血脑损伤中的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分丙酮酸钠对缺氧缺血脑损伤的保护作用
     目的运用新生大鼠建立体外缺糖缺氧细胞和体内缺氧缺血脑损伤动物模型,观察丙酮酸钠(Sodium Pyruvate, SP)对新生大鼠缺氧缺血脑损伤的保护作用。方法模拟缺氧缺血建立细胞模型(oxygen and glucose deprivation, OGD)和动物模型(Hypoxia ischemia, HI)。结扎生后7天新生大鼠左侧颈总动脉,暴露于8%氧气2.5个小时,构建良好稳定的HI动物模型。提取新生大鼠大脑皮质原代神经元,体外培养7天,给与缺氧缺糖2.5个小时,构建OGD细胞模型。分别在不同时间点给予不同浓度的SP治疗。细胞试验分为对照组、OGD组和不同浓度SP治疗组,而动物模型分为假手术组、模型组和不同浓度、给药时间SP治疗组。LDH和MTT用于检测细胞死亡和生存状态。TTC染色、FJB染色、Cresyl Violet染色检测缺氧缺血脑组织损伤后不同时间点神经元的凋亡和脑损伤程度。
     结果体外实验显示,OGD后24小时SP可以逆转大脑皮层原代神经元LDH释放的增加和MTT水平的下降,且表现为剂量-依从性。2mM和4mM浓度效果最佳。HI后48小时脑组织TTC染色,SP在浓度125-1000 mg/kg之间可以显著降低HI对未成熟脑组织的损伤,如果在HI损伤后5分钟腹腔注射给与SP500 mg/kg可以获得最大疗效。和模型组相比,SP在HI损伤后24小时显著降低左侧(损伤侧)大脑皮层FJ-B染色阳性神经元。Cresyl Violet染色显示HI后第7天大脑冠状位形态发现丙酮酸钠可以使HI损伤后左侧存活/右侧存活的大脑皮层组织和海马组织比例分别从45.3士11.9%、39.2±8.7%升高到80士5.5%、67.3±9%。
     结论体外体内实验都显示丙酮酸钠对缺氧缺血脑损伤有神经保护作用
     第二部分丙酮酸钠对缺氧缺血脑损伤远期行为学的影响
     目的明确丙酮酸钠(Sodium Pyruvate, SP)能否促进新生大鼠缺氧缺血脑损伤后远期功能恢复。
     方法构建缺氧缺血(Hypoxic-ischemic, HI)动物模型,给予SP治疗。实验分为三组,假手术组、模型组和SP治疗组。HI损伤后3周进行足失误试验(Foot Fault Test, FFT),记录大鼠在5分钟内50步中右侧前肢及后肢失足次数,评价大鼠感觉运动功能。在HI造模后8周进行Morris水迷宫(Morris Water Maze, MWM)试验检测SP对大鼠空间学习记忆能力的影响。MWM试验包括隐蔽平台试验(Learning Trial) 4天和第5天的空间探索试验(Probe Trial)及可视平台试验(Cued Trial),记录大鼠的逃避潜伏期(Latency)、原平台象限停留时间(The Time Spent in the Platform Quadrant)及游泳速度(Velocity)。行为学试验后取大脑行Cresyl Violet染色观察大脑皮层(感觉运动功能)和海马(空间学习记忆能力)损伤情况。
     结果在FFT中,模型组(The Vehicle-treated Group)中大鼠右侧前、后肢失足次数明显高于假手术组(Sham Group),但SP组中失足次数明显下降,说明SP可促进脑损伤后大鼠感觉运动功能恢复。MWM隐蔽平台试验中,模型组大鼠逃避潜伏期明显高于假手术组,而SP治疗后大鼠逃避潜伏期明显被改善。空间探索试验中,模型组大鼠在原平台象限停留时间只有假手术组的一半,而SP治疗后大鼠停留时间明显升高,且三组大鼠游泳速度无明显差异,说明SP可改善脑损伤后大鼠空间学习记忆功能。可视平台试验结果三组之间无差异排除了视觉障碍对空间学习记忆影响。大鼠HI损伤后左侧存活/右侧存活的大脑皮层和海马组织分别为51%士9.9%和28.7%±7.4%,SP治疗后分别为87.2%±3.9%和77.9%士3.6%,两者相比有显著差异。
     结论SP可促进HI损伤后大鼠感觉运动功能和空间记忆功能的恢复
     第三部分丙酮酸钠在缺氧缺血脑损伤中神经保护机制的研究
     目的运用OGD细胞模型和HI动物模型,研究丙酮酸钠对缺氧缺血脑损伤神经保护作用的相关机制。
     方法分别与OGD和HI后不同时间点检测三磷酸腺苷(Adenosine Triphosphate, ATP)、活性氧自由基(Reactive Oxygen Species, ROS)、Bcl-2家族的促凋亡蛋白Bax、凋亡信号通路蛋白Cleaved Caspase-3和Caspase-3、存活信号通路蛋白P-Akt和Akt表达水平的变化,并选取OGD和HI后以上各指标有统计学差异的时间点给予SP治疗。细胞模型分为对照组、OGD组和SP治疗组,动物模型分为假手术组、模型组和SP治疗组。
     结果1.与对照组对比,OGD后ROS水平逐渐升高,呈时间依赖型,于4h开始升高有显著差异(p<0.05),24h升至最高(OGD/Ctrl=1.5±0.03, p<0.05)。SP将OGD后24h升高的ROS降低到了接近正常的水平(p<0.05)。2.和假手术组对比,HI后ROS水平于3h升至最高(p<0.05),后逐渐下降。SP将模型组HI后3h升高的ROS水平降低到了接近正常的水平(p<0.05)。3.与对照组对比,OGD后ATP水平于4h降至最低(OGD/Ctrl=0.49±0.07, p<0.05), SP将OGD后降低的ATP水平升高了约50%(p<0.05)。4.分别于HI后3h、16h给予SP治疗,SP分别将不同时间点模型组中降低的ATP水平升高约50%以上(p<0.05)。5.相比于对照组,OGD后0.5h, Bax表达水平达到最高(p<0.05),24h回到基础水平。SP将OGD后0.5h升高的Bax表达基本降到了对照组水平(p<0.05)。6.H1后3h,相比于假手术组,模型组中Bax显著升高(p<0.05),而SP治疗降低了HI后升高的Bax水平(p<0.05)。7.相比于对照组,OGD后Cleaved Caspase-3表达水平于4h逐渐升高(p<0.05),24h表达水平达到最高(p<0.05)。SP将OGD后24h升高的Bax表达水平降低约50%(p<0.05)。8.HI后24h,模型组中Cleaved Caspase-3显著升高(p<0.01),而SP治疗组中Cleaved Caspase-3水平与模型组相比降低了约50%(p<0.05)。9.相比于对照组,OGD后P-Akt表达水平先升高,于1h表达水平达到最高(p<0.01),后逐渐下降。OGD后1h,与OGD组对比,SP进一步升高了P-Akt表达水平(p<0.05)。10.HI后, P-Akt表达先升高后下降,于16小时降至假手术组的一半(p<0.05)。HI后16h,与模型组对比,SP治疗显著升高P-Akt的表达水平(p<0.05)。
     结论体内HI、体外OGD试验均显示,SP可能通过改善大脑能量代谢(ATP)、降低氧化应激水平(ROS)和阻止神经细胞死亡程序启动途径发挥缺氧缺血脑损伤的神经保护作用。
PartⅠNeuroprotective Effect of Sodium Pyruvate on Hypoxic-ischemic Brain Injury
     Objective:In this study, the protective effect of sodium pyruvate against hypoxia-ischemic brain injury was investigated in neonatal rats.
     Methods:Both in vivo (Hypoxia ischemia, HI) and in vitro (oxygen and glucose deprivation, OGD) models were established in this study.In vivo HI model employed unilateral (left/ipsilateral) carotid ligation in postnatal day 7 rats with exposure to 8% hypoxia for 2.5h. And in vitro OGD model employed primary cortical neurons on 7 DIV from neonatal rats subjected to oxygen and glucose deprivation for 2.5h. In vitro, cell death and cell viability were assessed using LDH and MTT kits respectively in OGD model. In vivo, Fluoro-Jade B (FJB) staining,2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining, cresyl violet (CV) staining were used to detect neuronal apoptosis and brain damage at different time points after HI injury.
     Results:In vitro study suggested LDH release increased and MTT levels decreased at 24 hours after OGD while SP reversed the effect in a dose dependent manner.2mM and 4mM rescued neurons from OGD induced injury to almost normal levels. In vivo study, SP at concentrations ranging from 125 to 1000 mg/kg markedly reduced hypoxic-ischemic injury to the immature brain and the maximal protection was achieved at 500 mg/kg if SP was administered at 5 min post-HI injury. Compared to the vehicle-treated group, FJB-positive neurons in the left/ipsilateral cortex at 24 h post-HI were significantly reduced by SP treatment. On brain morphology shown by cresyl violet staining, SP treatment increased the surviving brain tissues from 45.3±11.9% to 80±5.5% (cortex) and 39.2±8.7% to 67.3±9%(hippocampus).
     Conclusion:Both in vivo and in vitro studies showed SP took a neuroprotective effect on hypoxic-ischemic brain damage.
     PartⅡEffect of Sodium Pyruvate on Long-term Behavior After Hypoxic-ischemic Brain Injury
     Objective:To determine whether SP can improve long-term functional recovery after hypoxic-ischemic brain injury on neonatal rats.
     Methods:The foot-fault test was performed at 3 weeks post-HI to assess sensorimotor function. Numbers of foot-faults with right forelimb and right hind limb per 50 steps was counted within 5 min. Morris Water maze (MWM) test were performed at 8 weeks post-HI to assess memory function. The learning trials are conducted over 4 days on rats. At the end of learning trials, a probe trial and a cued trial are given on day 5. Latency, the time spent in the platform quadrant and velocity were recorded. After MWM, tissue survival in the cortex and the hippocampus was quantified using cresyl violet staining.
     Results:In comparison to the sham group, rats in the vehicle-treated group showed significantly increased foot fault in right side at 3 weeks post HI. SP treatment resulted in a profound improvement in both right forelimb and hind limb foot faults. The latency in the vehicle-treated group was significantly increased, whereas SP treatment significantly reduced the latency. The time spent in the platform quadrant was reduced by 2 times in the vehicle-treated group (p<0.05) and SP treatment significantly increased the time spent in the platform quadrant (p<0.05). There is no significant difference in velocity among groups in the water maze test (p>0.05). The long-term effect of SP treatment significantly increased the cortical survival from 51%±9.9% in vehicle-treated to 87.2%±3.9% in SP-treated and the hippocampus survival from 28.7%±7.4% in vehicle-treated to 77.9%±3.6% in SP-treated
     Conclusion:SP improved sensorimotor and memory functions on rats subject to HI insult.
     PartⅢThe Mechanism of Neuroprotective Effects of Sodium Pyruvate on Hypoxic-ischemic Brain Injury
     Objective:To study the relevant mechanism of neuroprotective effects of sodium pyruvate on Hypoxic-ischemic Brain Injury
     Methods:ATP and ROS were measured to evaluate cerebral metabolism and oxidative stress both in vivo and in vitro. Bax, a pro-apoptotic signal in the outer mitochondrial membrane for immature neurons and cleaved Caspase-3, an apoptosis signal were detected both in vivo and in vitro. The expression of cleaved Caspase-3, total Caspase-3, phosphoralated Akt, total Akt, Bax were detected by western blot. A key survival signaling kinase, phosphoralated Akt was also tested.
     Results:Both in vivo and in vitro studies demonstrated that hypoxia-ischemic induced brain injury result in ROS accumulation and ATP depletion, and also increased Bax and cleaved caspase-3 expression, and decreased phosphoralated Akt. Sodium pyruvate attenuated hypoxia-ischemic induced brain injury by preventing an increase in intracellular reactive oxygen species (ROS) levels and maintaining ATP levels. Meanwhile, sodium pyruvate decreased Bax and cleaved caspase-3 expression, while activating P-Akt expression.
     Conclusion:Both in vivo and in vitro studies demonstrated SP protected neonatal brain from hypoxic-ischemic injury through maintaining cerebral metabolism and mitochondrial function.
引文
1. Finer NN, Robertson CM, Richards RT, Pinnell LE, Peters KL. Hypoxic-ischemic encephalopathy in term neonates:perinatal factors and outcome. J Pediatr.1981,98(1):112-7.
    2. Costello AM, Manandhar DS. Perinatal asphyxia in less developed countries. Arch Dis Child Fetal Neonatal Ed.1994,71(1):F1-3.
    3. Rivkees SA, Wendler CC. Adverse and protective influences of adenosine on the newborn and embryo:implications for preterm white matter injury and embryo protection. Pediatr Res. 2011,69(4):271-8.
    4. Hagberg H, Mallard C, Rousset CI, Xiaoyang Wang. Apoptotic mechanisms in the immature brain:involvement of mitochondria. J Child Neurol.2009,24(9):1141-6. Epub 2009 Jul 2.
    5. Donna M. Ferriero. Neonatal Brain Injury. N Engl J Med 2004,351:1985-1995
    6. Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med.2006,40(3):388-97.
    7. Yang ZH, Sun K, Yan ZH, Suo WH, Fu GH, Lu Y. Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1 alpha expression and inhibition of apoptotic cascade. Chem Biol Interact.2010,183(1):165-71.
    8. Xiang J, Tang YP, Zhou ZY, Wu P, Wang Z, Mori M, Cai DF. Apocynum venetum leaf extract protects rat cortical neurons from injury induced by oxygen and glucose deprivation in vitro. Can J Physiol Pharmacol.2010,88(9):907-17.
    9. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia:life and death struggle in the penumbra. Journal of Neuropathology & Experimental Neurology.2003,62 (4):329-339.
    10. O'Donnell-Tormey J, Nathan CF, Lanks K, DeBoer CJ, de la Harpe J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med.1987,165(2):500-14.
    11. Zhou D, Qian J, Chang H, Xi B, Sun RP. Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr.2011 May 21.
    12. Lee YJ, Kang IJ, Bunger R, Kang YH. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res.2003 Sep; 66(2):91-101.
    13. Moro N, Sutton RL. Beneficial effects of sodium or ethyl pyruvate after traumatic brain injury in the rat. Exp Neurol 2010,225:391-401.
    14. Fukushima M, Lee SM, Moro N, Hovda DA, Sutton RL. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury. J Neurotrauma 2009, 26:1095-1110.
    15. Lee JY, Kim YH, Koh JY. Protection by pyruvate against transient forebrain ischemia in rats. J Neurosci 2001,21:RC171.
    16. Moro N, Ghavim SS, Hovda DA, Sutton RL. Delayed sodium pyruvate treatment improves working memory following experimental traumatic brain injury. Neurosci Lett.2011, 491:158-62.
    17. Zhou D, Qian J, Chang H, Xi B, Sun RP. Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr,2011.
    18. Yi JS, Kim TY, Kyu Kim D, Koh JY. Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of transient and permanent focal cerebral ischemia. Neurobiol Dis.2007,26:94-104.
    19. Zhong J, Zhao L, Du Y, Wei G, Yao WG, Lee WH. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia-induced brain damage and improved behavior recovery of immature rats. Neurol Res.2009,31(5):483-9.
    20. Rice JE Ⅲ, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol,1981,9:131-141.
    21. Wei X, et al. IFATS Collection:The Conditioned Media of Adipose Stromal Cells Protect Against Hypoxia-Ischemia-Induced Brain Damage in Neonatal Rats. Stem cell,2009; 27:478-488.
    22. Qindong Shi, Pengbo Zhang, Junfeng Zhang, et al. Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neuroscience Letters,2009: 220-225
    23. Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011,69:743-58.
    24. Lipton P:Ischemic cell death in brain neurons. Physiol Rev 1999,79:1431-1568
    25. Martin A, Rojas S, Perez-Asensio F, Planas AM. Transient benefits but lack of protection by sodium pyruvate after 2-hour middle cerebral artery occlusion in the rat. Brain Res 2009, 1272:45-51.
    26. Vannucci RC, Vannucci SJ:A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1997,835:234-249
    27. Romijn HJ, Hofman MA, Gramsbergen A:At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 1991, 26:61-67
    28. Hagberg H, Bona E, Gilland E, et al:Hypoxia-ischemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl 1997,422:85-88
    29. Towfighi J, Zec N, Yager J, Housman C, Vannucci RC:Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia-ischemia. A light microscopic study. Acta Neuropathol 1995,90:375-386.
    30. Kato H, Kogure K:Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol Neurobiol 1999,19:93-108.
    31. Towfighi J, Mauger D, Vannucci RC et al. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-jschemia:a light microscopic study. Brain Res Dev Brain Res,1997,100(2):149-160.
    32. Vento M, Asensi M, Sastre Lloret A, Garcia-Sala F, Vina J. Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr,2003,142(3):240-246.
    33. Fukushima M, Lee SM, Moro N, Hovda DA, Sutton RL. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury. J Neurotrauma.2009, 26:1095-1110.
    34. Mazzio E, Soliman KF. Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett.2003,337:77-80. 35. Zhou D, Qian J, Chang H, Xi B, Sun RP. Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr.2012,171(1):103-9
    36. Jagtap JC, Chandele A, Chopde BA, Shastry P. Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. Journal of Chemical Neuroanatomy 2003,26:109-118.
    37. Jung-Bin Kim, Young-Mi Yu, Seung-Woo Kim, Ja-Kyeong Lee. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Research.2005,1060:188-192
    1. Mulligan JC, Painter MJ, O'Donoghue PA, et al., Neonatal asphyxia. Ⅱ. Neonatal mortality and long-term sequelae. J Pediatrics,1980,96:903-907
    2. Inder TE. Pediatrics:predicting outcomes after perinatal brain injury. Nat Rev Neurol.2011, 7(10):544-5.
    3. Pasternak JF. Hypoxic-ischemic brain damage in the term infant. Pediatric Clinics of North America,1993,40:1061-1072
    4. Cioni G, D'Acunto G, Guzzetta A. Perinatal brain damage in children:neuroplasticity, early intervention, and molecular mechanisms of recovery. Prog Brain Res.2011,189:139-54.
    5. Johnston, B. M., et al., Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. Journal of Clinical Investigation,1996,97(2):300-308
    6. Ferriero DM. Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci.2001, 23(3):198-202.
    7. Sheldon RA, Aminoff A, Lee CL, et al. Hypoxic preconditioning reverses protection after neonatal hypoxia-ischemia in glutathione peroxidase transgenic murine brain. Pediatr Res.2007, 61(6):666-70.
    8. Martinez-Palma L, Pehar M, Cassina P, et al. Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors. Neurotox Res.2003,5(6):399-406.
    9. Arteni NS, Salgueiro J, Torres I, et al. Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res,2003,973(2):171-178
    10. Hattori K, Lee H, Hum PD, et al:Cognitive deficits after focal cerebral ischemia in mice. Stroke.2000,31:1939-1944.
    11. Ikeda T, Xia XY, Xia YX, et al:Glial cell line-derived neurotrophic factor pro-tects against ischemia/hypoxia-induced brain injury in neonatal rat. Acta Neu-ropathol (Berl).2000, 100:161-167.
    12. Balduini W, De Angelis V, Mazzoni E, et al. Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res.2000,859:318-325
    13. Das, UN. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med. Sci. Monit.2006,12:79-84.
    14. Desagher, S., Glowinski, J., Premont, J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci.1997,17,9060-9067
    15. Folbergrova J, Zhao Q, Katsura K, et al. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl. Acad. Sci. U.S.A.1995,92:5057-5061
    16. Millar LP, Oldendorf WH. Regional kinetic constants for blood—brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J. Neurochem.1986,46: 1412-1416
    17. Lee JY, Kim YH, Koh JY et al.. Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci.2001,171:1-6.
    18. Wei X, et al. IF ATS Collection:The Conditioned Media of Adipose Stromal Cells Protect Against Hypoxia-Ischemia-Induced Brain Damage in Neonatal Rats. Stem cell,2009; 27:478-488
    19. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol.1981,9:131-141.
    20. John B. Redell. Expression of the prodynorphin gene after experimental brain injury and its role in behavioral dysfunction. Exp. Biol. Med.2003; 228:261-269
    21. Wang XL, Zhao YS, Yang YJ, et al. Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res.2008,1222:87-94.
    22. Charles V Voorhees. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nature Protocol,2006; 848-858
    23. Sircar R, Basak A, Sircar D, et al. Effects of gamma-hydroxybutyric acid on spatial learning and memory in adolescent and adult female rats. Pharmacol Biochem Behav.2010, 96(2):187-93.
    24. Daval J.L., Pourie G., Grojean S., et al. Neonatal hypoxia triggers transient apoptosis followed by neurogenesis in the rat CA1 hippocampus. Pediatr Res.2004,55:561-567
    25. Grafe, M.R. Developmental changes in the sensitivity of the neonatal rat brain to hypoxic/ischemic injury. Brain Res.1994,653:161-166.
    26. Bona E., Johansson B.B., Hagberg H. Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res.1997,42:678-683.
    27. Vannucci RC, Vannucci S J:A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci.1997,835:234-249
    28. Drobyshevsky A, Luo K, Derrick M, et al. Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants. J Neurosci.2012,32(16):5500-9.
    29. Germand A, Caffo M, Angileri FF, et al. NMDA receptor antagonist felbamate reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma.2007,24(4):732-44.
    30. Watson RE, Desesso JM, Hurtt ME, et al. Postnatal growth and morphological development of the brain:a species comparison. Birth Defects Res B Dev Reprod Toxicol.2006,77(5):471-84.
    31. John B. Redell. Expression of the prodynorphin gene after experimental brain injury and its role in behavioral dysfunction. Exp Biol Med.2003,228:261-269
    32. Chunhua Liu, Niyang Lin, Beiyan Wu, Ye Qiu. Neuroprotective effect of memantine combined with topiramate in hypoxic-ischemic brain injury. Brain research.2009, 1282:173-182
    33. Chen W, Ma Q, Suzuki H, Hartman R, Tang J, Zhang JH. Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke 2011,42(3):764-769
    34. Zhong J, Zhao L, Du Y, et al. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia-induced brain damage and improved behavior recovery of immature rats. Neurol Res.2009,31(5):483-9
    35. Kumral A, Uysal N, Tugyan K, Sonmez A, Yilmaz O, Gokmen N, Kiray M, Genc S, Duman N, Koroglu TF, Ozkan H, Genc K. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behavioural Brain Research. 2004,153:77-86
    36. Charles V Voorhees. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nature Protocol,2006; 848-858
    37. Chen T, Qian YZ, Di X, et al. Lactate/glucose dynamics after rat fluid percussion brain injury. J Neurotrauma.2000,17:135-142.
    38. Chen T, Qian YZ, Rice A, et al. Brain lactate uptake increases at the site of impact after traumatic brain injury. Brain Res.2000b,861:281-287
    39. Holloway R, Zhou Z, Harvey HB, et al. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir.2007,149:919-927.
    40. Levasseur JE, Alessandri B, Reinert M, et al. Lactate, not glucose, up-regulates mitochondrial oxygen consumption both in sham and lateral fluid percussed rat brains. Neurosurgery.2006,59:1122-1130.
    41. Schurr A, Payne RS, Miller JJ, et al. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res.2001,895:268-272.
    1. Green DR, Reed JC. Mitochondria and apoptosis. Science.1998,281:1309-1312.
    2. Zhu C, Qiu L, Wang X, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. Journal of Neurochemistry.2003,86 (2):306-17
    3. Halestrap AP, Brennerb C. The ademine nucleotide translocase:a central component of the mitochondrial permeability transition pore and key player in cell death. Curt Med Chem.2003, 10(16):1507-1525
    4. Robertson CL, Soane L, Siegel ZT, et al. The potential role of mitochondria in pediatric traumatic brain injury. Dev. Neurosci.2006,28:432-446.
    5. Kochanek AR, Kline AE, Gao WM, et al. Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev. Neurosci.2006,28:410-419
    6. Zhang L, Zhang S. Modulating Bcl-2 family proteins and caspase-3 in induction of apoptosis by paeoniflorin in human cervical cancer cells. Phytother Res.2011,25(10):1551-7.
    7. Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family protein, connects the death receptor and mitochondria apoptosis pathways. Cell Res.2000,10(3):161-7.
    8. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell.1998,94:491-501
    9. Martin A, Rojas S, Perez-Asensio F, et al. Transient benefits but lack of protection by sodium pyruvate after 2-hour middle cerebral artery occlusion in the rat. Brain Res.2009,1272:45-51.
    10. Moro N, Sutton RL. Beneficial effects of sodium or ethyl pyruvate after traumatic brain injury in the rat. Exp Neurol.2010,225:391-401.
    11. Fukushima M, Lee SM, Moro N, et al. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury. J Neurotrauma.2009,26:1095-1110.
    12. Lee JY, Kim YH, Koh JY. Protection by pyruvate against transient forebrain ischemia in rats. J Neurosci.2001,21:RC 171.
    13. Moro N, Ghavim SS, Hovda DA, Sutton RL. Delayed sodium pyruvate treatment improves working memory following experimental traumatic brain injury. Neurosci Lett.2011, 491:158-162.
    14. Zhou D, Qian J, Chang H, Xi B, et al. Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr.2012,171(1):103-9.
    15. Yi JS, Kim TY, Kyu Kim D, Koh JY. Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of transient and permanent focal cerebral ischemia. Neurobiol Dis.2007,26:94-104.
    16. Desagher S, Glowinski J, Premont J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci.1997,17:9060-9067.
    17. Mazzio E, Soliman KF. Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett.2003,337:77-80.
    18. Lee YJ, Kang IJ, Bunger R, Kang YH. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res,2003,66:91-101.
    19. Zhong J, Zhao L, Du Y, Wei G, Yao WG, Lee WH. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia-induced brain damage and improved behavior recovery of immature rats. Neurol Res.2009,31(5):483-9.
    20. Rice JE Ⅲ, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol,1981,9:131-141.
    21. Wei X, et al. IFATS Collection:The Conditioned Media of Adipose Stromal Cells Protect Against Hypoxia-Ischemia-Induced Brain Damage in Neonatal Rats. Stem cell,2009; 27:478-488.
    22. Shen H, Hu X, Liu C, Wang S, Zhang W, Gao H, Stetler RA, Gao Y, Chen J. Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiol Dis.2010,37:711-722.
    23. Mattson MP, Kroemer G. Mitochondria in cell death:novel targets for neuroproteetion and cardioprotectinn. Trends Mot Med.2003,9(5):1195-205
    24. Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrialmetabolism. Biochim BiophysActa.1989, 973 (3):355-382.
    25. Zhu C, Wang X, Cheng X, et al. Post-ischemic hypothermia-induced tissue p rotection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. Brain Res.2004,996(1): 67-75.
    26. Zhu C, Qiu L, Wang X, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem.2003,86 (2):306-17
    27. Gibson ME, Han BH, Choi J, et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia:evidence for distinct apoptosis pathways. Mol Med.2001,7: 644-655.
    28. Polster BM, Robertson CL, Bucci CJ, et al. Postnatal brain development and neural cell differentiation modulate mitochondrialBax and BH3 pep tide-induced cytochrome c release. Cell Death Differ.2003,10(3):365-70
    29. Wang X, Carlsson Y, Basso E, et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci,2009,29 (8):2588296.
    30. Ferrer J, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemla:life and death struggle in the penumbra. J Neuropathol Exp Neurol.2003, 62(4):329-339.
    31. Bustamante J, Lores-Arnaiz S, Tallis S, et al. Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy. Mol Cell Biochem.2011, 354(1-2):231-40.
    32. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem. 1998,273:7770-7775.
    33. Rodrigues CM, Sola S, Sharpe JC, et al. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry.2003, 42(10):3070-80
    34. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol.1998, 143:217-224.
    35. Jurgensmeier JM, Xie Z, Deveraux Q, et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A.1998,95(9):4997-5002.
    36. Linseman DA, Phelps RA, Bouchard RJ, Le SS, Laessig TA, McClure ML, Heidenreich KA. Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci.2002,22:9287-9297.
    37. Matsuzaki H, Tamatani M, Mitsuda N, Namikawa K, Kiyama H, Miyake S, Tohyama M. Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J Neurochem.1999,73:2037-2046.
    38. Kroemer, G et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.2009,16:3-11.
    39. Jost, P J. et al. XIAP discriminates between type Ⅰ and type Ⅱ FAS-induced apoptosis. Nature.2009,460:1035-1039.
    40. Wajant, H. The Fas signaling pathway:more than a paradigm. Science.2002, 296:1635-1636.
    41. Bredesen, D. E., Mehlen, P., Rabizadeh, S. Receptors that mediate cellular dependence. Cell Death Differ.2005,12:1031-1043.
    42. Legos, J. J. et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res.2001,892:70-77.
    43. Xu, Z. et al. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci.2006, 79:1895-1905.
    44. Wang, Q., Zhang, Q. G., Wu, D. N., Yin, X. H.& Zhang, G. Y. Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway. Acta Pharmacol. Sin.2007,28:19-27.
    45. Luo, J. M. et al. PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur. J. Neurosci.2007, 26:828-842.
    46. Luo X,Budihardjo I,Zou H,et al.Bid,a Bcl-2 interacting protein, mediates cytochrome c release fiom mitochondria in response to activation of cell surface death receptors.Cell,1998, 94(4):481-490.
    47. Liu J, Weiss A, Durrant D, et al. The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis.2004,9(5):533-41.
    48. Li H,Zhu H,Xu C,et al.Cleavage of BID by caspase8mediates the mitochondrial damage in the Fas pathway of apoptosis.Cell,1998,94(4):491-501.
    49. Pataer A, Fang B, Yu R,et al. Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res,2000,60:788-792.
    50. Ruffolo SC, Shore GC. Bcl-2 selectively interacts with the BIDinduced open conformer of BAK, inhibiting BAK autooligomerization. J Biol Chem 2003,278:25039-25045.
    51. Kondo S, Shinomura Y, Miyazaki Y,et al. Mutations of the bak gene in human gastric and
    colorectal cancers. Cancer Res 2000,60:4328-4330.
    52. Zhou XM, Wong BC, Fan XM,et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through upregulation of bax and bak. Carcinogenesis 2001, 22:1393-1397.
    53. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell.2000,101:389-399.
    54. Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 2009,20:4871-4884.
    1. Rossi, D. J., Brady, J. D., Mohr, C. Astrocyte metabolism and signaling during brain ischemia. Nature Neurosci.2007,10:1377-1386.
    2. Mattson, M. P.& Kroemer, G. Mitochondria in cell death:novel targets for neuroprotection and cardioprotection. Trends Mol. Med.2003,9:196-205.
    3. Kroemer, G. et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.2009,16:3-11.
    4. De Vos KJ, Allan VJ, Grierson AJ, et al. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol.2005,15(7):678-83.
    5. Walter L, Miyoshi H, Leverve X, et al. Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report. Free Radic Res.2002,36(4):405-12.
    6. De Giorgi F, Lartigue L, Ichas F. Electrical coupling and plasticity of the mitochondrial network. Cell Calcium.2000,28(5-6):365-70.
    7. Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med,2000,36: 483-506.
    8. Kuzminova AE, Zhuravlyova AV, Vyssokikh MYu, et al. The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP. FEBS Lett.1998, 434(3):313-6.
    9. Legos JJ, et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res.2001,892,70-77.
    10. Higgins GC, Beart PM, Shin YS, et al. Oxidative stress:emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis.2010,20 (2):S453-73.
    11. Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res.2010,88(1):23-45.
    12. Jost, P J. et al. XIAP discriminates between type Ⅰ and type Ⅱ FAS-induced apoptosis. Nature.2009,460:1035-1039.
    13. Wajant, H. The Fas signaling pathway:more than a paradigm. Science.2002, 296:1635-1636.
    14. Bredesen, D. E., Mehlen, P., Rabizadeh, S. Receptors that mediate cellular dependence. Cell Death Differ.2005,12:1031-1043.
    15. Kroemer, G., Galluzzi, L.& Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.2007,87:99-163.
    16. Oberst, A., Bender, C., Green, D. R. Living with death:the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ.2008,15:1139-1146.
    17. Abdelwahid, E. et al. Mitochondrial disruption in Drosophila apoptosis. Dev. Cell.2007, 12:793-806.
    18. Legos, J. J. et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res.2001,892:70-77.
    19. Xu, Z. et al. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci.2006, 79:1895-1905.
    20. Kikuchi, M., Tenneti, L.& Lipton, S. A. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J. Neurosci.2000,20:5037-5044.
    21. Mori, T. et al. Mitogen-activated protein kinase inhibition in traumatic brain injury:in vitro and in vivo effects. J. Cereb. Blood Flow Metab.2002,22:444-452.
    22. Chiang, C. W. et al. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood. 2001,97:289-1297.
    23. Xin, M.& Deng, X. Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J. Biol. Chem.2006,281:18859-18867.
    24. Jin, H. O. et al. Up-regulation of Bak and Bim via JNK downstream pathway in the response to nitric oxide in human glioblastoma cells. J. Cell Physiol.2006,206,477-^86.
    25. Lei, K.& Davis, R. J. JNK phosphorylation of Bimrelated members of the Bcl2 family induces Baxdependent apoptosis. Proc. Natl Acad. Sci. USA.2003,100:2432-2437.
    26. Wang, Q., Zhang, Q. G, Wu, D. N., Yin, X. H.& Zhang, G Y. Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway. Acta Pharmacol. Sin.2007,28:19-27.
    27. Luo, J. M. et al. PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur. J. Neurosci.2007, 26:828-842.
    28. Kroemer, G., Galluzzi, L., Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.2007,87:99-163.
    29. Zhao, H., Yenari, M. A., Cheng, D., Sapolsky, R. M., et al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J. Neurochem.2003,85:1026-1036.
    30. Wiessner, C. et al. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neurosci. Lett. 1999,268:119-122.
    31. Wang X, Carlsson Y, Basso E, et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci,2009,29 (8):2588296.
    32. Polster BM, Robertson CL, Bucci CJ, et al. Postnatal brain development and neural cell differentiation modulate mitochondrialBax and BH3 pep tide-induced cytochrome c release. Cell Death Differ,2003,10 (3):365270.
    33. GibsonME, Han BH, Choi J, et al. BAX contributes to apop totic-like death following neonatal hypoxia-ischemia:evidence for distinct apop tosis pathways. MolMed,2001,7 (9): 644255.
    34. Itvai Z, Milliman C, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog. Bax, that accelerates programmed cell death. Cell,1993,74:609.
    35. Pataer A, Fang B, Yu R,et al. Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res,2000,60:788-792.
    36. Ruffolo SC, Shore GC. Bcl-2 selectively interacts with the BIDinduced open conformer of BAK, inhibiting BAK autooligomerization. J Biol Chem 2003,278:25039-25045.
    37. Kondo S, Shinomura Y, Miyazaki Y,et al. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 2000,60:4328-4330.
    38. Zhou XM, Wong BC, Fan XM,et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through upregulation of bax and bak. Carcinogenesis 2001, 22:1393-1397.
    39. Kirwana T, Machey MR, Perkis G, et al. Bid, Bax, and Lipids Cooperate to Form Super molecular Openings in the Outer Mitochondrial Membrane. Cell.2002,111 (3):331-342
    40. Saito M, Korsmeyer SJ, Schlesinger PH. Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol.2000,2(8):553-555
    41. Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling:roles of Bid and XIAP. Cell Death Differ.2012,19(1):42-50.
    42. Gross A,Yin X M,Wang K,et al.Caspase cleaved BID targets mitochondria and is required for cytochrome c release,while BCL-XL prevents this release but not tunor necrosis factor-R1/Fas death.J Biol Chem,1999,274(2):1156-1163.
    43. Li H,Zhu H,Xu C,et al.Cleavage of BID by caspase8mediates the mitochondrial damage in the Fas pathway of apoptosis.Cell,1998,94(4):491-501.
    44. Crompton M.The mitochondrial permeability transitions pore. Bioehem Soc Symp,1999, 66:157-179.
    45. Sayeed I, Parvez S, Wali B, et al. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res.2009,1263:165-73.
    46. De Marcos LC, Trezeguet V, Dianoux AC, et al. The human mitochondrial ADP/ATP carriers:kinetic properties and biogenesis of wild—type and mutant proteins in the yeast S cerevisiae. Biochemistry,2002,41 (48):114412-14420.
    47. Kokoszka JE, Waymire KG, Levy SE, et al. The ADP/ATP translocator is not essential for the mitochondrial permeability trarmidon pore. Nature.2004,427(6973):1461-465.
    48. Martin LJ. Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci.2012,107:355-415.
    49. Mantel C, Messina-Graham SV, Broxmeyer HE. Superoxide flashes, reactive oxygen species, and the mitochondrial permeability transition pore:potential implications for hematopoietic stem cell function. Curr Opin Hematol.2011,18(4):208-13.
    50. Aniya Y, Imaizumi N. Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab Rev.2011,43(2):292-9
    51. Shoshan BV, Gineel D, The voltage-dependent anion channel:characterization, modulation and role in mitochondrial function in celllife and death. Cell Biochem Biophys.2003, 39(3):279-292.
    52. Ghibelli L, Diederich M. Multistep and multitask Bax activation. Mitochondrion.2010, 10(6):604-13.
    53. Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr.2008,40(3):199-205.
    54. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev.2007,87(1):99-163.
    55. Li K, Li Y, Shelton JM, et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell.2000,101:389-399.
    56. Hao Z, Duncan GS, Chang CC, et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell. 2005,121:579-591.
    57. Borutaite, V., Brown, G C. Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J. Biol. Chem. 2007,282:31124-31130.
    58. Pan, Z., Voehringer, D. W.& Meyn, R. E. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ.1999,6:683-688.
    59. Ling Q, Xu X, Wei X, et al. Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c.J Exp Clin Cancer Res.2011,30:66-70.
    60. Eckelman BP, Salvesen GS, Scott F L. Human inhibitor of apoptosis proteins:why XIAP is the black sheep of the family. EMBO Rep.2006,7:988-994.
    61. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell.2001,8:613-621.
    62. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell.2000,102:43-53.
    63. Qin S, Yang C, Li S, et al. Smac:Its role in apoptosis induction and use in lung cancer diagnosis and treatment. Cancer Lett.2012,318(1):9-13.
    64. Martinou JC, Youle RJ. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics. Dev Cell.2011,21(1):92-101.
    65. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J.2003,22:4385-4399.
    66. Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 2009,20:4871-4884.
    67. Youle, R. J. Cell biology. Cellular demolition and the rules of engagement. Science.2007, 315:776-777.
    68. Tait SW, Green DR. Mitochondria and cell death:outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol.2010, 11(9):621-32.
    69. Galluzzi L, Blomgren K, Kroemer G Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci.2009,10(7):481-94.
    70. Renault TT, Manon S. Bax:Addressed to kill. Biochimie.2011,93(9):1379-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700