用户名: 密码: 验证码:
LDH型核壳结构磁性纳米载药粒子的组装及其体外释放性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制性能优良的磁靶向载药粒子是当前磁靶向药物传输领域的研究热点。无机层状材料水滑石(LDH)作为近年来倍受关注的分子储库和药物传输基质,已经成为磁靶向载药粒子的优选药物载体。本论文以LDH材料为药物载体,采用共沉淀自组装法和焙烧复原法制备了一系列LDH型核壳结构磁性纳米载药粒子。用XRD、FT-IR、ICP、CHN、TG-DTA、SEM、TEM/HRTEM、XPS、VSM及UV-Vis等表征方法研究了磁性载药粒子的晶体结构、组成、热稳定性、形貌、磁性和体外释放性能。探讨了LDH型核壳结构磁性载药粒子的形成机理。揭示了包覆层药物插层水滑石的晶粒尺寸、磁性载药粒子的包覆层厚度与磁性、外加磁场强度和施加方式与LDH型核壳结构磁性载药粒子的释放行为的内在联系,实现了药物的可控释放。模拟人体环境循环介质中磁靶向定位药物释放实验表明,LDH型核壳结构磁性载药粒子具有较好的磁靶向定位性能和药物缓控释性能,在磁靶向药物传输系统中具有潜在的应用价值。论文主要结果如下:
     (1)生物相容性磁性纳米粒的制备。采用LDH层状前体法制备了粒径均匀的镁铁氧体纳米粒子,其粒径约为50 nm。采用溶剂热法制备了四氧化三铁(Fe3O4)纳米粒子,其粒径可在100-430 nm范围内调控。
     (2)采用一步共沉淀法在镁铁氧体纳米粒子表面包覆双氯酚酸插层水滑石(DIC-LDH)组装得到了MgFe2O4@DIC-LDH磁性载药粒子。MgFe2O4@DIC-LDH具有清晰的核壳结构,粒子大小为90-180 nm,其壳层厚度为20-50 nm,核大小为50-120 nm。壳层DIC-LDH相不再具有单纯DIC-LDH的层片状形貌,其粒径变小并以密堆的形式包覆在镁铁氧体纳米粒子的表面。ICP和CHN表明其载药量为43.9 wt%,磁核含量为6.34wt%。MgFe2O4@DIC-LDH的比饱和磁化强度为5.54 emu/g。
     体外释放研究发现MgFe2O4@DIC-LDH具有明显的缓释性能。在无外加磁场时,其释放速率比单纯DIC-LDH快,归因于其具有较小的微晶尺寸(D110:14.4 nm);施加1500 G磁场后,其释放速率急剧下降,归因于磁性载药粒子磁致团聚引起药物扩散路径变长、扩散阻力变大。动力学拟合发现MgFe2O4@DIC-LDH的释放行为符合modified Freundlich模型,其释放机理是基于离子交换的多相扩散。结合释放过程样品形貌的变化,其释放过程包括药物在LDH层间的层间粒内扩散、药物在包覆层LDH微晶粒子间的粒间扩散和药物在团聚的磁性载药粒子间的粒间扩散。
     (3)通过调变镁铁氧体的含量,采用共沉淀法在镁铁氧体纳米粒子表面包覆布洛芬插层水滑石(IBU-LDH)成功组装了系列具有不同磁核含量的磁性纳米载药粒子MgFe204@IBU-LDH。MgFe2O4@IBU-LDH粒径为90-180 nm,具有清晰的核壳结构和较强的磁性(4.52-8.30 emu/g)。随着磁核含量的增大(6.61-18.69 wt%),,磁性载药粒子包覆层中的IBU-LDH的层间距和载药量均减小,归因于LDH层板电荷密度的减小和磁核含量的增大。同时,包覆层IBU-LDH的微晶尺寸和包覆层厚度逐渐减小,说明磁核的加入对LDH微晶的生长具有抑制作用。
     基于上述结果,结合磁性载药粒子的XPS Ar+溅射和镁铁氧体纳米粒子的Zeta电位分析,发现MgFe2O4@IBU-LDH的形成涉及到Al(OH)3、Mg(OH)2和LDH在镁铁氧体纳米粒子表面的沉淀-溶解-沉淀-扩散机制,LDH的层板可能与磁核以Al-O-Fe的形式相互连接,最终籍LDH纳米晶粒子-粒子间的相互作用聚集而形成完好的核-壳结构。该机理可拓展到多种相似药物的LDH型磁性载药粒子体系,具有一定的普适性。
     体外释放研究发现MgFe2O4@IBU-LDH磁性纳米载药粒子具有明显的缓释性能。无外加磁场时,MgFe2O4@IBU-LDH的药物释放速率随着磁核含量的增大而增大,归因于包覆层粒子微晶尺寸和包覆层厚度的减小;施加外加磁场时,MgFe2O4@IBU-LDH的药物释放速率随着磁核含量的增大和磁场强度的增强而减小,归因于其磁致团聚程度增大而导致的药物释放路径的变长和扩散阻力的变大。动力学拟合结果表明MgFe2O4@IBU-LDH的药物释放机理是基于离子交换的多相扩散。可见,通过调变磁核含量调控磁性纳米载药粒子壳层LDH的微晶尺寸、包覆层厚度和磁性大小,能够实现调控磁性纳米载药粒子药物释放速率的目的。同时,调变外加磁场强度也是LDH型磁性纳米载药粒子药物释放速率的方便调控因素。
     (4)根据LDH的结构记忆效应,首先在溶剂热法制备的Fe3O4纳米粒子表面包覆硝酸根插层LDH,焙烧得到核壳结构的磁性纳米复合氧化物,然后采用复原法将去氧氟尿苷(DFUR)引入到磁性粒子中,在Fe3O4表面包覆去氧氟尿苷插层LDH (DFUR-LDH),从而组装得到Fe3O4@DFUR-LDH磁性纳米载药粒子。Fe3O4@DFUR-LDH具有规整的核壳结构和较强的磁性,其粒径约为300 nm,核层是粒径为200 nm的Fe304,壳层是堆积较为松散的约为50 nm厚的DFUR-LDH相,明显区别于单纯DFUR-LDH的层片粒子紧密交联的形貌特征。Fe3O4@DFUR-LDH的载药量为9.73 wt%,磁核含量为44.1 wt%。比饱和磁化强度为17.4emu/g,具有较好的磁响应性能。
     体外释放研究发现,Fe3O4@DFUR-LDH具有明显的缓释性能。在无外加磁场时,其释放速率比纯相DFUR-LDH快,归因于包覆层DFUR-LDH纳米粒子松散堆积形貌所引起相对较小的药物扩散阻力;施加1500 G磁场后,其释放速率急剧下降,这是由于磁性载药粒子磁致团聚引起的药物扩散路径变长、扩散阻力变大所致。动力学拟合表明,Fe3O4@DFUR-LDH的释放行为符合First-order和modified Freundlich模型,其释放机理涉及溶蚀和基于离子交换的多相扩散过程。
     (5)通过施加间歇性外加磁场,实现了LDH型核壳结构磁性纳米载药粒子的准脉冲释放。模拟人体环境循环介质中磁靶向药物定位释放研究表明,Fe3O4@DFUR-LDH磁性纳米载药粒子可在外加磁场的引导下定位聚集到指定部位,并能够缓慢释放出药物。外加磁场强度越大,其磁滞留量越高;释放介质的流速越大,距磁场距离越远,其磁致滞留量越小,药物释放速率越快。这些结果表明LDH型核壳结构磁性纳米载药粒子在磁靶向药物传输系统中具有潜在的应用前景。
The preparation of magnetic targeting drug-carried nanoparticles is the most important research area in magnetic drug targeting delivery system. As recently pointed materials used for molecular container and drug delivery, the layered double hydroxides (LDH) is considered as a novel candidate in magnetic targeting drug carriers. In the present study, a series of core-shell structural magnetic nanoparticles (MFe2O4@drug-LDH) based on drug-intercalated LDH coated on MgFe2O4 or Fe3O4 nanoparticles are fabricated via a one-step coprecipitation and a calcination-reconstruction method. The crystal structure, composition, thermal property, morphology, magnetic properties and in vitro drug release behaviors are systematically investigated by using XRD, FT-IR, ICP, CHN, TG-DTA, SEM, TEM, XPS, VSM and UV-vis analyses. The formation mechanism of the MFe2O4@drug-LDH nanoparticles fabricated by a one-step coprecipitation method was revealed. The inherent interrelation between the release behavior of MFe2O4@drug-LDH nanoparticles and its magnetism, the crystallite size and the thickness of the coated drug-LDH crystallites, and the external magnetic field has been studied in detail. The drug release rate of the MFe2O4@drug-LDH nanoparticles can be controlled by tuning the crystallite size and thickness of the coated drug-LDH, the content of the magnetic core and the external magnetic field strength. The simulated magnetic drug targeting results show that the MFe2O4@drug-LDH nanoparticles possessing sustained release properties can be easily guided to a desired site, indicating the potential application of MFe2O4@drug-LDH nanoparticles in magnetic drug targeting delivery system. The detailed results are shown as follows.
     (1) Biocompatible magnetic nanoparticles:The MgFe2O4 magnetic nanoparticles with diameter of-50 nm were synthesized by the LDH layered precursor method. The monodispersed Fe3O4 nanoparticles were prepared by the solvothermal method and their particle sizes can be tuning in the range of 100-430 nm.
     (2) The MgFe2O4@DIC-LDH magnetic nanoparticles were synthesized by coating the Diclofenac (DIC) intercalated MgAl-LDH (DIC-LDH) on the surface of the MgFe2O4 nanoparticles via a one step coprecipitation method. The MgFe2O4@DIC-LDH nanoparticles possess clear core-shell structure with particle size of 90-180 nm and the core of 50-120 nm, while the shell of 20-50 nm. The densely coated DIC-LDH has no typical platelet-like morphology with much smaller particle size than that of the pure DIC-LDH synthesized by the same method. The MgFe2O4@DIC-LDH possesses a drug loading of 43.9%, MgFe2O4 content of 6.34%, and the measured saturation magnetization intensity of 5.54 emu/g.
     Under no external magnetic field (MF), the MgFe2O4@DIC-LDH nanoparticles present much faster drug release rate than that of the pure DIC-LDH, mainly due to the smaller particle size of the coated DIC-LDH crystallites. While under the MF of 1500 G, the drug release rate of MgFe2O4@DIC-LDH nanoparticles is reduced greatly due to much longer diffusion path and higher diffusion resistance originated from the aggregation of the particles induced by the MF strength. The release profile of MgFe2O4@DIC-LDH can be well-described by the modified Freundlich equation, indicating that the drug release mechanism involves heterogeneous particle diffusion based on ion-exchange, consisting of the intraparticle diffusion of the DIC-LDH crystalline particles, the interparticle diffusion between the DIC-LDH particles in coating layers and interparticle diffusion between the magnetically triggered aggregated MgFe2O4@DIC-LDH nanoparticles.
     (3) By tuning the contents of MgFe2O4, a series of MgFe2O4@IBU-LDH magnetic nanoparticles were fabricated by a one step coprecipitation method. The obtained MgFe2O4@IBU-LDH nanoparticles exhibit well-defined core-shell structure, homogeneous particle size distribution in the range 90-180 nm and superior magnetic responsive behavior (4.52-8.30 emu/g). The layered charge density, the interlayer spacing d003 and the thickness of the coated IBU-LDH crystallites are decreased gradually with increasing MgFe2O4 contents. Meantime, the crystalline sizes of the coated IBU-LDH are also decreased gradually due to the increasing MgFe2O4 content, revealing the inhibiting effect of the MgFe2O4 on the growth of the IBU-LDH crystallites.
     The interaction between the MgFe2O4 core and the coated IBU-LDH determined by using XPS Ar+ sputting and Zeta potential analysis reveals that the formation mechanism of MgFe2O4@IBU-LDH involves the deposition-dissolution-deposition-diffusion of Al(OH)3, Mg(OH)2 and drug-LDH species on the surface of the MgFe2O4 nanoparticles. The drug-LDH and MgFe2O4 were connected via the Al-O-Fe linkages. At the same time, the The drug-LDH particles formed in the solution were also adsorbed on the surface of MgFe2O4 because of the particle-particle interaction of the LDH nanocrystallites, resulting in the final MgFe2O4@IBU-LDH with well-defined core-shell structure. Owing to the ion-exchange property of the LDH materials, this formation mechanism can be extended for other analogue drug-LDH system, implying a broad utility range of the present study.
     Under no MF, due to the decreasing particle sizes and the thickness of the coated IBU-LDH mcirostallites, the MgFe2O4@IBU-LDH nanoparticles present increasing drug release rate with increasing MgFe2O4 contents, but a reverse trend was observed under the MF of 1500 G, due to increasing diffusion path and diffusion resistance originated from the increasing aggregation extend of the mangnetic nanoparticles induced by the external MF. The inhibition of the drug release rate can also be achieved by increasing the MF strength. The drug release mechanism of MgFe2O4@IBU-LDH nanoparticles is heterogeneous particle diffusion based on ion-exchange, and the drug release rate can be controlled by tuning the crystalline sizes and thickness of the coated drug-LDH crystallites, the content of the magnetic core and the external magnetic field strength.
     (4) By choosing an anticancer agent doxifluridine (DFUR) as model drug, monodispersed Fe3O4@DFUR-LDH nanoparticles were firstly prepared via the coprecipitation-calcination-reconstruction of the LDH materials over the surface of Fe3O4 spherical nanoparticles. The obtained Fe3O4@DFUR-LDH nanoparticles present well-defined core-shell structure with diameter of ca. 300 nm. The Fe3O4core is ca.200 nm, and the DIC-LDH shell is ca.50 nm with loosely aggregated morphology, different to the worm-like morphology with interconnected particles of the pure DFUR-LDH. The Fe3O4@DFUR-LDH possesses a drug loading of 9.73%, Fe3O4 content of 44.1%, the measured saturation magnetization intensity of 17.4 emu/g.
     Under no external MF, due to the loosely aggregated morphology of the coated DFUR-LDH, the Fe3O4@DFUR-LDH presents much faster drug release rate than that of the pure DFUR-LDH. While under the MF of 1500 G, the drug release rate of Fe3O4@DFUR-LDH is reduced greatly due to much longer diffusion path and higher diffusion resistance originated from the aggregation of the magnetic particles induced by the MF. The release profile of Fe3O4@DFUR-LDH can be well described by the First-order equation and modified Freundlich model, indicating that its drug release mechanism involve dissolution and heterogenous particle diffusion upon ion-exchange process.
     (5) The non-contact magnetically controlled drug pulsatile release of MFe2O4@drug-LDH upon a consecutive MF On-Off operation was also achieved based on the reversible aggregation-redispersion ability of the present magnetic MFe2O4@drug-LDH nanoparticles.
     The simulated magnetic drug targeting in a fluid release medium shows that the Fe3O4@DFUR-LDH magnetic nanoparticles can be easily retained at a desired site and its drug release rate can be adjusted by changing the velocity of the fluid. The retension of the Fe3O4@DFUR-LDH magnetic nanoparticles is inversely proportional to the velocity of the fluidis and the distance of the permanent magnet. The faster release of DFUR from Fe3O4@DFUR-LDH magnetic nanoparticles is proportional to the velocity of the fluid. The present results indicate the potential application of Fe3O4@DFUR-LDH in magnetic drug targeting delivery system.
引文
[1]Torchilin V P. Drug targeting[J], Eur. J. Pharm. Sci.,2000,11(suppl.2):S81-S91
    [2]Liibbe A S, Alexiou C, Bergemanm C. Clinical applications of magnetic drug targeting[J]. J. Surg. Res.,2001,95:200-206
    [3]Brigger I, Dubernet C, Couvreur P, Nanoparticles in cancer therapy and diagnosis[J]. Adv. Drug Deliv. Rev.,2002,54:631-651
    [4]Breunig M, Bauer S, Goepferich A. Polymers and nanoparticles:Intelligent tools for intracellular targeting? [J]. Eur. J. Pharm. Biopharm.,2008,68:112-128
    [5]Ehrlich P. Collected study on Immunology[M]. John Willy:New York,1906,441p
    [6]Noble P F, Cayre O J, Alargova R G, Velev O D, Paunov V N. Fabrication of "Hairy" colloidosimes with shells of polymeric microrods[J]. J. Am. Chem. Soc.,2004,126: 8092-8093
    [7]Varde N K, Pack D W. Influence of particle size and antacid on release and stability of plasmid DNA from uniform PLGAmicrospheres[J]. J. Control. Rel.,2007,124:172-180
    [8]Yamauchi M, Kusano H, Saito E, Abe M, Tsutsumi K, Uosaki Y, Nakakura M, Kato Y, Aoki N. Controlled release of a protein kinase inhibitor UCN-01 from liposomes influenced by the particle size[J]. Int. J. Pharm.,2008,351:250-258
    [9]Barbe C, Bartllet J, Kong L, Finnie K, Lin H Q, Larkin M, Calleja S, Bush A, Calleja G Silica particles:a novel drug-delivery system[J]. Adv. Mater.,2004,16:1959-1966
    [10]Xu Z P, Zeng Q H, Lu G Q, Yu A B. Inorganic nanoparticles as carriers for efficient cellular delivery [J]. Chem. Eng. Sci.,2005,61:1027-1040
    [11]Widder K J, Senyei A E, Scarpelli D G Magnetic microspheres:a model system for site specific drug delivery in vivo[J]. Proc. Soc. Exp. Biol. Med.,1978,58:141-146
    [12]Widder, K. J., Flouret, G, Senyei, A., Magnetic microspheres:synthesis of a novel parenteral drug carrier[J]. J. Pharm. Sci.,1979,68:79-81
    [13]Pankhurst Q A, Connolly J, Jones S K, Dobson J. Applications of magnetic nanoparticles in biomedicine[J]. J. Phys. D:Appl. Phys.,2003,36:R167-R181.
    [14]De M, Ghosh P S, Rotello V M. Applications of Nanoparticles in Biology[J]. Angew. Chem. Int. Ed.,2008,47:1382-1395
    Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles [J]. J. Biosci. Bioeng.,2005,100:1-11 Dames P, Gleich B, Flemmer A, Hajek, Seidl N, Wiekhorst Eberbeck D, Bittmann I,
    [16]Bergemann C, Weyh T, Trahms L, Rosenecker J, Rudolph C. Targeted delivery of magnetic aerosol droplets to the lung[J]. Nature Nanotech.,2007,2,495-499
    Manuel Arruebo, Rodrigo Fernandez-Pacheco, M. Ricardo Ibarra, and Jesus Santamaria Magnetic nanoparticles for drug delivery[J]. Nanotoday,2007,2(3):22-32
    [18]Sun C, Lee J S H, Zhang M, Magnetic nanoparticles in MR imaging and drug delivery[J]. Adv. Drug Deliv. Rev.,2008,60:1252-1265
    [19]田洁,周俊,逄秀娟·磁靶向给药系统的制备研究进展[J].中国药剂学杂志,2007,5(4):205-215
    [20]宋海峰综述,马洁,林晨审校.磁性药物靶向治疗肿瘤[J].国外医学肿瘤学分册,2002,29(3):183-186
    [21]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomater.,2005,26:3995-4021
    [22]Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells [J]. Angew. Chem. Int. Ed.,2008,47:1382-1395
    [23]Langer R. New methods of drug delivery [J]. Science,1990,249(4976):1527-1533
    [24]李贵平,汪勇先.磁性纳米微粒的制备及其在磁性靶向药物转运中的应用[J].核技术,2006,29(9):685-689
    [25]Widder K J, Senyei A E, Ranney D F. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres[J]. Cancer Res.,1980,40:3512-3517
    [26]Yanase M, Shinkai M, Honda H, Wakabayashi, T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes[J]. Jpn. J. Cancer Res.,1998,89:775-782
    [27]Babincova M, Altanerova V, Lampert M, Altanerb C, Machova E, Sramka M, Babinec P. Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field[J]. Z. Naturforsch,2000,55:278-281
    [28]Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters[J]. Int. J. Oncol.,2000,17(2):309-315
    [29]Lubbe A S, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrinann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke A, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting:A phase I study with 4'-Epidoxorubicin in 14 patients with advanced solid tumors [J]. Cancer Res.,1996,56:4686-4693
    [30]Alexiou C, Arnold W, Klein R J, Parak F G, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Liibbe A S. Locoregional cancer treatment with magnetic drug targeting[J]. Cancer Res.,2000,60:6641-6648
    [31]Alexiou C, Jurgonsa R, Schmida R, Hilpertb A, Bergemannc C, Parakd F, Iro H. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles[J]. J. Magn. Magn.Mater.,2005,293:389-393
    [32]聂亚莉,徐明.纳米粒载体研究进展[J].国外医学生物医学工程分册,2005,28(3):179-183
    [33]Zhao W, Gu J, Zhang L, Chen H, Shi J. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc., 2005,127:8916-8917
    [34]Zhang H, Zou K, Sun H, Duan X, A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [35]Kost J, Wolfrum J, Langer R. Magnetically enhanced insulin release in diabetic rats[J]. J. Biomed. Mater. Res.,1987,21:1367-1373
    [36]Edelman E R, Kost J, Bobeck H, Langer R. Regulation of drug release from polymer matrices by oscillating magnetic fields[J]. J.Biomedical Mater. Res.1985,19:67-83
    [37]Kost J, Noecker R, Kunica E, Langer R. Magnetically controlled release systems:Effect of
    polymer composition[J]. J. Biomed. Mater. Res.,1985,19:935-940
    [38]Vania M D P, Silvia H D P L, Leonard S, Bruce I, Zeev R, Nitsa R. Effect of an oscillating magnetic field on the release properties of magnetic collagen gels[J]. Langmuir,2006,22: 5894-5899
    [39]Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field [J]. Macromolecules,2007,40:6786-6788
    [40]Hu S-H, Liu T-Y, Huang H-Y, Liu D-M, Chen S-Y. Magnetic-sensitive silica nanospheres for controlled drug release [J]. Langmuir,2008,24:239-244
    [41]Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug [J]. Langmuir,2006,22:5974-5978
    [42]Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y. Preparation and characterization of smart magnetic hydrogels and its use for drug release [J]. J. Magn. Magn. Mater.,2006,304: e397--e399
    [43]郭佳.多功能有机/无机聚合物微球的制备、表征及其生物应用[D].复旦大学博士研究生学位论文,2007
    [44]刘铮.复合磁性功能材料的制备、表征及性能研究[D].湘潭大学博士研究生学位论文,2006
    [45]张世远,都有为.磁性材料基础[M].北京科学出版社,1988
    [46]李萌远,李国栋.铁氧体物理学[M].科学出版社,1978
    [47]宛德福,罗世华.磁性物理[M].电子工业出版社,1987
    [48]Carja G, Chiriac H, Lupu N. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery [J]. J. Magn. Magn. Mater.,2007,311: 26-30
    [49]Ay A N, Ziilmreoglu-Karan B, Temel A, Rives V. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents:Intercalation of ibuprofen and glucuronic acid into Mg-Al-Layered double hydroxides supported on magnesium ferrite[J]. Inorg. Chem.,2009,48:8871-8877
    [50]Oliver S A. Structure and magnetic properties of magnesium ferrite fine powders[J]. Scripta Materialia,1995,33:1695-1701
    [51]Chen Q, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation[J]. J. Magn. Magnetic Mater.,1999,194:1-7
    [52]Bowen C R, Derby B, Self-propagating high temperature synthesis of ceramic transactions[J]. British Ceramic Trans.,1997,96:25-27
    [53]Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem., Int. Ed.,2005,44:2782-2785
    [54]Liu J, Li F, Evans D G, Duan X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor[J]. Chem. Commun.,2003, 542-543
    [55]Zhang H, Qi R, Evans D G, Duan X. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core[J]. J. Solid State Chem.,2004,177:772-780
    [56]Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem. Rev.,2008,108:2064-2110
    [57]Jun Y-W, Lee J-H, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging[J]. Angew. Chem. Int. Ed.,2008,47:5122-5135
    [58]Xi G, Wang C, Wang X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur. J. Inorg. Chem.,2008,425-431
    [59]Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method[J]. J. Phys. Chem. C, 2009,113:16002-16008
    [60]Sun S, Zeng H, Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc.,2002,124:8204-8205
    [61]许俊鸿.氮杂环修饰的PGMA/纳米Fe3O4磁性螯合树脂的制备及吸附性能研究[D].武汉理工大学博士研究生学位论文,2007
    [62]Wust P, Hildebrandt B, Sreenivasa G. J.Gellermann, Riess H, Felix R, Schlag P. Hyperthermia in combined treatment of cancer[J]. Lancet Oncol.,2002,3(8):487-497
    [63]Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy[J]. J. Mater. Chem.,2004,14:2161-2175
    [64]Yan A, Liu X, Qiu G, Wu H, Yi R, Zhang N, Xu J. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles[J]. J. Alloy. Compd.,2008,458: 487-491
    [65]Bai W, Meng X, Zhu X, Jing C, Gao C, Chu J. Shape-tuned synthesis of dispersed magnetite submicro particles with good magnetic properties [J]. Physica E 2009,42: 141-145
    [66]Ge J, Hu Y, Biasini M, Beyermann W P, Yin Y. Superparamagnetic magnetite colloidal nanocrystal clusters[J]. Angew. Chem., Int. Ed.,2007,46:4342-4345
    [67]Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres[J]. J. Phys. Chem. B,2006,110: 21667-21671
    [68]Zhu L-P, Xiao H-M, Zhang W-D, Yang G, Fu S-Y. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route[J]. Cryst. Growth Des.,2008,8:957-963
    [69]Zhu Y, Zhao W, Chen H, Shi J. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property[J]. J. Phys. Chem. C,2007,111:5281-5285
    [70]Liang X, Wang X, Zhuang J, Chen Y T, Wang D S, Li Y D. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals[J]. Adv. Funct. Mater.,2006,16: 1805-1813
    [71]Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J, Gao H. Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties[J]. J. Phys. Chem. B,2005,109:2323-23236
    [72]Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi J S, Chin S-F, Sherry A D, Boothman D A, Gao J. Multifunctional polymeric micelles as cancer-targeted, MRI-Ultrasensitive drug delivery systems[J]. Nano Lett.,2006,6 (11):2427-2430
    [73]朱瀛,陆伟根,邹凌燕.丝裂霉素c磁性纳米粒Ⅰ.制备和质量评价[J].中国医药工业
    杂志,2006,37(3):168-171
    [74]Gao H, Wang J-y, Shen X-zh. Preparation of magnetic polybutylcyanoacrylate nanospheres encapsulated with aclacinomycin A and its effect on gastric tumor[J]. World J. Gastroenterol,2004,10(14):2010-2013.
    [75]Yang J, Park S B, Yoon H G. Preparation of poly ε-caprolactone nanoparticles containing magnetite for magnetic drug carrier[J]. Int. J. Pharm.,2006,324:185-190
    [76]张景勃,张志荣,秦少容.紫杉素磁性长循环脂质体的研究[J].中国药学杂志,2003,38(7):520-522
    [77]刘利萍,李萍,吴泽志.5-Fu壳聚糖/丝素复合磁性微球的制备及体外性质研究[J].中国药学杂志,2003,38(10):774-777
    [78]Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells[J]. Langmuir,2005, 21:8858-8864
    [79]Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells [J]. Angew. Chem. Int. Ed.,2008,47:1382-1395
    [80]Choy J-H, Kwak S-Y, Jeong Y-J, Park J-S. Inorganic layered double hydroxides as nonviral vectors [J]. Angew. Chem. Int. Ed.,2000,39:4042-4045
    [81]Saravanan M, Bhaskar K, Maharajan G. Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres[J]. Int J Pharm.,2004, 283:71-82
    [82]Lei Z, Pang X, Li N, Lin L, Li Y. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres[J]. J. Mater. Proc.Tech.,2009,209:3218-3225
    [83]Lacava I M, Garcia V A P, Kuckelh'aus S, Azevedo R B, Sadeghiani N, Buske N, Morais P C, Lacava Z G M. Long term retention of dextran-coated magnetite nanoparticles in the liver and spleen[J]. J Magn. Magn. Mater.,2004,272-276:2434-2435
    [84]Berry C C, Wells S, Charles S, Curtis A SG. Dextran and albumin derivatised iron oxide nanoparticles:influence on fibroblasts in vitro[J]. Biomater.,2003,24:4551-4557
    [85]Nawroth T, Rusp M, May R P. Magnetic liposomes and entrapping:time-resolved neutron scattering TR-SANS and electron microscopy[J]. Physica B,2004,350:e635-e638
    [86]Fortin-Ripoche J, Martina M S, Gazeau F, Menager C, Wilhelm C, Bacri J, Lesieur S, Clement O. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice:feasibility [J]. Radiology,2006,239:415-424
    [87]Arias J L, Gallardo V, Gomez-Lopera S A, Plaza R C, Delgado AV. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core[J]. J. Control. Rel.,2001,77:309-321
    [88]Arias J L, Ruiz M A, Gallardo V, Delgado AV. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles[J]. J. Control. Rel.,2008, 125:50-58
    [89]Zhang J L, Srivastava R S, Misra R D K. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer:synthesis, characterization, and LCST of viable drug-targeting delivery system[J]. Langmuir,2007,23:6342-6351
    [90]Liu X, Kaminski M D, Chen H, Torno M, Taylor L, Rosengart A J. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres[J]. J. Control. Rel.,2007,119:52-58
    [91]Chorny M, Polyak B, Alferiev, I S, Walsh K, Friedman G, Levy R J. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles[J]. The FASEB Journal,2007,21:2510-2519
    [92]Kell A J, Somaskandan K, Stewart G, Bergeron M G, Simard B. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics:A parametric study of factors affecting capture efficiency and specificity[J]. Langmuir,2008,24:3493-3502
    [93]Kim H J, Ahn J E, Haam S, Shul Y G., Song S Y, Tatsumi T, Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting[J]. J. Mater. Chem.,2006,16: 1617-1621
    [94]Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting[J]. Chem. Mater.,2007,19:3455-3463
    [95]Lu H, Yi G, Zhao S, Chen D, Guo L-H, Cheng J. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties[J]. J. Mater. Chem.,2004,14:1336-1341
    [96]Yi D K, Selvan S T, Lee S S, Papaefthymiou G C, Kundaliya D, Ying J Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots[J]. J. Am. Chem. Soc., 2005,127:4990-4991
    [97]Son S J, Bai X, Nan A, Ghandehari H, Lee S B. Template synthesis of multifunctional nanotubes for controlled release [J]. J. Control. Rel.,2006,114:143-152
    [98]Son S J, Reichel J, He B, Schuchman M, Lee S B. Magnetic nanotubes for nagnetic-field-assisted bioseparation, biointeraction, and drug delivery[J]. J. Am. Chem. Soc.,2005,127:7316-7317
    [99]Huang S, Yang P, Cheng Z, Li C, Fan Y, Kong D, Lin J. Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting[J]. J. Phys. Chem. C,2008,112:7130-7137
    [100]Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier [J]. Biomater.,2009, 30:4786-4795
    [101]Goodwin S, Peterson C, Hoh C, Bittner C. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy [J]. J. Magn. Magn. Mater.,1999, 194:132-139
    [102]Rudge S, Peterson C, Vessely C, Koda J, Stevens S, Catterall L. Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC)[J]. J. Control. Rel.,2001,74:335-340
    [103]Wozniak M J, Wozniak P, Bystrzejewski M, Cudzilo S, Huczko A, Jelen P, Kaszuwara W, Kozubowski J A, Lange H, Leonowicz M, Lewandowska-Szumiel M. Magnetic nanoparticles of Fe and Nd-Fe-B alloy encapsulated in carbon shells for drug delivery systems:Study of the structure and interaction with the living cells[J]. J. Alloy. Compd., 2006,423:87-91
    [104]Xie J, Chen K, Lee H-Y, Xu C, Hsu A R, Peng S, Chen X, Sun S. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin rvβ3-Rich Tumor Cells[J]. J. Am. Chem. Soc.,2008,130:7542-7543
    [105]石可瑜,李朝兴,何炳林.磁导向阿霉素-羧甲基葡聚糖磁性毫微粒的研究[J].生物医
    学工程学杂志,2000,17(1):21-24
    [106]Wu Y, Guo J, Yang W I. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres[J]. Polymer,2006,47:5287-5292
    [107]秦润华,姜炜,刘宏英,李凤生.纳米磁靶向复合材料的研究进展[J].材料导报,2007,21(9):44-47
    [108]Wang L, Sun J. Poly(allylamine hydrochloride)-dextran microgels functionalized with magnetic and luminescent nanoparticles[J]. J. Mater. Chem.,2008,18,4042-4049
    [109]Igartua M, Saulnier P, Heurtault B. Development and characterization of solid lipid nanoparticles loaded with magnetite[J]. Int. J. Pharm.,2002,233:149-157
    [110]温燕梅,卢泽勤.聚乙二醇-Fe3O4粒子的制备[J].化学研究与应用,2002,14(5):563-565
    [111]Sun H, Yu J, Gong P, Xu D, Zhang C, Yao S. Novel core-shell magnetic nano-gels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications[J]. J. Magn. Magn. Mater.,2005,294:273-280
    [112]Jain T K, Morales M A, Sahoo S K, Leslie-Pelecky D L, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents[J]. Molecular Pharm.,2005,2(3): 194-205
    [113]Wang S H, Shi X, Antwerp M V, Cao Z, Swanson S D, Bi X, Jr. J R B. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells[J]. Adv. Funct. Mater.,2007,17:3043-3050
    [114]Shi X, Wang S H, Swanson S D, Ge S, Cao Z, Antwerp M E V, Landmark K J, Jr. J R B. Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors [J]. Adv. Mater.,2008,20:1671-1678
    [115]Arias J L, Reddy L H, Couvreur P. Magnetoresponsive squalenoyl gemcitabine composite nanoparticles for cancer active targeting [J]. Langmuir,2008,24:7512-7519
    [116]Yamada Y, Kurumada K, Susa K, Umeda N, Pan G Method of fabrication of submicron composite microparticles of hydroxyapatite and ferromagnetic nanoparticles for a protein drug carrier[J]. Adv. Powder Tech.,2007,18(3):251-260
    [117]Zhang Y, Li L, Tang F, Ren J. Controlled drug delivery system based on magnetic hollow Spheres/polyelectrolyte multilayer core-shell structure[J]. J. Nanosci. Nanotech.,2006,6: 3210-3214
    [118]Evans D G, Slade R C T. Structure aspects of layered double hydroxide[J]. Struct. Bond., 2006,119:1-87
    [119]段雪,张法智.插层组装与功能材料[M].化学工业出版社,2007
    [120]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application[J]. Catal. Today,1991,11:173-301
    [121]Leroux F, Taviot-Gueho C. Fine tuning between organic and inorganic host structure:new trend in layered double hydroxide hybrid assemblies[J]. J. Mater. Chem.,2005,15: 3628-3642
    [122]Khan A I, O'Hare D. Intercalation chemistry of layered double hydroxides:recent developments and applications[J]. J. Mater. Chem.,2002,12:3191-3198
    [123]Choy J H, Choi S J, Oh J M, Park T. Clay minerals and layered double hydroxides for novel biological applications[J]. Appl. Clay Sci.,2007,36:122-132
    [124]Cop B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles:hydrogenation of acetonitrile[J]. J. Catal.,2000, 189:117-128
    [125]冯拥军,李殿卿,李春喜,王子镐,Evans D G,段雪.Cu-Ni-Mg-Al-CO3四元水滑石的合成及结构分析[J].化学学报,2003,61:78-83
    [126]Xu Z P, Zeng H C. Decomposition Pathways of Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions[J]. Chem. Mater., 2001,13:4564-4527
    [127]Xu Z P, Lu G Q. Hydrothermal synthesis of Layered Double Hydroxides (LDHs) from mixed MgO and Al2O3:LDH formation mechanism[J]. Chem. Mater.,2005,17: 1055-1062
    [128]Raki L, Rancourt D G, Detellier C. Preparation, characterization, and mossbauer spectroscopy of organic anion intercalated pyroaurite-like layered double hydroxides [J]. Chem. Mater.,1995,7:221-224
    [129]Prevot V, Forano C, Besse J P. Syntheses and Thermal and chemical behaviors of tartrate and succinate intercalated Zn3Al and Zn2Cr layered double hydroxides [J]. Inorg. Chem., 1998,37:4293-4301
    [130]Rhee S W, Lee J H, Jung D Y. Quantitative Analyses of Shape-Selective Intercalation of Isomeric Mixtures of Muconates into [LiAl2(OH) 6]Cl·yH2O Layered Double Hydroxide[J]. J. Colloid. Interf. Sci.,2002,245:349-355
    [131]Vucelic M, Moggridge G D, Jones W. Thermal properties of terephthalate-and benzoate-intercalated LDHs[J]. J. Phys. Chem.,1995,99:8328-8337
    [132]Newman S P, Jones W, Coveney P V. Interlayer Arrangement of hydrated MgAl layered double hydroxides containing guest terephthalate anions:comparison of simulation and measurement[J]. J. Phys. Chem. B,1998,102:6710-6719
    [133]Wei M, Yuan Q, Evans D G, Duan X. Layered solid as a "molecular container" for pharmaceutical agents:L-tyrosine-intercalated layered double hydroxides[J]. J. Mater. Chem.,2005,15:1197-1203
    [134]Crepaldi E L, Pavan P C, Tronto J, Valim J B. Chemical, structural, and thermal properties of Zn(II)-Cr(III) layered double hydroxides intercalated with sulfated and sulfonated surfactants[J]. J. Colloid. Interf. Sci.,2002,248:429-442
    [135]You Y W, Zhao H T, Vance G F. Surfactant-enhanced adsorption of organic compounds by layered double hydroxides [J]. Colloid Surf. A,2002,205:161-172
    [136]Prevot V, Forano C, Besse J P. Hybrid derivatives of layered double hydroxides[J]. Appl. Clay. Sci.,2001,18:3-15
    [137]Xu Z P, Zeng H C. Abrupt structural transformation in Hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions[J]. J. Phys. Chem. B,2001,105:1743-1749
    [138]Hibino T, Yamashita Y, Kosuge K, Tsunashima A. Decarbonation behavior of Mg-Al-CO3 hydrotalcite-like compounds during heat treatment[J]. Clays Clay Miner.,1995,43: 427-432
    [139]Yang W S, Kim Y, Liu P K T, Sahimia M, Tsotsis T T. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide[J]. Chem. Eng. Sci.,2002,57:2945-2953
    [140]Wei M, Shi S X, Wang J. Studies on the intercalation of naproxen into layered double
    hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD[J]. J. Solid State Chem.,2004,177:2534-3541
    [141]张慧,齐荣,刘丽娜,段雪.镁铁双羟基复合金属氧化物的可控合成及晶面生长特征研究[J].化学物理学报,2003,16(1):45-50
    [142]Feng Y J, Li D Q, Li C X, Wang Z, Evans D G, Duan X. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution[J]. Clay Clay Miner., 2003,51:566-569
    [143]Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine[J]. Chem. Comm.,2006:485-496
    [144]Zhao Y, Li F, Zhang R. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem. Mater.,2002,14:4286-4291
    [145]Ogawa M, Kaiho H. Homogeneous Precipitation of Uniform Hydrotalcite Particles[J]. Langmuir,2002,18(11):4240-4242
    [146]Li B, He J. Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of Layered Double Hydroxides[J]. J. Phys. Chem. C,2008,112: 10909-10917
    [147]Zou K, Zhang H, Duan X, Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J]. Chem. Eng. Sci.,2007,62:2022
    [148]Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clays Clay Miner.,1980,28:50-55
    [149]Stanimirova T, Kirov G Cation composition during recrystallization of layered double hydroxides from mixed (Mg, Al) oxides[J]. Appl. Clay Sci.,2003,22:295-301
    [150]Li L, Luo Q S, Duan X. Clean route for the synthesis of hydrotalcites and their property of selective intercalation with benzenedicarboxylate anions[J]. J. Mater. Sci. Lett.,2002,21: 439-441
    [151]Zhang J, Zhang F, Ren L L, Evans D G, Duan X. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions[J]. Mater. Chem. Phys.,2004,85:207-214
    [152]Wang Z L, Wang E B, Gao L, Xu L. Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [153]Arco M, Carriazo D, Gutierrez S, Martin C, Rives V. Synthesis and characterization of new Mg2Al-paratungstate Layered Double Hydroxides[J]. Inorg. Chem.,2004,43: 375-384
    [154]Arco M, Gutierrez S, Martin C, Rives V. Intercalation of [Cr(C2O4)3]3-complex in Mg,Al Layered Double Hydroxides [J]. Inorg. Chem.,2003,42:4232-4240
    [155]李蕾.类水滑石材料制备方法及结构与性能的理论研究[D].北京化工大学博士学位论文,2002
    [156]邹亢.水滑石型药物分子容器的构筑及释放机理研究[D].北京化工大学博士学位论文,2007
    [157]Khan A I, Lei L, Norquist A J, O'Hare D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide[J]. Chem. Comm., 2001,2342-2343
    [158]Choy J H, Kwak S Y, Park J S, Jeong Y J, Portier J. Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Double Hydroxide[J]. J. Am. Chem. Soc.,1999,121:1399-1400
    [159]Li F, Duan X. Applications of layered double hydroxides [J]. Struct. Bond.,2006,119: 193-223
    [160]Ren L L, He J, Zhang S C, Evans D G, Duan X. Immobilization of penicillin gacylase in layered double hydroxides pillared by glutamate ions[J]. J. Mol. Catal:B-Enzym.,2002, 18:3-11
    [161]Fogg M A, Dunn J S, Shyu S G, O'Hare D. Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl-H2O[J]. Chem. Mater.,1998,10:351-355
    [162]Lei L, Vijayan R P, O'Hare D. Preferential anion exchange intercalation of pyridinecarboxylate and toluate isomers in the layered double hydroxide [LiAl2(OH)6]Cl center dot H2O[J]. J. Mater. Chem.,2001,11:3276-3280
    [163]Jakupca M, Dutta P K. Thermal and spectroscopic analysis of a fatty acid-layered double-metal hydroxide and its application as a chromatographic stationary phase[J]. Chem. Mater.,1995,7:989-994
    [164]Ogawa M, Kuroda K. Photofunctions of intercalation compounds[J]. Chem. Rev.,1995, 95:399-438
    [165]Mousty C, Therias S, Forano C. Besse J-P. Anion-exchanging clay-modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions [J]. J. Electroanal. Chem.,1994,374:63-69
    [166]Choy J H, Kwal S Y, Jeong Y J. Inorganic Layered Double Hydroxides as Nonviral Vector[J]. Angew. Chem. Int. Ed.,2000,39:4041-4045
    [167]Ambrogi, V., Fardella, G., Grandolini, G., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents-I. Intercalation and in vitro release of ibuprofen[J]. Int. J. Pharm.,2001,220:23-32
    [168]Ambrogi, V., Fardella, G, Grandolini, G., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, Ⅱ:uptake of diclofenac for a controlled release formulation [J]. AAPS PharmSciTech,2002,3(3), article 26
    [169]Arco, M. D., Cebadera, E., Gutierrez, S., Mg, Al layered double hydroxides with intercalated indomethacin:synthesis, characterization, and pharmacological study[J]. J. Pharm. Sci.,2004,93:1649-1658
    [170]Gordijo, C. R., Barbosa, C. A. S., Ferreira, A. M. D. C., Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides[J]. J. Pharm. Sci.,2005,94: 1135-1148
    [171]Gu Z, Thomas A C, Xu Z P, Campbell J H, Lu G Q. In vitro sustained release of LMWH from MgAl-layered Double Hydroxide nanohybrids [J]. Chem. Mater.,2008,20: 3715-3722
    [172]Katherine, M. T., Scott, R. S., Emmanuel, P. G., Nanobiohybrids as delivery vehicles for camptothecin[J]. J. Control. Rel.,2004,95:501-514
    [173]Zhongliang, W., Enbo, W., Lei, G., Lin, X., Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [174]Hussein, M. Z., Zainal, Z., Yahaya, A. H.; Foo. D. W. V., Controlled release of a plant growth regulator, a-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite[J]. J.Solid State Chem.,2002,82:,417-427
    [175]Yang, J. H., Han, Y. S., Park, M.; Park, T., Hwang, S. J., Choy, J. H., New inorganic-based drug delivery system of indole-3-acetic-acid-layered metal hydroxide nanohybrids with controlled release rate[J]. Chem. Mater.,2007,19:2679-2685
    [176]Li B, He J, Evans D G, Duan X. Enteric-coated layered double hydroxides as a controlled release drug delivery system[J]. Int. J. Pharm.,2004,287:89-95
    [177]郑虎.药物化学.人民卫生出版社,2003
    [178]王文见,李岚岚综述,时德审校.去氧氟尿苷研究进展[J].国外医学肿瘤分册,1999,29:25-28
    [179]Sonoo H, Senoo T, Nishiki M. Usefulness of lowdose 5'-DFUR (5'-deoxy-5-fluorouridine) for advanced or recurrent breast cancer[J]. Gan. To. Kagaku Ryoho.,1999,26:951-958
    [180]Yoshino T, Machida Y, Onishi H, Nagai T. Preparation and characterization of chitosan microspheres containing doxifluridine[J]. Drug Development and Industrial Pharmacy, 2003,29:417-427
    [181]Chang K-Y, Lin C-C, Ho G-H, Huang Y-P, Lee Y-D. Synthesis and self-assembly of comb-like amphiphilic doxifluridine-poly (ε-caprolactone)-graft-poly (y-glutamic acid) copolymer[J]. Polymer,2009,50:1755-1763
    [182]Chang K-Y, Lee Y-D. Ring-opening polymerization of ε-caprolactone initiated by the antitumor agent doxifluridine[J]. Acta biomater.,2008,5:1075-1081
    [183]Kiortsis S, Kachrimanis K, Broussali T, Malamataris S. Drug release from tableted wet granulations comprising cellulosic (HPMC or HPC) and hydrophobic component[J]. Eur. J. Pharm. Biopharm.,2005,59:73-78
    [184]Bhaskar R, Murthy S R S, Miglani B D, Viswanathan, K. Novel method to evaluate diffusion controlled release of drug from resinate[J]. Int. J. Pharm.,1986,28:59-66
    [185]Ritger P L, Peppas N A. A simple equation for description of solute release I. fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J. Control. Rel.,1987,5:23-36
    [186]Ritger P L, Peppas N A. A simple equation for description of solute release Ⅱ. fickian and anomalous release from swellable devices[J]. J. Control. Rel.,1987,5:37-42
    [1]Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem. Rev.,2008,108:2064-2110
    [2]Jun Y-W, Lee J-H, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging[J]. Angew. Chem. Int. Ed.,2008,47:5122-5135
    [3]Xi G, Wang C, Wang X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur. J. Inorg. Chem.,2008,425-431
    [4]Bai W, Meng X, Zhu X, Jing C, Gao C, Chu J. Shape-tuned synthesis of dispersed magnetite submicro particles with good magnetic properties[J]. Physica E,2009,42: 141-145
    [5]Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem., Int. Ed.,2005,44:2782-2785
    [6]Zhu L-P, Xiao H-M, Zhang W-D, Yang G, Fu S-Y. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route[J]. Cryst. Growth Des.,2008,8:957-963
    [7]Peng D, Beysen S, Li Q, Jian J, Sun Y, Jiwuer J. Hydrothermal growth of octahedral Fe3O4 crystals[J]. Particuology,2009,7:35-38
    [8]Zhang L, Wu J, Liao, H, Hou Y, Gao S. Octahedral Fe3O4 nanoparticles and their assembled structures[J]. Chem. Commun.,2009,4378-4380
    [9]Liu J, Li F, Evans D G, Duan X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor[J]. Chem. Commun.,2003, 542-543
    [10]Zhang H, Zou K, Sun H, Duan X, A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [11]Ay A N, Ziilmreoglu-Karan B, Temel A, Rives V. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents:Intercalation of ibuprofen and glucuronic acid into Mg-Al-Layered double hydroxides supported on magnesium ferrite[J]. Inorg. Chem.,2009,48:8871-8877
    [12]Carja G, Chiriac H, Lupu N. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery[J]. J. Magn. Magn. Mater.,2007,311: 26-30
    [13]Evans D G, Slade R C T. Structure aspects of layered double hydroxide[J]. Struct. Bond., 2006,119:1-87 Xu Z P, Zeng H C. Decomposition pathways of hydrotalcite-like compounds
    [14]Mg1-xAlx(OH)2(NO3)x-nH2O as a continuous function of nitrate anions[J]. Chem. Mater., 2001,13:4564-4527
    [15]Yan A, Liu X, Qiu G, Wu H, Yi R, Zhang N, Xu J. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles[J]. J. Alloy. Compd.,2008,458:
    487-491
    [16]Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc.,2008,130:28-29 Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of
    [17]magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method[J]. J. Phys. Chem. C, 2009,113:16002-16008
    [18]Cornell R M, Schwertmann U. The Iron Oxides[M]. Wiley-VCH:Weinheim, Germany, 1996
    [19]Yang T, Shen C, Li Z, Zhang H, Xia, C, Chen S, Xu Z, Shi D, Li J, Gao H. Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties[J]. J. Phys. Chem. B,2005,109:23233-23236
    [20]Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres[J]. J. Phys. Chem. B,2006,110: 21667
    [21]Kubik T J, Hawkins G P, Stringam, G R. A modified mordant technique for staining plant chromosomes[J]. Genome,2003,46:527-528
    [22]Gong C, Chen D, Jiao X, Wang Q. Continuous hollow a-Fe2O3 and a-Fe fibers prepared by the sol-gel method[J]. J. Mater. Chem.,2002,12:1844-1847
    [23]Liang X, Wang X, Zhuang J, Chen Y T, Wang D S, Li Y D. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals[J]. Adv. Funct. Mater.,2006,16: 1805-1813
    [24]Khedr M H, Omar A A, Abdel-Moaty S A. Magnetic nanocomposites:preparation and characterization of Co-ferrite nanoparticles[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,281:8-14
    [25]Edwards H G M, Lewis I R. Vibrational spectroscopic studies of iron (II) acetate[J]. J. Mol. Struct.,1993,296:15-20
    [26]Iwasaki M, Hara M, Ito S. Synthesis of nanometer-sized hematite single crystals through NAC-FAS method[J]. J. Mater. Sci.,2000,35:943-949
    [27]Khedry M H, Farghali A A. Physicochemical properties of nanocrystallite copper ferrite prepared by a novel self flash combustion of acetate precursors[J]. J. Mater. Sci. Technol., 2005,21:675-680
    [28]Zhu Y, Zhao W, Chen H, Shi J. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property[J]. J. Phys. Chem. C,2007,111:5281-5285
    [29]Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis[J]. J. Colloid Interface Sci., 2007,314:274-280
    [1]Ambrogi, V., Fardella, G., Grandolini, G., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, Ⅱ:uptake of diclofenac for a controlled release formulation[J]. AAPS PharmSciTech,2002,3(3), article 26
    [2]邹亢.水滑石型药物分子容器的构筑及释放机理研究[D].北京化工大学博士学位论文,2007
    [3]Zhang H, Zou K, Sun H, Duan X, A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [4]Xu Z P, Zeng H C. Abrupt structural transformation in Hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions.[J]. J. Phys. Chem. B,2001,105:1743-1749
    [5]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M] John Wiley and Sons:New York,5th ed,1997
    [6]Zou K, Zhang H, Duan X, Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J]. Chem. Eng. Sci.,2007,62:2022
    [7]Gursky J A, Blough S D, Luna C, Gomez C, Luevano A N, Gardner E A. Particle-particle interactions between Layered Double Hydroxide nanoparticles[J]. J. Am. Chem. Soc., 2006,128:8376-8377
    [8]Khan A I, Lei L, Norquist A J, et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide[J]. Chem. Comm., 2001,2342-2343
    [9]Gu Z, Thomas A C, Xu Z P, Campbell J H, Lu G Q. In vitro sustained release of LMWH from MgAl-layered Double Hydroxide nanohybrids[J]. Chem. Mater.,2008,20: 3715-3722
    [10]Yang, J. H., Han, Y. S., Park, M.; Park, T., Hwang, S. J., Choy, J. H., New inorganic-based drug delivery system of indole-3-acetic-acid-layered metal hydroxide nanohybrids with controlled release rate[J]. Chem. Mater.,2007,19:2679-2685
    [11]Hussein, M. Z., Zainal, Z., Yahaya, A. H.; Foo. D. W. V., Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite[J]. J.Solid State Chem.,2002,82:,417-427
    [12]Zhongliang, W., Enbo, W., Lei, G., Lin, X., Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [13]Huang X, Brazel C S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems[J]. J. Control. Rel.,2001,73:121-136
    Gunawan P, Xu R. Direct control of drug release behavior from layered double hydroxides through particle interactions[J]. J. Pharm. Sci.,2008,97:4367-4378
    [15]Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug [J]. Langmuir,2006,22:5974-5978
    [16]Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y. Preparation and characterization of smart magnetic hydrogels and its use for drug release [J]. J. Magn. Magn. Mater.,2006,304: e397-e399 Ritger P L, Peppas N A. A simple equation for description of solute release I. fickian and
    [17]non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J. Control. Rel.,1987,5:23-36
    [18]Ritger P L, Peppas N A. A simple equation for description of solute release II. fickian and anomalous release from swellable devices[J]. J. Control. Rel.,1987,5:37-42
    [19]Hu S-H, Liu T-Y, Huang H-Y, Liu D-M, Chen S-Y. Magnetic-sensitive silica nanospheres for controlled drug release [J]. Langmuir,2008,24:239-244
    [20]Zhang H, Zou K, Guo S, Duan X. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides[J]. J. Solid State Chem.,2006,179:1791-1801
    [21]Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field [J]. Macromolecules,2007,40:6786-6788
    [1]Zhang H, Zou K, Sun H, Duan X, A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [2]Ambrogi, V., Fardella, G., Grandolini, G, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents-I. Intercalation and in vitro release of ibuprofen[J]. Int. J. Pharm.,2001,220:23-32
    [3]Gunawan P, Xu R. Direct control of drug release behavior from layered double hydroxides through particle interactions [J]. J. Pharm. Sci.,2008,97:4367-4378
    [4]Gordijo C R, Barbosa C A S, Da Costa Ferreira A M, Constantino V R L, De Oliveira Silva D. Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides[J]. J. Pharm. Sci.,2005,94:1135-1148
    [5]邹亢.水滑石型药物分子容器的构筑及释放机理研究[D].北京化工大学博士学位论文,2007
    [6]Xu Z P, Zeng H C. Abrupt structural transformation in Hydrotalcite-like compounds Mgi1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions.[J]. J. Phys. Chem. B,2001,105:1743-1749
    [7]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M] John Wiley and Sons:New York,5th ed,1997
    [8]Mohanambe L, Vasudevan S. Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics Simulation and measurements[J]. J. Phys. Chem. B, 2005,109:15651-15658
    [9]Zou K, Zhang H, Duan X, Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J]. Chem. Eng. Sci.,2007,62:2022
    [10]Zhao W, Gu J, Zhang L, Chen H, Shi J. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc., 2005,127:8916-8917
    [11]Walls J M. Methods of Surface Analysis [M]. Cambridge University Press:Cambridge, 1989
    [12]Zeng H, W R Lacefield. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramie coatings:the effects of various process parameters[J]. Biomater., 2000,21:23-30
    [13]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications[J]. Catal. Today,1991,11:173-301
    [14]Boclair J W, Braterman P S. Layered Double Hydroxide stability.1. relative stabilities of Layered Double Hydroxides and their simple counterparts[J]. Chem. Mater.,1999,11: 298-302
    [15]Xu Z P, Lu G Q. Hydrothermal Synthesis of Layered Double Hydroxides (LDH) from Mixed MgO and A12O3:LDH Formation Mechanism[J]. Chem. Mater.,2005,17: 1055-1062
    [16]Marion G M, Hendricks D M, Dutt G R, Fuller W H. Aluminum and silica solubility in
    soils[J]. Soil. Sci.1976,121:76-85
    [17]Hartman P. Crystal growth:an introduction[M]. Elsevier North-Hollland and Inc:New York,1973
    [18]Walton A G. Nucleation[M]. Marcell Delker and Inc:New York,1969
    [19]刘莲生.水溶液吸附化学[M].北京:科学出版社,1989
    [20]Sangwal K. Effects of impurities on crystal growth processes[J]. Prog. Crystal Growth Charact.,1996,32:3-43
    [21]Kubota N. Effect of impurities on the growth kinetics of crystals[J]. Cryst. Res. Technol., 2001,36:749-769
    [22]Evans D G, Slade R C T. Structure aspects of layered double hydroxide[J]. Struct. Bond., 2006,119:1-87
    [23]李萌远,李国栋.铁氧体物理学[M].科学出版社,1978
    [24]Gursky J A, Blough S D, Luna C, Gomez C, Luevano A N, Gardner E A. Particle-particle interactions between Layered Double Hydroxide nanoparticles[J]. J. Am. Chem. Soc., 2006,128:8376-8377
    [25]Khan A I, Lei L, Norquist A J, et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide[J]. Chem. Comm., 2001,2342-2343
    [26]Gu Z, Thomas A C, Xu Z P, Campbell J H, Lu G Q. In vitro sustained release of LMWH from MgAl-layered Double Hydroxide nanohybrids[J]. Chem. Mater.,2008,20: 3715-3722
    [27]Yang, J. H., Han, Y. S., Park, M.; Park, T., Hwang, S. J., Choy, J. H., New inorganic-based drug delivery system of indole-3-acetic-acid-layered metal hydroxide nanohybrids with controlled release rate[J]. Chem. Mater.,2007,19:2679-2685
    [28]Hussein, M. Z., Zainal, Z., Yahaya, A. H.; Foo. D. W. V., Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite[J]. J.Solid State Chem.,2002,82:,417-427
    [29]Zhongliang, W., Enbo, W., Lei, G., Lin, X., Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [30]Ambrogi, V., Fardella, G., Grandolini, G., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, Ⅱ:uptake of diclofenac for a controlled release formulation[J]. AAPSPharmSciTech,2002,3(3), article 26
    [31]Zhang H, Zou K, Guo S, Duan X. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides[J]. J. Solid State Chem.,2006,179:1791-1801
    [32]Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug [J]. Langmuir,2006,22:5974-5978
    [33]Liu T-Y, Hu S-H, Liu K.-H, Liu D-M, Chen S-Y. Preparation and characterization of smart magnetic hydrogels and its use for drug release [J]. J. Magn. Magn. Mater.,2006,304: e397-e399
    [34]Hu S-H, Liu T-Y, Huang H-Y, Liu D-M, Chen S-Y. Magnetic-sensitive silica nanospheres for controlled drug release [J]. Langmuir,2008,24:239-244
    [1]Ambrogi V, Perioli L, Ricci M, Pulcini L, Nocchetti M, Giovagnoli S, Rossi C. Eudragit(?) and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery[J]. Microporous Mesoporous Mater.,2008,115:405-415
    [2]Li Y, Wu J, Qi D, Xu X, Deng C, Yang P, Zhang X. Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis[J]. Chem. Commun.,2008,564-566
    [3]Bajetta E, Biganzoli L, Carnaghi C, Maria D B, Ivo S, Antonio C, Emanvele G, Luigi M, Corrado G S, Roberto B. Oral doxifluridine pluslevoleucovorin in elderly patients with advanced breast cancer[J]. Cancer,1998,83:1136-1141
    [4]Tomoaki Y, Yoshiharu M, Hiraku O, Tsuneji N. Preparation and characterization of chitosan microspheres containing doxifluridine[J]. Drug Dev. Ind. Pharm.,2003,29: 417-427
    [5]王文见,李岚岚.去氧氟尿苷的研究进展[J].国外医学肿瘤学分册,2002,29:25-28
    [6]Wang Z L, Wang E B, Gao L, Xu L. Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [7]Pavia DL, Lampman G M, Kriz G S. Introduction to spectroscopy[M]. Harcourt Brace College:New York,1996.
    [8]Yang W, Kim Y, Liu P K T, Sahimi M, Tsotsis T T. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide [J]. Chem. Eng. Sci.,2002,57:2945-2953
    [9]Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen J C, Sueiras J E, Salagre P, Cesteros Y. Aldol condensations over reconstructed Mg-Al hydrotalcites:Structure-activity relationships related to the rehydration method[J]. Chem. Eur. J.,2005,11:728-739
    [10]段雪,张法智.插层组装与功能材料[M].化学工业出版社,2007
    [11]Evans D G, Slade R C T. Structure aspects of layered double hydroxide[J]. Struct. Bond., 2006,119:1-87
    [12]邹亢.LDH型药物分子容器的构筑及释放机理研究[D].北京化工大学博士学位论文,2007
    [13]Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds,5th Ed.[M]. John Wiley and Sons:New York,1997
    [14]Zou K, Zhang H, Duan X, Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J]. Chem. Eng. Sci.,2007,62:2022
    [15]Zhang H, Zou K, Guo S, Duan X. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides[J]. J. Solid State Chem.,2006,179:1791-1801
    [16]Kloprogge J T, Frost R L. Fourier transform infrared and raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites[J]. J. Solid State Chem.,1999,146: 506-515
    [17]Kagunya W, Baddour-Hadjean R, Kooli F, Jones W. Vibrational modes in layered double
    hydroxides and their calcined derivatives[J]. Chem.Phys.,1998,236:225-234
    [18]Xu Z P, Lu G Q. Hydrothermal Synthesis of Layered Double Hydroxides (LDH) from Mixed MgO and A12O3:LDH Formation Mechanism[J]. Chem. Mater.,2005,17: 1055-1062
    [19]Wei M, Yuan Q, Evans D G, Duan X. Layered solid as a "molecular container" for pharmaceutical agents:L-tyrosine-intercalated layered double hydroxides[J]. J. Mater. Chem.,2005,15:1197-1203
    [20]Yuan Q, Wei M, Evans D G, Duan X. Preparation and investigation of thermolysis of L-aspartic acid-intercalated layered double hydroxide[J]. J. Phys. Chem. B,2004,108: 12381-12387
    [21]Khan A I, Lei L, Norquist A J, O'hare D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide[J]. Chem. Comm., 2001,2342-2343
    [22]Gu Z, Thomas A C, Xu Z P, Campbell J H, Lu G Q. In vitro sustained release of LMWH from MgAl-layered Double Hydroxide nanohybrids[J]. Chem. Mater.,2008,20: 3715-3722
    [23]Gunawan P, Xu R. Direct control of drug release behavior from layered double hydroxides through particle interactions [J]. J. Pharm. Sci.,2008,97:4367-4378
    [24]Li B, He J, Evans D G, Duan X. Enteric-coated layered double hydroxides as a controlled release drug delivery system [J]. Int. J. Pharm.,2004,287:89-95
    [25]Ambrogi, V., Fardella, G., Grandolini, G., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents-I. Intercalation and in vitro release of ibuprofen[J]. Int. J. Pharm.,2001,220:23-32
    [26]Bhaskar R, Murthy S R S, Miglani B D, Viswanathan K. Novel method to evaluate diffusion controlled release of drug from resinate[J]. Int. J. Pharm.,1986,28:59-66
    [27]Gunawan P, Xu R. Direct assembly of anisotropic Layered Double Hydroxide (LDH) nanocrystals on apherical template for fabrication of Drug-LDH hollow nanospheres[J]. Chem. Mater.,2009,21:781-783
    [28]Xi G, Wang C, Wang X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur. J. Inorg. Chem.,2008,425-431
    [29]Bai W, Meng X, Zhu X, Jing C, Gao C, Chu J. Shape-tuned synthesis of dispersed magnetite submicro particles with good magnetic properties[J]. Physica E,2009,42: 141-145
    [30]Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem., Int. Ed.,2005,44:2782-2785
    [31]Zhang H, Zou K, Sun H, Duan X, A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [32]Xu Z P, Zeng H C. Abrupt structural transformation in Hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions.[J]. J. Phys. Chem. B,2001,105:1743-1749
    [33]Liang X, Wang X, Zhuang J, Chen Y T, Wang D S, Li Y D. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals[J]. Adv. Funct. Mater.,2006,16:
    1805-1813
    [34]Khedr M H, Omar A A, Abdel-Moaty S A. Magnetic nanocomposites:preparation and characterization of Co-ferrite nanoparticles[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,281:8-14
    [35]Gong C, Chen D, Jiao X, Wang Q. Continuous hollow a-Fe2O3 and a-Fe fibers prepared by the sol-gel method[J]. J. Mater. Chem.,2002,12:1844-1847
    [36]孙晓明.低维功能纳米材料的液相合成,表征与性能研究[D].清华大学博士学位论文,2005
    [37]Li L, Feng Y, Li Y, Zhao W, Shi J. Fe3O4 core/Layered Double Hydroxide shell nanocomposite:Versatile magnetic matrix for anionic functional materials[J]. Angew. Chem. Int. Ed.,2009,48:5888-5892
    [38]Li L, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T. Hollow nanoshell of layered double hydroxide[J]. Chem. Commun.,2006,3125-3127
    [39]Zhang H, Qi R, Evans D G, Duan X. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core[J]. J. Solid State Chem.,2004,177:772-780
    [40]Hu S-H, Liu T-Y, Huang H-Y, Liu D-M, Chen S-Y. Magnetic-sensitive silica nanospheres for controlled drug release [J]. Langmuir,2008,24:239-244
    [41]Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field [J]. Macromolecules,2007,40:6786-6788
    [42]Ghassabian S, Ehtezazi T, Forutan S M, Mortazavi S A. Dexamethasone-loaded magnetic albumin microspheres:preparation and in vitro release[J]. Int. J. Pharm.,1996,130:49-55
    [43]Viroonchatapan, E, Sato H, Ueno M, Adachi I, Tazawa K, Horikoshi I. Release of 5-fluorouracil from thermosensitive magnetoliposomes induced by an electromagnetic field[J]. J. Control. Rel.,1997,46:263-271
    [44]Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles[J]. J. Biosci. Bioeng.,2005,100:1-11
    [45]Xu H, Song T, Bao X, Hu L. Site-directed research of magnetic nanoparticles in magnetic drug targeting[J]. J. Magn. Magn. Mater.,2005,293:514-519
    [46]Aviles M O, Ebner A D, Ritter J A. Ferromagnetic seeding for the magnetic targeting of drugs and radiation in capillary beds[J]. J. Magn. Magn. Mater.,2007,310:131-144
    [47]Lubbe A S, Alexiou C, Bergemanm C. Clinical applications of magnetic drug targeting[J]. J. Surg. Res.,2001,95:200-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700