用户名: 密码: 验证码:
柔性配体构筑的配位聚合物的水热合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究由柔性配体构筑的金属-有机配位聚合物的合成与结构表征,旨在合成新颖的具有特殊结构特征的新型配位聚合物,并在合成研究的基础上,探讨特殊结构化合物的合成条件对产物结构的影响作用。
     研究体系主要包括利用柔性二吡啶类有机配体分子构筑配位聚合物,利用柔性二羧酸类有机配体分子构筑配位聚合物。本论文利用单晶X-射线衍射等表征手段对系列合成产物的结构与相关性能进行表征及测试。论文具体内容主要包括由柔性二吡啶类有机配体分子与不同过渡金属盐合成的配位聚合物(第二章),由柔性二羧酸类有机配体分子与不同过渡金属盐合成的配位聚合物(第三章)。论文还阐述了上述合成产物的制备条件与方法,有机配体分子对结构的影响作用以及特殊结构产物形成的原因,为利用柔性有机配体分子合成新型配位聚合物的进一步研究奠定了基础。
Metal-organic coordination polymers, new kind of functional molecule materials, have attracted much more attentions for their flexible tailoring, various topologies and promising application in ion-exchange, adsorption, molecular recognization, catalysts along with optics, electrics, magnetism and enantioselective separation. According to the principle of crystal engineering, it is possible that rational design and synthesis of porous crystalline materials by selecting certain geometric metal ions and special organic ligands. At the same time, coordination polymers can be endowed with optics, electric, magnetism, enantioselective separation and catalysis by selecting functional metal ions and organic ligands with functional groups. As the properties of the coordination polymers is determined by their chemical constituents and framework topologies, seeking the coordination polymers with the novel topology has been considered as the exploiting the functional properties of the coordination polymers. Therefore, it has been a challengeable work to rationally design and synthesize the coordination polymers with predetermined structures. Latest years, many research groups at home and abroad get a lot of great fruits in design, synthesis and functional development according to the principle of the crystal engineering. However, the synthesis mechanism is still not known due to the terrible complexity of the synthesis-chemistry in coordination polymer, especially, in the coordination polymers constructed with the flexible ligands. So it is need to deeply research and accumulate abundant experimental facts, finally to achieve the aims of molecular design and directional synthesis. In the last few years, large amounts of coordination polymers based on metal ions and rigid spacer ligands have been successfully synthesized. Interestingly, compared to a lot of attempt aimed at the development of compounds containing rigid ligands, the use of flexible ligands offers a greater degree of structural diversity that are more difficult to predict and conformational flexibility to enhance the possibility of forming supramolecular isomers. In fact, it is possible to construct the novel structures with the flexible ligands because the distances and angles between functional groups and forms of linkers of flexible ligands can be adjusted to fit the coordination surroundings, not to mention the flexible ligands with the aromatic rings. The flexible ligands with aromatic rings have enough rigidity to prevent the binding-sites from coordinating to one single metal center that may results to some novel structures with large pores; and these ligands have flexible units which can entangle or entwine, as a result, it is prone to form interpenetrating or helical structures. So these properties of the flexible ligand can lead to some novel structural coordination polymers.
     The aim of this thesis is to utilize the principles of crystal engineer to design and synthesize the metal-organic coordination polymers constructed from metal ions and organic ligands in order to find the new synthetic pathways of novel metal-organic coordination polymer and explore their structural characters and their physical properties.
     In chapter two, employed the flexible pyridyl ligand----1,3-bis(4-pyridyl)propane (bpp) as a bridging ligand, five novel coordination polymers were prepared and structurally characterized. Compound 1 exhibits a 1-D helical structures via the 1,3-bis(4-pyridyl)propane ligands linking the Mn2+ metal cations, the 1-D helical structures are interlaced; Compound 2 exhibits a 1-D pillar structure via the 1,3-bis(4-pyridyl)propane and terephthalic acid ligands linking the Ni2+ metal cations, the 1-D pillar structures of compound 2 are interpenetrated; Compound 3 exhibits a 2-D layer structure via the 1,3-bis(4-pyridyl)propane and terephthalic acid ligands linking the Zn2+ metal cations, the 2-D layer structures of compound 3 are interpenetrated; Compound 4 exhibits a 2-D layer structure via the 1,3-bis(4-pyridyl)propane and terephthalic acid ligands linking the Co2+ metal cations, the 2-D layer structures of compound 4 are interpenetrated; Compound 5 exhibits an unusual distorted noninterpenetrated (10,3) framework based on Zn2+ metal cations coordination with the mixed ligands of 1,3-bis(4-pyridyl)propane and 1,3,5-Benzenetricarboxylic acid.
     In chapter three, we synthesized a series of coordination polymers with novel structure using the O-bondingsites flexible ligand----4,4’-oxybis(benzoicacid) (H2oba). Compound 6 is a 3-D supramolecular structure via the hydrongen-bond interaction linking the 2-D layers which are formed through the oba ligands bridging the [Co(-CO2)2(H2O)2]n layers; Compound 7 is a 3-D supramolecular structure via the hydrongen-bond interaction linking the 2-D layers which are formed through the oba ligands bridging the [Zn(-CO2)2(H2O)]n chains; Compound 8 is a 3-D network via the oba ligands supporting the [Cd3Cl2]n4n+ inorganic layers with 6-rings windows formed with the Cd2+ metal cations and Cl- ions; Compound 9 is a 3-D network via the oba ligands supporting the [Mn(OH)]nn+ inorganic layers with 4-, 8-rings windows formed with the Mn2+ and the hydroxy; Compound 10 display 1-D chains through the ligands (4,4’-oxybis(benzoicacid) and 2,2’-bpy) bridging Co2+ metal cations. The lateral 2,2’-bpy ligands from adjacent chains are paired to furnish moderately strongπ-πstacking interactions, which extend the 1-D chains into 3-D supramolecular frameworks; Compound 11 display 1-D chains through the ligands (4,4’-oxybis(benzoicacid) and 1, 10-phen) bridging Ni2+ metal cations. The lateral 1, 10-phen ligands from adjacent chains are paired to furnish moderately strongπ-πstacking interactions, which extend the 1-D chains into 3-D supramolecular frameworks; Compound 5 is a 3-D network via the 4,4’-bipyridine ligands supporting the [Co(oba)] organic-inorganic hybrid layers formed with the Co2+ and 4,4’-oxybis(benzoicacid) ligands.
     These crystal compounds in this thesis are analyzed by X-ray diffraction in detail. Besides the studies on structures and properties of these newly synthesized materials, it is also explored in this research that how the reagents affect on structures and properties of crystal products; furthermore the effects of various experimental conditions, the reaction temperature, the reaction time, the PH, the mole ratio of reactants, and the like, on syntheses and the phase of synthetic products are investigated. Moreover, the related theories and principles of molecular rational design, molecular structural design, and hybrid synthetic methods of coordination polymers with both organic and inorganic molecules are summarized; the experimental conditions and causes of specific structural frameworks are exploited, and effects of organic components on inorganic micro-structure are discussed.
引文
[1]冯守华,谭持恒.化学的黄金时代[J].化学通报, 1998, (7): 9-14
    [2]张子高.中国化学史稿(古代之部) [M].北京:科学出版社, 1964
    [3]宋银柱,王耕霖,等译.配位化学[M].北京:北京大学出版社, 1982.
    [4] Werner A. Beitrag zur konstitution anorganischer verbindungen [J]. Zeitschrift für anorganische und allgemeine Chemie, 1893, 3: 267-330
    [5] O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J]. Accounts of Chemical Research, 2008, 41(12): 1782-1789
    [6] Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers [J]. Coordination Chemistry Reviews, 2007, 251(21-24): 2490-2509
    [7] Kubota Y, Takata M, Kobayashi T C, et al. Observation of gas molecules adsorbed in the nanochannels of porous coordination polymers by the in situ synchrotron powder diffraction experiment and the MEM/Rietveld charge density analysis [J]. Coordination Chemistry Reviews, 2007, 251(21-24): 2510-2521
    [8] Macgillivray L R, Papaefstathiou G S, Friscic T, et al. Supramolecular control of reactivity in the solid state: From templates to ladderanes to metal-organic frameworks [J]. Accounts of Chemical Research, 2008, 41(2): 280-291
    [9] Baburin I A, Blatov V A, Carlucci L, et al. Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge Structural Database [J]. Crystal Growth & Design, 2008, 8(2): 519-539
    [10] Ferey G. Hybrid porous solids: past, present, future [J]. Chemical Society Reviews, 2008, 37(1): 191-214
    [11] Ferey G, Mellot-Draznieks C, Serre C, et al. Crystallized frameworks with giant pores: Are there limits to the possible? [J]. Accounts of Chemical Research, 2005, 38(4): 217-225
    [12] Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds [J]. Chemical Society Reviews, 2005, 34(2): 109-119
    [13] Braga D, Brammer L, Champness N R. New trends in crystal engineering [J]. Crystengcomm, 2005, 7: 1-19
    [14] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers [J]. Angewandte Chemie-International Edition, 2004, 43(18): 2334-2375
    [15] Batten S R, Murray K S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide [J]. Coordination Chemistry Reviews, 2003, 246(1-2): 103-130
    [16] Papaefstathiou G S, MacGillivray L R. Inverted metal-organic frameworks: solid-state hosts with modular functionality [J]. Coordination Chemistry Reviews, 2003, 246(1-2): 169-184
    [17] Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coordination Chemistry Reviews, 2003, 246(1-2): 247-289
    [18] Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks [J]. Accounts of Chemical Research, 2001, 34(4): 319-330
    [19] Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks [J]. Coordination Chemistry Reviews, 1999, 183: 117-138
    [20] Buser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue:Fe4[Fe(CN)6]3.xH2O [J]. Inorganic Chemistry, 16(11): 2704–2710
    [21] Wells A F. Three Dimensional Nets and Polyhedra [M]. London: John Wiley, 1977
    [22] Wells A F. Structural Inorganic Chemistry [M]. New York: Oxford University Press, 1984
    [23] Bell M, Edwards A J, Hoskins B F, et al. Synthesis and X-Ray Crystal-Structures of Ni4 and Zn4 Complexes of a Macrocyclic Tetranucleating Ligand [J]. Journal of the American Chemical Society, 1989, 111(10): 3603-3610
    [24] O’Keeffe M, Eddaoudi M, Li H, et al. Frameworks for Extended Solids: Geometrical design Principles [J]. Journal of Solid State Chemistry, 2000, 152: 3-20.
    [25] O’Keeffe M, Hyde B G. Crystal Structures. I. Patterns and symmetry [M]. Washington, DC: Mineralogical Society of America, 1996
    [26]杨进.金属-有机羧酸配位聚合物的制备、结构及性能研究[D].吉林:吉林大学化学学院, 2007.
    [27]徐如人,庞文琴,霍启升,等.无机合成与制备化学[M].北京:高等教育出版社, 2009
    [28]胡亚微.由柔性双功能配体构筑的配位聚合物[D].吉林:吉林大学化学学院, 2008.
    [29] Carlucci L, Ciani G, Proserpio D M, et al. Polymeric networks of silver(I) and copper(I) ions linked by an anionic acetonyl derivative of tetracyanoethylene [J]. Angewandte Chemie-International Edition in English, 1996, 35(10): 1088-1090
    [30] Ma J F, Liu J F, Xing Y, et al. Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with 1,1'-(1,4-butanediyl)bis(imidazole) [J]. Journal of the Chemical Society-Dalton Transactions, 2000, (14): 2403-2407
    [31] Murry S G, Hartley F R. Coordination chemistry of thioethers, selenoethers, and telluroethers in transition-metal complexes [J]. Chemical Reviews, 1981, 81(4): 365–414
    [32] Goodgame D M L, Menzer S, Ross A T, et al. Use of Heterometal Combinations to construct Very Large Ring Frameworks; Synthesis and Structural Characterisation of the 36-Membered Ring Compound [{NiNd(4-picolylpyrrolidin-2-one)4(NCS)2(NO3)3}n] [J]. Journal of the Chemical Society-Chemical Communications, 1994, (18): 2605-2606
    [33] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469-472
    [34] Reineke T M, Eddaoudi M, Moler D, et al. Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO] [J]. Journal of the American Chemical Society, 2000, 122(19): 4843-4844
    [35] MacGillivray L R, Subramanian S, Zaworotko M J. Interwoven two- and three-dimensional coordination polymers through self-assembly of CuI cations with linear bidentate ligands [J]. Journal of the Chemical Society-Chemical Communications, 1994, (11): 1325-1326
    [36] Blake A J, Champness N R, Chung S S M, et al. Control of interpenetrating copper(I) adamantoid networks: synthesis and structure of {[Cu(bpe)2]BF4}n [J]. Chemical Communications, 1997, (11): 1005-1006
    [37] Herrero C, Lassalle-Kaiser B, Leibl W, et al. Artificial systems related to light driven electron transfer processes in PSII [J]. Coordination Chemistry Reviews, 2008, 252(3-4): 456-468
    [38] Zhuang W J, Zheng X J, Li L C, et al. Structural diversity and properties of M(II) 4-carboxyl phenoxyacetate complexes with 0D-, 1D-, 2D- and 3D M-cpoa framework [J]. Crystengcomm, 2007, 9(8): 653-667
    [39] Han L, Valle H, Bu X H. Homochiral coordination polymer with infinite double-stranded helices [J]. Inorganic Chemistry, 2007, 46(5): 1511-1513
    [40] Carlucci L, Ciani G, Macchi P, et al. Complex interwoven polymeric frames from the self-assembly of silver(I) cations and sebaconitrile [J]. Chemistry-a European Journal, 1999, 5(1): 237-243
    [41] Yaghi O M, Li H L, Davis C, et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids [J], Accounts of Chemical Research, 1998, 31(8): 474–484
    [42] He J H, Yu J H, Zhang Y T, et al. Synthesis, structure, and luminescent property of a heterometallic metal-organic framework constructed from rod-shaped secondary building blocks [J]. Inorganic Chemistry, 2005, 44(25): 9279-9282
    [43] Livage C, Egger C, Ferey G. Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: The example of cobalt(II) succinate [J]. Chemistry of Materials, 2001, 13(2): 410-414
    [44]何江华.新型金属-羧酸配位聚合物的合成、结构和性质研究[D].吉林:吉林大学化学学院, 2005.
    [45]石鑫. MOCC前体法:荧光金属-有机配位聚合物的设计与合成[D].吉林:吉林大学化学学院, 2004.
    [46]田歌.新型金属-多羧酸配位聚合物的合成、结构与性能的研究[D].吉林:吉林大学化学学院, 2006.
    [47] Ferey G. Microporous solids: From organically templated inorganic skeletons to hybrid frameworks ... ecumenism in chemistry [J]. Chemistry of Materials, 2001, 13(10): 3084-3098
    [48] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: From "simple" coordination polymers to organodiamine-templated molybdenum oxides [J]. Angewandte Chemie-International Edition, 1999, 38(18): 2639-2684
    [49] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angewandte Chemie International Edition, 1998, 37(11): 1460-1494
    [50] Lu J, Paliwala T, Lim S C, et al. Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4'-Bipyridine: Syntheses and Structures [J]. Inorganic Chemistry, 1997, 36(5): 923–929
    [51] Fujita M, Kwon Y J, Washizu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine [J]. Journal of the American Chemical Society, 1994, 116(3): 1151-1152
    [52] Losier P, Zaworotko M J. A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities [J]. Angewandte Chemie International Edition in English, 1996, 35(23-24): 2779-2782
    [53] Carlucci L, Ciani G, Proserpio D M, et al. Interpenetrating diamondoid frameworks of silver(I) cations linked by N,N-bidentate molecular rods [J]. Journal of the Chemical Society-Chemical Communications, 1994, (24): 2755-2756
    [54] Gable R W, Hoskins B F, Robson R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4-bipyridine)zinc hexafluorosilicate [J]. Journal of the Chemical Society-Chemical Communications, 1990, (23): 1677-1678
    [55] Yaghi O M, Li H L. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3 [J]. Journal of the American Chemical Society, 1996, 118(1): 1151-1152
    [56] Yaghi O M, Li G M. Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4-bpy)Cl] [J]. Angewandte Chemie International Edition in English, 1995, 34(2): 207-209
    [57] Yaghi O M, Li H L, Groy T L. A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O [J]. Inorganic Chemistry, 1997, 36(20): 4292–4293
    [58] Bi J H, Kong L T, Huang Z X, et al. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M = Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M = Co, Cu, Mn): A high HQ/CAT ratio catalyst for hydroxylation of phenols [J]. Inorganic Chemistry, 2008, 47(14): 6564-6564
    [59] Bi J H, Kong L T, Huang Z X, et al. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M = Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M = Co, Cu, Mn): A high HQ/CAT ratio catalyst for hydroxylation of phenols [J]. Inorganic Chemistry, 2008, 47(11): 4564-4569
    [60] Baca S G, Pope S J A, Adams H, et al. Cyanide-bridged Os(II)/Ln(III) coordination networkscontaining [Os(phen)(CN)4]2- as an energy donor: Structural and photophysical properties [J]. Inorganic Chemistry, 2008, 47(9): 3736-3747
    [61] Venkatakrishnan T S, Rajamani R, Ramasesha S, et al. Synthesis, crystal structure, and magnetic properties of hexanuclear [{MnL2}4{Nb(CN)8}2] and nonanuclear [{MnL2}6{Nb(CN)8}3] heterometallic clusters (L = bpy, phen) [J]. Inorganic Chemistry, 2007, 46(23): 9569-9574
    [62] Li P Z, Lu X M, Liu B, et al. Self-assembly of two chiral supramolecules with three-dimensional porous host frameworks: {[FeII(phen)3][(FeIIINa)Na(C2O4)3]}n and its enantiomer [J]. Inorganic Chemistry, 2007, 46(15): 5823-5825
    [63] Ni Z H, Kou H Z, Zheng L, et al. Assembly of azido- or cyano-bridged binuclear complexes containing the bulky [Mn(phen)(2)](2+) building block: Syntheses, crystal structures, and magnetic properties [J]. Inorganic Chemistry, 2005, 44(13): 4728-4736
    [64] Lu J, Shen E H, Yuan M, et al. A novel three-dimensional network constructed from tetramolybdate clusters linked via two types of copper complex fragments: Synthesis, characterization, and magnetic behavior of [{CuII(2,2'-bpy)}{CuII(IN)2}{Mo4O12(OH)2}] [J]. Inorganic Chemistry, 2003, 42(22): 6956-6958
    [65] Liu C M, Zhang D Q, Zhu D B. Mixed molybdenum-vanadium polyoxoanion-bridged trimetallic nanocluster complexes: Hydrothermal syntheses and crystal structures of {(MoVI6Mo2V8O40)MoVVIVO(PO4)[Co(phen)2(H2O)]2}[Co2(phen)2(OH)2(H2O)4]1/2 and {(MoVI5Mo3V8O40)MoVVIVO(PO4)[Co(phen)(en)(H2O)]2}[Co(phen)3]·1.5H2O [J]. Crystal Growth & Design, 2003, 3(3): 363-368
    [66] Liu G F, Ye B H, Ling Y H, et al. Interlocking of molecular rhombi into a 2D polyrotaxane network via pi-pi interactions. Crystal structure of [Cu2(bpa)2(phen)2(H2O)]2·2H2O (bpa2- = biphenyl-4,4 '-dicarboxylate, phen = 1,10-phenanthroline) [J]. Chemical Communications, 2002, (14): 1442-1443
    [67] Finn R C, Burkholder E, Zubieta J. The hydrothermal syntheses and characterization of one- and two-dimensional structures constructed from metal-organic derivatives of polyoxometalates: [{Cu(bpy)2}{Cu(bpy)(H2O)}(Mo5O15){O3P(CH2)4PO3}]·H2O and [{Cu2(tpypyz)(H2O)2}(Mo5O15)(O3PCH2CH2PO3)]·5.5H2O [bpy = 2,2'-bipyridine, tpypyz = tetra(2-pyridyl)pyrazine] [J]. Chemical Communications, 2001, (18): 1852-1853
    [68] Zhang X M, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of two bimetallic chain-like and cluster complexes [{Co(phen)2}2V6O17]n and [{Cu(phen)2}4V10O29]·6H2O [J]. Chemical Communications, 2000, (18): 1817-1818
    [69] Ruiz-Perez C, Hernandez-Molina M, Lorenzo-Luis P, et al. Magnetic coupling through the carbon skeleton of malonate in two polymorphs of {[Cu(bpy)(H2O)][Cu(bpy)(mal)(H2O)]}(ClO4)2 (H2mal = malonic acid; bpy = 2,2 '-bipyridine) [J]. Inorganic Chemistry, 2000, 39(17): 3845-3852
    [70] Escuer A, Mautner F A, Sanz N, et al. Two new one-dimensional compounds with end-to-end dicyanamide as a bridging ligand: Syntheses and structural characterization of trans-[Mn(4-bzpy)2(N(CN)2)2]n and cis-[Mn(Bpy)(N(CN)2)2]n, (4-bzpy = 4-benzoylpyridine; bpy = 2,2 '-bipyridyl) [J]. Inorganic Chemistry, 2000, 39(8): 1668-1673
    [71] Haouas M, Volkringer C, Loiseau T, et al. The Extra-Framework Sub-Lattice of the Metal-Organic Framework MIL-110: A Solid-State NMR Investigation [J]. Chemistry-a European Journal, 2009, 15(13): 3139-3146
    [72] Trung T K, Trens P, Tanchoux N, et al. Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr) [J]. Journal of the American Chemical Society, 2008, 130(50): 16926-16932
    [73] Salles F, Ghoufi A, Maurin G, et al. Molecular Dynamics Simulations of Breathing MOFs: Structural Transformations of MIL-53(Cr) upon Thermal Activation and CO2 Adsorption [J]. Angewandte Chemie-International Edition, 2008, 47(44): 8487-8491
    [74] Morris W, Doonan C J, Furukawa H, et al. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks [J]. Journal of the American ChemicalSociety, 2008, 130(38): 12626-12627
    [75] Llewellyn P L, Maurin G, Devic T, et al. Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation [J]. Journal of the American Chemical Society, 2008, 130(38): 12808-12814
    [76] Han S S, Furukawa H, Yaghi O M, et al. Covalent organic frameworks as exceptional hydrogen storage materials [J]. Journal of the American Chemical Society, 2008, 130(35): 11580-11581
    [77] Furukawa H, Kim J, Ockwig N W, et al. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra [J]. Journal of the American Chemical Society, 2008, 130(35): 11650-11661
    [78] Rosenbach N, Jobic H, Ghoufi A, et al. Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr) [J]. Angewandte Chemie-International Edition, 2008, 47(35): 6611-6615
    [79] Tranchemontagne D J L, Ni Z, O'Keeffe M, et al. Reticular chemistry of metal-organic polyhedra [J]. Angewandte Chemie-International Edition, 2008, 47(28): 5136-5147
    [80] Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. Journal of the American Chemical Society, 2008, 130(21): 6774-6780
    [81] Millange F, Serre C, Guillou N, et al. Structural effects of solvents on the breathing of metal-organic frameworks: An in situ diffraction study [J]. Angewandte Chemie-International Edition, 2008, 47(22): 4100-4105
    [82] Hwang Y K, Hong D Y, Chang J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation [J]. Angewandte Chemie-International Edition, 2008, 47(22): 4144-4148
    [83] Gould S L, Tranchemontagne D, Yaghi O M, et al. Amphidynamic character of crystalline MOF-5: Rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment [J]. Journal of the American Chemical Society, 2008, 130(11): 3246-3247
    [84] Ferey G, Millange F, Morcrette M, et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties [J]. Angewandte Chemie-International Edition, 2007, 46(18): 3259-3263
    [85] Furukawa H, Kim J, Plass K E, et al. Crystal structure, dissolution, and deposition of a 5 nm functionalized metal-organic great rhombicuboctahedron [J]. Journal of the American Chemical Society, 2006, 128(26): 8398-8399
    [86] Chen B L, Liang C D, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes [J]. Angewandte Chemie-International Edition, 2006, 45(9): 1390-1393
    [87] Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999
    [88] Mellot-Draznieks C, Serre C, Surble S, et al. Very large swelling in hybrid frameworks: A combined computational and powder diffraction study [J]. Journal of the American Chemical Society, 2005, 127(46): 16273-16278
    [89] Livage C, Guillou N, Chaigneau J, et al. A three-dimensional metal-organic framework with an unprecedented octahedral building unit [J]. Angewandte Chemie-International Edition, 2005, 44(40): 6488-6491
    [90] Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743): 2040-2042
    [91] Devic T, Serre C, Audebrand N, et al. MIL-103, a 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area [J]. Journal of the American Chemical Society, 2005, 127(37): 12788-12789
    [92] Rowsell J L C, Spencer E C, Eckert J, et al. Gas adsorption sites in a large-pore metal-organic framework [J]. Science, 2005, 309(5739): 1350-1354
    [93] Serre C, Millange F, Surble S, et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units [J]. Angewandte Chemie-International Edition, 2004, 43(46): 6286-6289
    [94] Guillou N, Livage C, Drillon M, et al. The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered ring channels [J]. Angewandte Chemie-International Edition, 2003, 42(43): 5314-5317
    [95] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423(6941): 705-714
    [96] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 300(5622): 1127-1129
    [97] Guillou N, Livage C, van Beek W, et al. A layered nickel succinate with unprecedented hexanickel units: Structure elucidation from powder-diffraction data, and magnetic and sorption properties [J]. Angewandte Chemie-International Edition, 2003, 42(6): 644-647
    [98] Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy [J]. Journal of the American Chemical Society, 2002, 124(45): 13519-13526
    [99] Guillou N, Pastre S, Livage C, et al. The first 3-D ferrimagnetic nickel fumarate with an open framework: [Ni3(OH)2(O2C-C2H2-CO2)(H2O)4]·2H2O [J]. Chemical Communications, 2002, (20): 2358-2359
    [100] Sanselme M, Greneche J M, Riou-Cavellec M, et al. [Fe2(C10O8H2)]: An antiferromagnetic 3D iron(II) carboxylate built from ferromagnetic edge-sharing octahedral chains (MIL-62) [J]. Chemical Communications, 2002, (18): 2172-2173
    [101] Millange F, Serre C, Ferey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Cr-III hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}x [J]. Chemical Communications, 2002, (8): 822-823
    [102] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469-472
    [103] Braun M E, Steffek C D, Kim J, et al. 1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks [J]. Chemical Communications, 2001, (24): 2532-2533
    [104] Eddaoudi M, Kim J, Wachter J B, et al. Porous metal-organic polyhedra: 25 angstrom cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks [J]. Journal of the American Chemical Society, 2001, 123(18): 4368-4369
    [105] Chen B L, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores [J]. Science, 2001, 291(5506): 1021-1023
    [106] Chen B L, Eddaoudi M, Reineke T M, et al. Cu-2(ATC)center dot 6H(2)O: Design of open metal sites in porous metal-organic crystals (ATC : 1,3,5,7-adamantane tetracarboxylate) [J]. Journal of the American Chemical Society, 2000, 122(46): 11559-11560
    [107] Lo S M F, Chui S S Y, Shek L Y, et al. Solvothermal synthesis of a stable coordination polymer with copper-I-copper-II dimer units: [Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n [J]. Journal of the American Chemical Society, 2000, 122(26): 6293-6294
    [108] Eddaoudi M, Li H L, Yaghi O M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties [J]. Journal of the American Chemical Society, 2000, 122(7): 1391-1397
    [109] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable andhighly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279 40 Reineke T M, Eddaoudi M, O'Keeffe M, et al. A microporous lanthanide-organic framework [J]. Angewandte Chemie-International Edition, 1999, 38(17): 2590-2594
    [110] Reineke T M, Eddaoudi M, Fehr M, et al. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites [J]. Journal of the American Chemical Society, 1999, 121(8): 1651-1657
    [111] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-1150
    [112] Ma L Q, Lin W B. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks [J]. Journal of the American Chemical Society, 2008, 130(42): 13834-13835
    [113] Wu C D, Hu A, Zhang L, et al. Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis [J]. Journal of the American Chemical Society, 2005, 127(25): 8940-8941
    [114] Hu A, Ngo H L, Lin W B. Chiral, porous, hybrid solids for highly enantioselective heterogeneous asymmetric hydrogenation of beta-keto esters [J]. Angewandte Chemie-International Edition, 2003, 42(48): 6000-6003
    [115] Hu A G, Ngo H L, Lin W B. Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones [J]. Journal of the American Chemical Society, 2003, 125(38): 11490-11491
    [116] Jiang H, Lin W B. Self-assembly of chiral molecular polygons [J]. Journal of the American Chemical Society, 2003, 125(27): 8084-8085
    [117] Cui Y, Lee S J, Lin W B. Interlocked chiral nanotubes assembled from quintuple helices [J]. Journal of the American Chemical Society, 2003, 125(20): 6014-6015
    [118] Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Accounts of Chemical Research, 2002, 35(7): 511-522
    [119] Cui Y, Evans O R, Ngo H L, et al. Rational design of homochiral solids based on two-dimensional metal carboxylates [J]. Angewandte Chemie-International Edition, 2002, 41(7): 1159-+
    [120] Evans O R, Ngo H L, Lin W B. Chiral porous solids based on lamellar lanthanide phosphonates [J]. Journal of the American Chemical Society, 2001, 123(42): 10395-10396
    [121] Lin W B, Wang Z Y, Ma L. A novel octupolar metal-organic NLO material based on a chiral 2D coordination network [J]. Journal of the American Chemical Society, 1999, 121(48): 11249-11250
    [122] Evans O R, Xiong R G, Wang Z Y, et al. Crystal engineering of acentric diamondoid metal-organic coordination networks [J]. Angewandte Chemie-International Edition, 1999, 38(4): 536-538
    [123] Lin W B, Evans O R, Xiong R G, et al. Supramolecular engineering of chiral and acentric 2D networks. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato)zinc and bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium [J]. Journal of the American Chemical Society, 1998, 120(50): 13272-13273
    [124] Lin W B, Lin W P, Wong G K, et al. Supramolecular approaches to second-order nonlinear optical materials. Self-assembly and microstructural characterization of intrinsically acentric [(aminophenyl)azo]pyridinium superlattices [J]. Journal of the American Chemical Society, 1996, 118(34): 8034-8042
    [125] Zhao B, Cheng P, Dai Y, et al. A nanotubular 3D coordination polymer based on a 3D-4f heterometallic assembly [J]. Angewandte Chemie-International Edition, 2003, 42(8): 934-936
    [126] Zhao B, Chen X Y, Cheng P, et al. Coordination polymers containing 1D channels as selective luminescent probes [J]. Journal of the American Chemical Society, 2004, 126(47):15394-15395
    [127] Zhao B, Cheng P, Chen X Y, et al. Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated "water" pipe [J]. Journal of the American Chemical Society, 2004, 126(10): 3012-3013
    [128] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments [J]. Journal of the American Chemical Society, 1989, 111(15): 5962–5964
    [129] Kinoshita Y, Matsubara I, Higuchi T, et al. The Crystal Structure of Bis(adiponitrilo)copper(I) Nitrate [J]. Bulletin of the Chemical Society of Japan, 1959, 32(11): 1221-1226
    [130] Gorter G, Verschoor G C. The crystal structure of catena-tri-2-(1,12-dodecanedinitrile)copper(II) hexachloroantimonate(V) Cu(C12H20N2)3(SbCl6)2 [J], Acta Crystallographica, 1976, B32: 1704-1707
    [131] Wang X W, Han L, Cai T J, et al. A novel chiral doubly folded interpenetrating 3D metal-organic framework based on the flexible zwitterionic ligand [J]. Crystal Growth & Design, 2007, 7(6): 1027-1030
    [132] Su Y, Zang S Q, Li Y Z, et al. Four d(10) metal coordination polymers containing isomeric thiodiphthalic ligands: Crystal structures and luminescent properties [J]. Crystal Growth & Design, 2007, 7(7): 1277-1283
    [133]王磊. 1,2,4-苯三酸及巯基多氮杂环构筑的配位聚合物水热合成、结构与性质表征[D].吉林:吉林大学化学学院, 2006.
    [134]郭晓丹.稀土金属有机羧酸骨架材料的制备、结构及性能研究[D].吉林:吉林大学化学学院, 2006.
    [135]方千荣.多孔及手性金属-有机骨架化合物的合成,结构与性能研究[D].吉林:吉林大学化学学院, 2007.
    [136] Kitagawa S, Kondo M. Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds [J]. Bulletin of the Chemical Society of Japan, 1998, 71(8): 1739-1753
    [137] Kondo M, Yoshitomi T, Seki K, et al. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4’-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn) [J]. Angewandte Chemie International Edition in English, 1997, 36(16): 1725-1727
    [138] Rowsell J L C, Millward A R, Park K S, et al. Hydrogen sorption in functionalized metal-organic frameworks [J]. Journal of the American Chemical Society, 2004, 126(18): 5666-5667
    [139] Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in metal-organic frameworks [J]. Angewandte Chemie-International Edition, 2005, 44(30): 4670-4679
    [140] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-527
    [141] Muller U, Lobree L, Hesse M, et al. Process for the epoxidation of an organic compound with oxygen or an oxygen-delivering compound using catalysts containing metal-organic frame-work materials. United States Patent, 6624318
    [142] Mueller U, Stoesser M, Ruppel R, et al. Process for the alkoxylation of organic compounds in the presence of novel framework materials. United States Patent, 7279517
    [143] Muller U, Luinstra G, Yaghi O M. Process for producing polyalkylene carbonates. United States Patent, 6617467
    [144] Mueller U, Hesse M, Lobree L, et al. Organometallic building materials and method for producing the same. United States Patent, 7119219
    [145] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404: 982-986
    [146] Xiong R G, You X Z, Abrahams B F, et al. Enantioseparation of racemic organic molecules by a zeolite analogue [J]. Angewandte Chemie-International Edition, 2001, 40(23): 4422-4425
    [147] He Z, Gao E Q, Wang Z M, et al. Coordination polymers based on inorganic lanthanide(III) sulfate skeletons and an organic isonicotinate N-oxide connector: Segregation into three structural types by the lanthanide contraction effect [J]. Inorganic Chemistry, 2005, 44(4): 862-874
    [148] Ma L, Evans O R, Fowman B M, et al. Luminescent lanthanide coordination polymers [J]. Inorganic Chemistry, 1999, 38(25): 5837-5840
    [149] Evans O R, Lin W B. Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks [J]. Chemistry of Materials, 2001, 13(8): 2705-2712
    [150] Moulton B, Lu J J, Hajndl R, et al. Crystal engineering of a nanoscale Kagome lattice [J]. Angewandte Chemie-International Edition, 2002, 41(15): 2821-2824
    [151] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+ layers: Square, honeycomb, and Kagome [J]. Journal of the American Chemical Society, 2006, 128(3): 674-675
    [152] Zang S Q, Su Y, Li Y Z, et al. Four 2D metal-organic networks incorporating Cd-cluster SUBs: hydrothermal synthesis, structures and photoluminescent properties [J]. Crystengcomm, 2009, 11(1): 122-129
    [153] Wang G H, Li Z G, Jia H Q, et al. Metal-organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence [J]. Crystengcomm, 2009, 11(2): 292-297
    [154] Ma L F, Wang L Y, Wang Y Y, et al. Synthesis, structures and properties of Mn(II) coordination frameworks based on R-isophthalate (R = -CH3 or -C(CH3)3) and various dipyridyl-type co-ligands [J]. Crystengcomm, 2009, 11(1): 109-117
    [155] Ma L F, Wang L Y, Lu D H, et al. Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of CoII-H2tbip/bpp Mixed Ligands System [J]. Crystal Growth & Design, 2009, 9(4): 1741-1749
    [156] Hao H Q, Liu W T, Tan W, et al. Enantiopure and Racemic Sandwich-like Networks with Dehydration, Readsorption, and Selective Guest-Exchange Phase Transformations [J]. Crystal Growth & Design, 2009, 9(1): 457-465
    [157] Han L, Zhou Y, Zhao W N, et al. Assembly of Metal-Organic Frameworks with Helical Layer: From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network [J]. Crystal Growth & Design, 2009, 9(2): 660-662
    [158] Zhang W H, Lang J P, Zhang Y, et al. Stepwise guest exchange in a cluster-supported three-dimensional host [J]. Crystal Growth & Design, 2008, 8(2): 399-401
    [159] Wang X L, Bi Y F, Chen B K, et al. Self-assembly of organic-inorganic hybrid materials constructed from eight-connected coordination polymer hosts with nanotube channels and polyoxometalate guests as templates [J]. Inorganic Chemistry, 2008, 47(7): 2442-2448
    [160] Wang G H, Li Z G, Jia H Q, et al. Topological diversity of coordination polymers containing the rigid terephthalate and a flexible N,N'-type ligand: Interpenetration, polyrotaxane, and polythreading [J]. Crystal Growth & Design, 2008, 8(6): 1932-1939
    [161] Liu G X, Huang Y Q, Chu Q, et al. Effect of N-donor ancillary ligands on supramolecular architectures of a series of zinc(II) and cadmium(II) complexes with flexible tricarboxylate [J]. Crystal Growth & Design, 2008, 8(9): 3233-3245
    [162] Lian F Y, Jiang F L, Yuan D Q, et al. Cd(II)-sulfonyldibenzoilate coordination polymers based on mono-, bi-, tri- and tetranuclear cores as nodes [J]. Crystengcomm, 2008, 10(7): 905-914
    [163] Hu Y W, Li G H, Liu X M, et al. Hydrothermal synthesis and characterization of metal-organic networks with helical units in a mixed ligand system [J]. Crystengcomm, 2008, 10(7): 888-893
    [164] Chen Y, Li H X, Liu D, et al. Solvent effects on the assembly of [Cu2I2]- or [Cu4I4]-basedcoordination polymers: Isolation, structures, and luminescent properties [J]. Crystal Growth & Design, 2008, 8(10): 3810-3816
    [165] Cao X Y, Li Z J, Zhang J, et al. Single- or double-stranded helices-sustained molecular bilayer architecture [J]. Crystengcomm, 2008, 10(10): 1345-1349
    [166] Mi L W, Hou H W, Song Z Y, et al. Rational construction of porous polymeric cadmium ferrocene-1,1'-disulfonates for transition metal ion exchange and sorption [J]. Crystal Growth & Design, 2007, 7(12): 2553-2561
    [167] Jia H P, Li W, Ju Z F, et al. [Co5(μ3-OH)2(btec)2(bpp)]n: a three-dimensional homometallic molecular metamagnet built from the mixed hydroxide/carboxylate-bridged ferrimagnetic-like chains [J]. Dalton Transactions, 2007, (33): 3699-3704
    [168] Clemente-Leon M, Coronado E, Gimenez-Lopez M C, et al. Structural, thermal, and magnetic study of solvation processes in spin-crossover [Fe(bpp)2][Cr(L)(ox)2]2·H2O complexes [J]. Inorganic Chemistry, 2007, 46(26): 11266-11276
    [169] Amiri M G, Mahmoudi G, Morsali A, et al. Zinc(II) nitrite coordination polymers based on rigid and flexible organic nitrogen donor ligands [J]. Crystengcomm, 2007, 9(8): 686-697
    [170] Luan X J, Chu Y C, Wang Y Y, et al. Formation of two-dimensional supramolecular water layer containing (H2O)18 morphology via dianion templating [J]. Crystal Growth & Design, 2006, 6(4): 812-814
    [171] Hu S, Zhou A J, Zhang Y H, et al. 1D tubular chains and 3D polycatenane frameworks constructed with Cu2X2 dimers (X = Br-, I-, CN-) and flexible dipyridyl spacers [J]. Crystal Growth & Design, 2006, 6(11): 2543-2550
    [172] Chen P K, Che Y X, Xue L, et al. Two 2-fold interpenetrated frameworks showing different topologies based on the isomerous benzenedicarboxylate mixed with a flexible N,N '-type ligand [J]. Crystal Growth & Design, 2006, 6(11): 2517-2522
    [173] Madalan A M, Kravtsov V C, Simonov Y A, et al. A unique diamondoid network resulting from the convolution of pi-pi stacking and lipophilic interactions [J]. Crystal Growth & Design, 2005, 5(1): 45-47
    [174] Marinho M V, Yoshida M I, Guedes K J, et al. Synthesis, crystal structure, and spectroscopic characterization of trans-Bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-th iopheneacetate-O))-dicopper(II), {[Cu2(O2CCH2C4H3S)4μ-(BPP)2]}n: From a dinuclear paddle-wheel copper(II) unit to a 2-D coordination polymer involving monatomic carboxylate bridges [J]. Inorganic Chemistry, 2004, 43(4): 1539-1544
    [175] Li X J, Cao R, Sun D F, et al. Syntheses and characterizations of zinc(II) compounds containing three-dimensional interpenetrating diamondoid networks constructed by mixed ligands [J]. Crystal Growth & Design, 2004, 4(4): 775-780
    [176] Konar S, Zangrando E, Drew M G B, et al. Synthesis, structural analysis, and magnetic behaviour of three fumarate bridged coordination polymers: five-fold interpenetrated diamond-like net of Ni-II, sheets of Ni-II and Co-II [J]. Dalton Transactions, 2004, (2): 260-266
    [177] Ghosh A K, Ghoshal D, Lu T H, et al. Novel solid-state molecular self-assemblies of manganese(II) constructed with flexible ligands: Influences of pi-pi and C-H center dot center dot center dot pi interactions on their crystal packing [J]. Crystal Growth & Design, 2004, 4(4): 851-857
    [178] Sugiyarto K H, McHale W A, Craig D C, et al. Spin transition centres linked by the nitroprusside ion. The cooperative transition in bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) nitroprusside [J]. Dalton Transactions, 2003, (12): 2443-2448
    [179] Sens C, Rodriguez M, Romero I, et al. Synthesis, structure, and spectroscopic, photochemical, redox, and catalytic properties of ruthenium(II) isomeric complexes containing dimethyl sulfoxide, chloro, and the dinucleating bis(2-pyridyl)pyrazole ligands [J]. Inorganic Chemistry, 2003, 42(6): 2040-2048
    [180] Konar S, Zangrando E, Drew M G B, et al. Syntheses, structural analyses, andmagneto-structural correlations of three polymeric Fe(II) complexes with azide ligand [J]. Inorganic Chemistry, 2003, 42(19): 5966-5973
    [181] Gao E Q, Bai S Q, Wang Z M, et al. One- and two-dimensional metal-dicyanamido complexes with a flexible bridging co-ligand: structural and magnetic properties [J]. Dalton Transactions, 2003, (9): 1759-1764
    [182] Carlucci L, Ciani G, Proserpio D M, et al. New architectures from the self-assembly of (MSO4)SII salts with bis(4-pyridyl) ligands. The first case of polycatenation involving three distinct sets of 2D polymeric (4,4)-layers parallel to a common axis [J]. Crystengcomm, 2003, 5: 190-199
    [183] Tong M L, Wu Y M, Ru J, et al. Pseudo-polyrotaxane and beta-sheet layer-based three-dimensional coordination polymers constructed with silver salts and flexible pyridyl-type ligands [J]. Inorganic Chemistry, 2002, 41(19): 4846-4848
    [184] Carlucci L, Ciani G, Proserpio D M, et al. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers base on bpp [J]. Crystengcomm, 2002, (22): 121-129
    [185] Bernauer K, Cabort A, Guicher N, et al. Carbonate binding to copper(II) in solution: mixed-ligand complex formation and its application to the isolation and separation of the three isomers of [Cu(bpp)(H2O)][ClO4]2 [bpp=2,6-bis(pyrrolidin-2-yl)pyridine] [J]. Journal of the Chemical Society-Dalton Transactions, 2002, (9): 2069-2073
    [186] Sung R C W, McGarvey B R. A study of the spin-state transition and phase transformation in [Fe(bpp)2][CF3SO3]2·H2O and [Fe(bpp)2][BF4]2 using Mn2+ electron spin resonance [J]. Inorganic Chemistry, 1999, 38(16): 3644-3650
    [187] Slattery S J, Bare W D, Jameson D L, et al. Redox regulation in ruthenium complexes containing beta-diketonate ligands and 2,6-bis(N-pyrazolyl)pyridine and its methyl-substituted derivatives [J]. Journal of the Chemical Society-Dalton Transactions, 1999, (8): 1347-1352
    [188] Liu J Q, Wang Y Y, Zhang Y N, et al. Topological Diversification in Metal-Organic Frameworks: Secondary Ligand and Metal Effects [J]. European Journal of Inorganic Chemistry, 2009, (1): 147-154
    [189] Sun C Y, Zheng X J, Chen X B, et al. Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands [J]. Inorganica Chimica Acta, 2009, 362(2): 325-330
    [190] Lan Y Q, Li S L, Fu Y M, et al. d(10)-Metal coordination polymers based on analogue di(pyridyl) imidazole derivatives and 4,4 '-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity [J]. Dalton Transactions, 2008, (47): 6796-6807
    [191] Yang J, Ma J F, Liu Y Y, et al. Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions [J]. Crystengcomm, 2009, 11(1): 151-159
    [192] Xue D X, Lin J B, Zhang J P, et al. Syntheses, structures and sorption properties of two framework-isomeric porous copper-coordination polymers [J]. Crystengcomm, 2009, 11(1): 183-188
    [193] Wang X F, Zhang Y B, Huang H, et al. Microwave-Assisted Solvothermal Synthesis of a Dynamic Porous Metal-Carboxylate Framework [J]. Crystal Growth & Design, 2008, 8(12): 4559-4563
    [194] Li G, Salim C, Hinode H. 1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1) [J]. Acta Crystallographica Section E-Structure Reports Online, 2008, 64: O2251-U1520
    [195] Dong W W, Li D S, Zhao J, et al. 1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1) [J]. Acta Crystallographica Section E-Structure Reports Online, 2008, 64: O2252-U1531
    [196] Martin D P, Staples R J, LaDuca R L. A Chiral Self-Catenated Dual-Ligand CoordinationPolymer Constructed from Three Distinct Interwoven Helical Motifs Interconnected by One-Dimensional Chains [J]. Inorganic Chemistry, 2008, 47(21): 9754-9756
    [197] Xu X Z, Wang P, Shi S J. catena-Poly[[[bis(methylamine)zinc(II)]-mu-4,4 '-oxydibenzoato] N,N-dimethyl-acetamide solvate] [J]. Acta Crystallographica Section E-Structure Reports Online, 2008, 64: M90-U870
    [198] Xu M L, Zhou R, Wang G Y. catena-Poly[[(4,7-diphenyl-1,10-phenanthroline)cadmium(II)]-mu-4,4'-oxydibenzoato] [J]. Acta Crystallographica Section E-Structure Reports Online, 2007, 63: M3135-U2477
    [199] Ma Y, Han Z B, He Y K, et al. A 3D chiral Zn(II) coordination polymer with triple Zn-oba-Zn helical chains (oba = 4,4'-oxybis(benzoate)) [J]. Chemical Communications, 2007, (40): 4107-4109
    [200] Martin D P, Supkowski R M, LaDuca R L. Self-catenated and interdigitated layered coordination polymers constructed from kinked dicarboxylate and organodiimine ligands [J]. Inorganic Chemistry, 2007, 46(19): 7917-7922
    [201] Yang J, Ma J F, Liu Y Y, et al. Organic-acid effect on the structures of a series of Lead(II) complexes [J]. Inorganic Chemistry, 2007, 46(16): 6542-6555
    [202] Kondo M, Irie Y, Miyazawa M, et al. Synthesis and structural determination of new multidimensional coordination polymers with 4,4'-oxybis(benzoate) building ligands: Construction of coordination polymers with heteroorganic bridges [J]. Journal of Organometallic Chemistry, 2007, 692(1-3): 136-141
    [203] Zhang J P, Lin Y Y, Huang X C, et al. Designed assembly and structures and photoluminescence of a new class of discrete Zn-II complexes of 1H-1,10-phenanthroline-2-one [J]. European Journal of Inorganic Chemistry, 2006, (17): 3407-3412
    [204] Qin C, Wang X L, Wang E B, et al. Two helical coordination polymers constructed from V-shaped and chelate ligands [J]. Journal of Coordination Chemistry, 2006, 59(11): 1225-1232
    [205] Sun C Y, Gao S, Jin L P. Hydrothermal syntheses, architectures and magnetic properties of six novel Mn-II coordination polymers with mixed ligands [J]. European Journal of Inorganic Chemistry, 2006, (12): 2411-2421
    [206] Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, Bi-, and trimetallic cores as nodes [J]. Chemistry-a European Journal, 2006, 12(10): 2680-2691
    [207] Sun C Y, Zheng X J, Gao S, et al. Multiple regulated assembly, crystal structures and magnetic properties of porous coordination polymers with flexible ligands [J]. European Journal of Inorganic Chemistry, 2005, (20): 4150-4159
    [208] Han Z B, Cheng X N, Chen X M. Effect of the size of aromatic chelate ligands on the frameworks of metal dicarboxylate polymers: From helical chains to 2-D networks [J]. Crystal Growth & Design, 2005, 5(2): 695-700
    [209] Xiao H P, Cheng Y Q, Li X H. catena-poly[[(2,2'-bipyridine)nickel(II)]-mu-4,4 '-oxydibenzoato] [J]. Acta Crystallographica Section E-Structure Reports Online, 2005, 61: M469-M470
    [210] Xiao H P, Wang J G, Li X H, et al. catena-Poly[[[(1,10-phenanthroline)nickel(II)]-mu-4,4 '-oxydibenzoato] 0.25-hydrate] [J]. Acta Crystallographica Section E-Structure Reports Online, 2005, 61: M257-M259
    [211] Kondo M, Irie Y, Shimizu Y, et al. Dynamic coordination polymers with 4,4 '-oxybis(benzoate): Reversible transformations of nano- and nonporous coordination frameworks responding to present solvents [J]. Inorganic Chemistry, 2004, 43(20): 6139-6141
    [212] Chen X M, Liu G F. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions [J]. Chemistry-a European Journal, 2002, 8(20): 4811-4817

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700