用户名: 密码: 验证码:
闽北天然阔叶林材种结构分析与生长收获预估模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以福建省闽北天然阔叶林为研究对象,应用福建省闽北地区复测的森林资源连续清查的150块固定样地数据,69块临时样地数据,1823株样木的现场造材数据,以及128株生物量样木数据,以统计分析SPSS软件为运算平台,运用测树学、森林经理学、森林资源资产评估等学科的理论和技术方法,分析了闽北天然阔叶林的材种结构规律,构建了材种出材率模型、林分生长预估模型、立木生物量估测模型、灌木、草本生物量模型,以及基于间隔期的生长收获动态预估模型,并探讨了该模型在天然阔叶林林木资产评估的应用,分析了不同情况下林木资产评估值的变化规律。研究结果对闽北地区森林资源动态监测、经营管理、资产评估和以及碳储量测算等有着重要的理论意义和实际应用价值,主要结果如下:
     (1)应用现场造材资料分析径阶材种结构规律,在此基础上选择合适方程建立材种出率模型并编制了二元径阶材种出材率表。为方便生产应用,在建立了树高曲线模型后,通过二元材种出材率表导出了一元材种出材率表。
     利用相关数据分析林分材种结构规律,以林分平均胸径和平均高为辅助变量采用联合估计法解决各材种出材率模型不兼容问题,并利用免疫进化算法求算模型参数,研制了林分材种出材率模型。经检验,模型精度较高,在林业生产上有实用价值。
     探讨了应用削度方程结合威布尔分布函数、相对树高曲线模型及其他一些辅助方程编制林分材种出材率表的技术方法。
     (2)利用样地资料建立闽北天然阔叶林林分生长模型并提出预估方法。考虑到立地质量的差异会影响模型的拟合结果,把立地质量分为四个地位等级。将地位等级设为哑变量,建立了地位级指数模型。建立的蓄积量,断面积、平均胸径、平均高等因子的全林分模型以及推导出的闽北天然阔叶林林分自然稀疏模型,可以实现对天然阔叶林小班森林资源数据进行连续预估和动态更新。
     (3)采用联合估计法解决生物量各分量模型不兼容问题并利用免疫进化算法求解模型参数,建立了闽北天然阔叶林的立木生物量估测模型以及林下灌、草生物量模型,并编制了阔叶林的立木生物量表。
     (4)提出了用预估间隔期代替林分年龄来建立天然异龄林生长模型的技术。考虑到不同立地质量会影响模型的拟合效果,引入含有立地质量的变量为哑变量,建立起以间隔期为主要辅助因子的林分生长收获动态模型,并利用蚁群算法估计模型参数,为天然异龄林生长收获预估模型的研制提供了新技术途径。
     用预估间隔期代替林分年龄来建立天然异龄林生长模型,为天然阔叶林资产评估择伐收益法的应用提供了技术保障。在此基础上,探讨了天然阔叶林资产评估技术,分析了择伐强度和利率的变化对林木资产评估值的影响,为提高森林资源资产评估,尤其是天然异龄林资产评估的准确性提供了理论依据。
The paper taked the natural broad-leaved forest in North-Fujian as the research object, with the data of provincial forest resource inventory by the150fixed sample plots,1823sample trees made materials data,69sample plots and128biomass sample trees, using the statistical software SPSS operation platform, by the theory and technology method of forest mensuration, forest management, forest resource asset evaluation method etc., the paper analysised the law of the timber assortment structure, the merchantable volume model, the whole stand growth-yield models, biomass estimation model, shrub and herbal biomass model, also including the growth-yield model with the interval.Meanwhile, the paper also analyzed the application of assets evalution of the natural broad-leaved forest and discussed the change of the asset assessment under the different circumstances. It had the important practical value on dynamic monitoring of forest resources, management, assets evaluation and the calculation of carbon reserves measures in the north Fujian province. The main research content and summary are as follows:
     (1) Using the sample timbers on the spot which analysed the law of diameter grade timber assortment structure, On this basis, the paper chose the proper equation which builded the volume ratio model of timber assortment and compiled the two dimension merchantable volume yielding volume rate tables. In order to facilitate the production and application, after that the tree height curve model was been established, the one dimension merchantable volume yielding volume rate tables had been exported by the two dimension merchantable volume yielding volume rate tables.
     Analysing the plant timber assortment structure rules by the related data, the paper taked the stand average diameter and average height as the auxiliary variables, and employed the joint estimation method which used to solve the volume model incompatible.Meanwhile, the stand of volume ratio model was constructed by using the immune evolutionanry algorithm to calculate the model parameter.Through tested, the volume ratio model had been higher precion and had practical value in forestry production.
     The paper discussed technical method for fomating the stand of volume ratio table by application of the tape equation, Weibull distubition function, the relative tree height curve model, and some other auxiliary equation.
     (2)Using the sample data, the stand growth model was been established and then the forecast method was put forwarded. Considering the difffrenence of site class which would be effected the result, the research putted the site classes dividing into four grades. Taked the rank as the dummy variable, the site class index model was conctructed. The whole stand model of the Volume model, the basal area model, the average breast height-diameter and the average height etc. including the natural sparse model which was inferred could be brought about continuous prediction and dynamic updating for natural broad-leaved forest resources.
     (3)Using the joint estimation to solve the problem that the biomass models of each compoents was not compatiable, the immune evolutionanry algorithm had been used for the model parameters.the model estimation of tree biomass, the understory shrubs, herbaceous biomass models in North-Fujian province were constructed and the tree biomass table were drew up.
     (4) The technology building natural uneven-aged forest growth model by using the prediction interval instead of the stand age were established. Considering the difffrenence of the site class that would be effected the result, the stand growth and yield model taken the interval as the main auxiliary factor were established throught incorporating the dummy variable including the site quality variable, and to estimate the model parameters by the ant colony algorithm, what provided a new technical approach for formatting the natural uneven aged forest growth and yield prediction model.
     It offered technical support to establish the model of natural uneven age forest by the prediction interval instead of stand age for application of natural broad-leaved forest assets evaluation selection cutting income method.On the basis, the assessment technique for the assets of natural broad-leaved forest were be discussed, and also analyzed the impact for the forest assets valuation by the change of selective cutting intensity and the rate, which can be improved the asset assessment for forest resources, especially provided the theoretical basis for the accuracy of natural uneven aged forest asset assessment.
引文
[1]蔡小英,洪伟,吴承祯,等.武夷山国家级自然保护区黄山松天然林自然稀疏规律研究[J].热带亚热带植物学报,2008,16(5):414-418.
    [2]蔡学彩,李镇清,陈佐忠,等.内蒙古草原大针茅群落地上生物量与降水量的关系[J].生态学报,2005,25(7):45-61.
    [3]陈白璧,戚晓芳,李宝银.福建省阔叶林空间异质性和空间格局分析[J].林业资源管理,2011,(6):54-58.
    [4]陈昌雄,黄宝龙,林立法.南平市延平区天然阔叶林直径分布的研究[J].福建林业科技,2004,31(1):1-4,9.
    [5]陈晨,刘光武,黄家荣.马尾松人工林经营密度模型研究[J].安徽农业科学,2011,39(23):14078-14081.
    [6]陈晨,刘光武,康文涛,等.马尾松人工林地位指数BP模型研究[J].西北林学院学报,2009,(2):128-130.
    [7]陈春雷.二类森林资源调查数据库系统模型探讨[J].华东森林经理,1996,10(1):66-72.
    [8]陈高,代力民,周莉.受干扰长白山阔叶红松林林分组成及冠层结构特征[J].生态学杂志,2004,23(5):116-120.
    [9]陈灵芝,任继凯,鲍显诚,等.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173-181.
    [10]陈梦雄.择伐强度与择伐周期的合理确定[J].陕西林业科技,1995,4:48-51.
    [11]陈平留,陈隆安.森林资产评估中的利率确定[J].林业经济,1994,(6):72-75.
    [12]陈平留,刘健,陈昌雄,等.小班生产条件调查方法研究[J].福建林业科技,2004,31(1):81-84.
    [13]陈平留,刘健,郑德祥,等.福建省森林资源资产评估存在的问题与对策[J].林业经济问题,2001,21(3):133-135.
    [14]陈平留,刘健.人工用材林资产评估的实践与探索[J].林业调查规划参考资料,1995,(3):74-79.
    [15]陈平留,刘健.森林资源资产评估运作技巧[M].北京:中国林业出版社,2002.52-60,94,156,158-159.
    [16]陈平留.福建省森林资源资产评估存在的问题与对策[J].林业工作研究,2001,(4):21-26.
    [17]陈平留.森林资产评估[M].成都:电子科技大学出版社,1996.
    [18]陈新兴.森林资源资产核查和评估技术方法探讨[J].林业资源管理,1996,(6):13-18.
    [19]陈永富.基准年龄立地质量评价的影响分析[J].林业科学研究,2010,(2):283-287.
    [20]谌红辉,方升佐,J‘贵杰,等.马尾松人工同龄纯林自然稀疏规律研究[J].林业科学研究,2010,(1):13-17.
    [21]戴玉才,林翊.森林资产评估浅探[J].林业经济,1991,(1):46-52.
    [22]党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2): 95,107.
    [23]邓成,梁志斌.国内外森林资源调查对比分析[J].林业资源管理,2012,(5):12-17.
    [24]邓红兵,郝占庆,王庆礼等.红松单木高生长模型的研究[J].生态学杂志,1999,18(3):19-22.
    [25]丁建立,李华峰.基于免疫进化算法的航班过站时问优化模型[J].计算机工程与设计,2012,33(9):3637-3640.
    [26]董乃钧.对我国森林经营问题的思考[J].林业资源管理,2011,(6):1-5.
    [27]董文宇,邢志远,惠淑荣,等.利用Weibull分布描述日本落叶松的直径结构[J].沈阳农业大学学报,2006,37(2):225-228.
    [28]杜纪山,唐守正,王洪良.天然林分生长模型在小班数据更新中的应用[J].林业科学,2000,36(3):52-58.
    [29]杜纪山,唐守正,王洪良.天然林区小班森林资源数据的更新模型[J].林业科学,2000,36(2):26-32.
    [30]段钦华,杨实如.曲柄滑块机构动力学参数优化设计[J].成都大学学报(自然科科版),2002,21(3):18-22.
    [31]方江平.西藏南伊沟林芝云杉林生物量与生产力研究[J].林业科学研究,2012,25(5):582-589.
    [32]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产[J].生态学报,1996,16(5):497-508.
    [33]房昌琳.青海云杉天然次生林生物量和生产力的初步研究[J].青海大学学报,1991,9(1):71-78.
    [34]冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [35]付尧,马炜,王新杰,等.小兴安岭长白落叶松相容性生物量模型的构建[J].东北林业大学学报,2011,39(7):42-45.
    [36]高十成.森林资源资产评估方法的探讨[J].内蒙古林业,1996,(8):31-32.
    [37]谷风,席劲瑛,胡洪营,等.利用臭氧控制VOCs生物过滤塔生物量[J].土木建筑与环境工程,2012,34(1):113-117.
    [38]国家林业局森林管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010,(1):1-8.
    [39]洪玲霞,雷相东,李永慈.蒙古栎林全林整体生长模型及其应用[J].林业科学研究,2012,25(2):201-206.
    [40]侯景伟,孔云峰,孙九林.蚁群算法在需水预测模型参数优化中的应用[J].计算机应用,2012,32(10):2952-2955,2959.
    [41]侯元兆.森林环境价值核算[M].北京:中国科学技术出版社,2002.
    [42]胡春祥,杨胜利,贾炜炜.落叶松人工林树干形状模型和可变参数[J].应用生态学报,2011,22(7):1695-1701.
    [43]胡萍.日本落叶松林分生长预测及收获预估[D].甘肃农业大学硕十学位论文,2007.
    [44]胡晓龙.长白落叶松林分断面积生长模型的研究[J].林业科学研究,2003,16(4):449-452.
    [45]黄良增,王索萍,江希钿.柳杉削度方程及材种出材率的研究[J].福建林学院学报,2002,22(1):1-3.
    [46]黄清麟,李远红.福建天然阔叶林经营类型组织的研究[J].福建林学院学报,2000,20(2):118-121.
    [47]黄清麟,郑群瑞,阮学瑞.福建青冈萌芽林分结构及生产力的研究[J].福建林学院学报,1995,15(2): 107-111.
    [48]黄如楚.系统抽样方法在典型天然阔叶林调查中的应用[J].山地学报,2012,30(4):450-453.
    [49]黄姗姗,陈步峰,黄俊彪,等.帽峰山森林士壤碳氮随雨季月及土壤深度的时空变化特征[J].生态环境学报,2012,21(7):1211-1217.
    [50]惠刚盈,张连金,胡艳波,等.Richards多形地位指数模型研建新方法——参数置换法[J].林业科学研究,2010,23(4):481-486.
    [51]惠淑荣,刘强,张国伟.Reineke密度指数在日本落叶松林分自然稀疏模型研究中的应用[J].沈阳农业大学学报,1999,30(5):520-522.
    [52]惠淑荣,吕永震Weibull分布函数在林分直径结构预测模型中的应用研究[J].北华大学学报:自然科学版,2003,4(2):101-104.
    [53]霍振彬,王宏伟.充分发挥资产评估在林权制度改革中的作用(二)--我国森林资源资产评估现状分析[J].中国资产评估,2007,(6):12-14.
    [54]贾乃光.数理统计[M].北京:中国林业出版社,1999.
    [55]江传阳.天然阔叶林生长收获动态预估模型的研究[J].林业勘察设计,2007,(2):9-12.
    [56]江海.缙云县森林资源资产评估现状与对策[J].浙江林业科技,2012,32(4):74-77.
    [57]江浩,黄钰辉,周国逸,等.南亚热带常绿阔叶林林冠层附生植物及其宿主叶片的形态解剖特征[J].生态环境学报,2011,20(12):1805-1812.
    [58]江希钿,黄娘增,杨锦昌,等.杉木人工林林分出材率表编制方法的研究[J].浙江林学院学报,2000,17(3):294-297.
    [59]江希钿,林文龙,刘玉明,等.马尾松人工林材种出材率表的编制[J].林业勘察设计,2001,(2):10-13.
    [60]江希钿,林文清.柳杉单木直径生长及形状指数模型[J].福建林学院学报,1995,15(3):267-271.
    [61]江希钿,罗明永,黄以平.地位指数多形曲线的优化及与同形曲线的比较[J].福建林学院学报,1996,16(2):130-134.
    [62]江希钿,杨主泉.闽北天然阔叶林生长模型的研制及应用[J].武汉植物学研究,2003,21(3):221-225.
    [63]江希钿,庄晨辉,陈信旺,等.免疫进化算法在建立地位指数曲线模型中的应用[J].生物数学学报,2007,22(3):515-519.
    [64]姜磊,陆元昌,廖声熙,等.滇中高原云南松林分直径结构研究[J].林业科学研究,2008,21(1):126-130.
    [65]姜文虎,赵邦宏,黄选瑞,等.森林资源资产评估管理问题研究[J].河北林业科技,2008,6(2):19-20.
    [66]蒋林,廖承锐,陈丽芳,等.经营密度及混交对广西柳杉林分生长的影响[J].南方农业学报,2012,43(5):662-665.
    [67]金明,丁贵杰.贵州马尾松单株木二元材种出材率表的编制[J].浙江农林大学学报,2011,28(4):576-582.
    [68]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    [69]孔祥海,李振基.福建梅花山国家级自然保护区常绿阔叶林的群落学特征[J].厦门大学学报:自然科学版,2011,50(3):645-650.
    [70]赖建明.明溪县天然阔叶林地位级指数表编制研究[J].林业勘察设计,2011,(2):20-22.
    [71]李宝银.天然阔叶林标准收获表的研究[J].福建林学院学报,2005,25(4):323-326.
    [72]李凤日,蒋伊尹,刘兆刚.广义Korf生长方程的推导及其应用[J].林业资源管理,1997(特刊),212-216.
    [73]李凤目,吴俊民Richards生长函数与Sehnute生长模型的比较[J].东北林业大学学报,1993,21(4):]5-23.
    [74]李海奎,赵鹏祥,雷渊才,等.基于森林清查资料的乔木林生物量估算方法的比较[J].林业科学,2012,48(5):44-52.
    [75]李俊,余济云,胡焕香.昌化江流域天然林直径结构研究[J].中南林业科技大学学报,2012,32(3):37-43.
    [76]李淑花.第二代杉木人工林生物量的估测与分布特征研究[D].中南林业科技大学硕士论文,2006.
    [77]李婷婷,郑小贤,宁杨翠,等.出材率表简易编制方法研究--以浙江省开化林场人工林为例[J].西北林学院学报,2012,27(1):155-157
    [78]李婷婷,郑小贤.一元材积表与一元出材率表的相关性分析---以福建省永安市尾叶桉为例[J].林业资源管理,2010,(2):69-72.
    [79]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981:34-50.
    [80]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    [81]李晓慧,陆元吕,袁彩霞,等.六盘山林区林分直径分布模型研究[J].内蒙古农业大学学报:自然科学版,2006,27(4):68-72.
    [82]李意德,张振才.尖峰岭热带山地雨林生物量的初步研究[J].植物生态与地植物学报,1992,16(4):293-300.
    [83]李煜,马良.用量子蚁群算法求解大规模旅行商问题[J].上海理工大学学报,2012,34(2):355-358.
    [84]李志斌.森林资源资产特点及评估存在的问题和建议[J].中国林业经济,2008,(3):12-14.
    [85]李柞泳,张正健,余春雪.基于免疫进化的粒子群混洗蛙跳算法[J].计算机应用,2011,31(12):3288-3291.
    [86]廖海波,万中英,王明文.免疫进化的投影寻踪模型在文本分类中的应用[J].广西师范大学学报:白然科2011,29(1):123-128.
    [87]林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究[J].福建林学院学报,2003,23(3):261-265.
    [88]林杰,林新生.森林资源资产评估与管理的若干问题探讨[J].林业调查规划参考资料,1995,(3):68-73.
    [89]林鹏,卢吕义,林光辉,等.九龙江口红树林研究--Ⅰ.秋茄群落的生物量和生产力[J].厦门大学学报:自然科学版,1985,24(4),508-513.
    [90]林鹏,尹毅,卢吕义.广西红海榄群落的生物量和生产力[J].厦门大学学报:自然科学版,1992, 31(2):199-202.
    [91]刘春江.北京西山地区人土油松栓皮栋混交林生物量和营养元素循环的研究[J].北京林业大学学报.1987.9(1):1-9.
    [92]刘东兰,周宁,郑小贤.杉木人工林地位指数表简捷编制方法研究[J].林业资源管理,2012,(1):61-65.
    [93]刘梅娟,王利东,石道金,等.集体森林资源资产评估体系建设研究回顾与展望[J].林业经济,2012,(10):61-67.
    [94]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46.
    [95]刘微,李凤日.落叶松人工林与距离无关的单木生长模型[J].东北林业大学学报,2010,38(5):24-27.
    [96]刘相兵 刘亚茜 李兵兵,等.生态疏伐对林分密度及直径结构的影响[J].西北林学院学报,2012,27(3):145-149.
    [97]刘煊章.不同年龄马尾松林生物量的研究[J].林业资源管理,1993,(2):77-80.
    [98]刘兆刚,李凤日,于金成.落叶松人工林单木模型的研究[J].植物研究,2003,23(2):237-244.
    [99]刘志刚.兴安落叶松林生物量及生产力的研究[D].北京林业大学硕士论文,1990.
    [100]卢建国,王海涛,何兴东,等.毛乌素沙地半固定沙丘油篙种群对土壤湿度空间异质性的响应[J].应用生态学报,2006,17(8):1469-1474.
    [101]卢军,李凤日,张会儒,等.帽儿山天然次生林主要阔叶树种叶量分布模拟[J].林业科学,2011,47(12):114-120.
    [102]卢军,张会儒,李凤日.大兴安岭天然林林分生长模型研究[J].林业资源管理,2011,(3):33-36.
    [103]鲁滨逊·戈雷格里.森林资源经济学[M].北京:中国林业出版社,1985:210-217.
    [104]吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征[J].植物生态学报,2007,31(1):11-22.
    [105]罗大庆,郑维列,王景生,等.西藏米拉山白桦种群生物量和生长量研究[J].应用生态学报,2004,15(8):1329-1333
    [106]罗云建,王效科,张小全,等.华北落叶松人工林生物量的估算方法[J].南京林业大学学报:自然科学版,2010,34(3):51-56.
    []07]罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129-134.
    [108]马丰丰,贾黎明.林分生长和收获模型研究进展[J].世界林业研究,2008,21(3):21-25.
    [109]马华文,贾炜玮.森林资源资产评估研究现状[J].林业科技情报,2008,40(1):11-12.
    [110]马森林,林娟,江希钿,等.投影寻踪回归方法在林分出材率预测中的应用[J].福建林学院学报,2012,32(1):60-63.
    [111]孟宪宇,邱水云.长白落叶松直径分布收获模型的研究[J].北京林业大学学报,1991,13(4):9-16.
    [112]孟宪宇,张弘.杉木人工林单木模型的研究[J].北京林业大学学报,1996,(2):1-8.
    [113]孟宪宇.测树学[M].北京:中国林业出版社,2006.
    [114]孟宪宇.闽北杉木人工林单木模型[J].北京林业大学学报,1996,18(2):1-8.
    [115]莫江明,彭少麟,Sandra Brown,等.鼎湖山马尾松林群落生物量生产对人为干扰的响应[J].生态学报,2004,24(2):193-200.
    [116]宁杨翠,郑小贤,刘东兰,等.云冷杉天然林林分年龄预测--以金沟岭林场为例[J].西北林学院学报,2012,27(1):158-162.
    [117]宁波.樟子松人工林结构动态及生物量的研究[D].东北林业大学博十论文,2007.
    [118]欧阳勋志,廖为明,彭世揆.天然阔叶林景观质量评价及其垂直结构优化技术[J].应用生态学报,2007,18(6):1388-1392.
    [119]潘辉,连欣俐,肖胜,等.森林资源动态管理技术的研究报告[J].林业资源管理,1997,(3):23-29.
    [120]沈亚洲,孙晓梅,张江涛,等.甘肃小陇山林区日本落叶松人工林单株生物量的研究[J].林业科学研究,2011,24(4):517-522.
    [121]石丽萍,冯仲科.人工林生长与收获预测模型的基本方法[J].北京林业大学学报,2005,27(2):222-225.
    [122]石莎,冯金朝,周芸芸.京津风沙源治理工程区植被地上生物量与净第一性生产力动态[J].应用基础与工程科学学报,2010,18(6):886-894.
    [123]石炜,孙梁,董古民,等.基于蚁群算法的LED分拣路径优化[J].机械工程学报,2012,48(15):144-149.
    [124]首静.资产评估市场法探微[J].财会月刊(综合版),2005,(2):55-56.
    [125]孙福清.现行市价法在林木资产评估中的运用[J].中国资产评估,2007,(11):11-12.
    [126]孙圆,佘光辉.江苏省杨树二元材种出材率表的编制[J].南京林业大学学报:自然科学版,2006,30(4):47-50.
    [127]覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2004,31(3):198-201.
    [128]唐守正,李希菲.林分生长模型研究的进展[J].林业科学研究,1993,6(6):672-679.
    [129]唐守正,张会儒.相容性生物量模型的建立及其估计方法的研究[J].林业科学,2000,36(1):19-27.
    [130]唐守正.多元统计分析方法[M].北京:中国林业出版社,1984.
    [131]唐守正.广西大青山马尾松全林整体生长模型及其应用[J].林业科学研究,1991,4(增):8-13.
    [132]王宏全,孙晓梅,张灿明,等.北亚热带高山区日本落叶松林相容性生物量模型研究[J].东北农业大学学报,2011,42(2):131-138.
    [133]王俊峰,欧光龙,唐军荣,等.临沧膏桐种植区灌木群落生物量估测模型研究[J].西部林业科学,2012,41(6):53-57.
    [134]王鹏程,庄尔奇,涂炳坤,等.湖北省马尾松人工林削度方程及材种出材率表的研究[J].华中农业大学学报,2001,20(1):67-72.
    [135][200]王香春,张秋良,春兰,等.大青山落叶松人工林直径分布规律的研究[J].山东农业大学学报,2011,42(3):349-355.
    [136]王小明,卢军,李凤日.北方天然次生林主要阔叶树种树冠建模及应用[J].南京林业大学学报:自然科学版,2012,36(4):7-12.
    [137]王孝安,段仁燕,王明利.太白红杉单木胸径生长模型的研究[J].武汉植物学研究,2005,23(2):157-162.
    [138]王秀云,黄建松,程光明,等.用weibull分布拟合刺槐林分直径结构的研究[J].林业勘察设计,2004,(2):1-3.
    [139]王迎,王晓婷,任恒祺.借鉴国外经验推进我国森林科学经营[J].林业经济,2012,(3):46-49.
    [140]王玉平,陶建平,刘晋仙,等.不同光环境下6种常绿阔叶林树种苗期的叶片功能性状[J].林业科学,2012,48(11):23-29.
    [141]王忠诚,朱光玉,文仕知,等.利用哑变量研究湘西桤木林分优势平均高与平均高的相关关系[J].中国农学通报,2011,27(5):37-44.
    [142]王仲锋,冯仲科.森林蓄积量与生物量转换的CVD模型研究[J].北华大学学报:自然科学版,2006,7(3):265-268.
    [143]威廉A.鲁斯克纳.森林资源经营管理概论[M].哈尔滨:东北林业大学出版社,1987:201,208.
    [144]魏占才.长白落叶松人工林林分模型的应用[J].东北林业大学学报,2006,34(4):31-33.
    [145]吴承祯,洪伟.杉木人工林直径结构模型的研究[J].福建林学院学报,1998,18(2):110-113.
    [146]武传胜,沙丽清,张一平.哀牢山中山湿性常绿阔叶林凋落物对士壤呼吸及其温度敏感性的影响[J].东北林业大学学报,2012,40(6):37-40.
    [147]肖君,方升佐,徐锡增.南方型杨树人工林直径和断面积预估模型的研究[J].江苏林业科技,2006,33(5):5-7.
    [148]肖兴威.中国森林生物量生产力的研究[D].东北林业大学博士论文,2005.
    [149]肖以华,陈步峰,潘勇军,等.广州帽峰山常绿阔叶林森林生态系统水文环境效应[J].东北林业大学学报,2010,38(3):78-81.
    [150]胥辉.立木生物量模型构建及估计方法的研究[D].北京林业大学,1998.
    [151]徐步强,张秋良,弥宏卓,等.基于BP神经网络的油松人工林生长模型[J].东北林业大学学报,2011,39(12):33-35.
    [152]徐小牛,王勤,平田永二.亚热带常绿阔叶林的水文生态特征[J].应用生态学报,2006,17(9):1570-1574.
    [153]薛秀康,盛炜彤.朱‘宁福建柏人工林生物量研究[J].林业科技通讯.1993,(4):16-18.
    [154]闫宏伟,黄国胜,曾伟生,等.全国森林资源一体化监测体系建设的思考[J].林业资源管理,2011,(6):6-11.
    [155]杨大起,黎聪.对搞好国有森林资源资产评估工作的探讨[J].林业经济,1994,(6):25-31.
    [156]杨昆,管东升.林下植被的生物量分布特征及其作用[J].生态学杂志,2006,25(10):1252-1256.
    [157]姚世斌,胡庭兴.我国森林资源资产评估进展[J].四川林业科技,1999,20(4):37-42.
    [158]叶传界.马尾松大径材林分密度的探讨[J].林业勘察设计,2008,(1):56-60.
    [159]叶镜中,姜志林.苏南丘陵杉木林地上部分生物量的研究[J].南京林产工业学院学报,1982,(3):109-115.
    [160]叶镜中,姜志林,周本琳,等.福建洋口林场杉木林生物量的年变化动态[J].南京林产工业学院学 报,1984,(4):1-9.
    [161]于秀勇.杉木人工林单木生长模型的研究[D].福建农林大学硕士论文,2009.
    [162]盂宪字.削度方程和出材率表的研究[J].南京林产工业学院学报,1982,(1):122-133.
    [163]袁志发,周静芋.多元统计分析[M].北京:科学出版社,2002:98-109.
    [164]曾伟生,唐守正,夏忠胜,等.利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J].林业科学研究:2011,24(3):285-291.
    [165]曾伟生,唐守正.一个新的通用性相对生长生物量模型[J].林业科学,2012,48(1):48-52.
    [166]曾永祥,林通,叶永恩.木荷林分出材率表编制的研究[J].江苏林业科技,2007,34(4):15-17,31.
    [167]翟文元,许玉婷,夏泰英,等.山东省107-杨树地位指数表的编制[J].山东农业大学学报:自然科学版,2012,(2):227-231.
    [168]湛小勇,田大伦,彭元英,等.我国杉木人工林生物产量研究概况[M].北京:中国林业出版社,1993:10-17.
    [169]张邦楚,彭琛,余新荣,等.基于蚁群优化的多弹协同目标分配算法[J].弹箭与制导学报,2012,32(4):69-73.
    [170]张健雄,赵国强,吴新辉.基于非线性最小二乘算法的点云坐标转换研究[J].河南理工大学学报,2012,31(4):429-433.
    [171]张江,吕勇,雷渊才,等.基于整体化理论的林木、林分生长模型模拟系统开发[J1.中南林业科技大学学报,2010,30(7):70-72,90.
    [172]张连金,惠刚盈,孙长忠.不同林分密度指标的比较研究[J].福建林学院学报,2011,31(3):257-261.
    [173]张田田,马履一,贾忠奎,等.华北落叶松幼中龄林的生物量与碳汇功能[J].东北林业大学学报,2012,40(12):32-35,39.
    [174]张星耀,吕全,梁军,等.中国森林保护亟待解决的若干科学问题[J].中国森林病虫,2012,31(5):1-6.
    [175]张志云.关于森林资源资产评估问题[J].江西农业大学学报,1995,17(3):258-262.
    [176]赵俊卉,亢新刚,龚直文.择伐对北方森林更新、生物多样性和生长的影响研究进展[J].内蒙古农业大学学报:自然科学版,2008,29(4):264-268.
    [177]赵明旺.多模型系统基于黄金分割法的参数估计[J].控制与决策,1995,10(4):352-356.
    [178]甄学宁,森林资产评估试探[J].中南林业调查规划,1994,13(3):36-39,64.
    [179]郑德祥,黄传春,谢益林,等.基于L-M算法的林分径级材种出材率BP网络模型[J].北华大学学报:自然科学版,2008,9(5):461-465.
    [180]郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报,2000,24(2):197-203.
    [181]郑征,刘宏茂.西双版纳原始热带季节雨林生物量研究[J].广西植物,1999,19(4):309-314.
    [182]钟庆林,范志丽.森林资源档案数据更新的儿种方法[J].林业资源管理,1995,(6):9-11.
    [183]周胜昭.广西森林资源资产评估与管理问题探讨[J].中南林业调查规划,1996,15(1):23-27.
    [184]朱伟杰,高光芹,黄家荣,等.毛白杨农田防护林林分密度指数模型[J].西北林学院学报,2011,26(1):151-154,165.
    [185]朱秀端.闽北水土流失动态变化及其驱动机制[D].福建农林大学硕士论文,2006.
    [186]袁春明,刘文耀,李小双,等.哀牢山湿性常绿阔叶林木质藤本植物地上部分生物量及其对人为干扰的影响[J].植物生态学报,2009,33(5):852-859.
    [187]刘波,余艳峰,张替齐,等.亚热带常绿阔叶林不同林龄细根生物量及其养分[J].南京林业大学学报(自然科学版),2008,32(5):81-84.
    [188]桑卫国,苏宏新,陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究[J].植物生态学报,2002,26(增刊):88-92.
    [189]张林,罗天祥,邓坤枚,等.广西黄冕林场次生常绿阔叶林生物量及净第一性生产力[J].应用生态学报,2004,15(11):2029-2033.
    [190]陈章和,张宏达,王伯荪.黑石顶自然保护区南亚热带常绿阔叶林生物量与生产力研究一生物量增量及第一性生产量[J].生态学报,1992,12(4):377-384.
    [191]江西省常绿阔叶林研究课题组.江西省常绿阔叶林地上部分生物量研究[J].江西林业科技,1996,(2)1-4.
    [192]张倩媚,温达志,叶万辉,等.南亚热带常绿阔叶林林下层植物的生物最及其测定方法探讨[J].2000,19(4):62-66.
    [193]谢寿昌,刘文耀,李寿昌,等.云南哀牢山中山湿性常绿阔叶林生物量的初步研究[J].植物生态学报,1996,20(2):167-176.
    [194]杨同辉,达良俊,宋坤,等.浙江天童国家森林公园常绿阔叶林主要组成树种材积与生物量相关关系探讨[J].2007,34(4):110-112.
    [195]Adamowicz W. Economic indicators of sustainable forest management:theory versus practice[J]. Forest Economics,2003,9(27):168-172.
    [196]Alan R Ek. A model for estimating branch weight and branch leaf weight in biomass studies[J]. Forest Science,1979,25(2):303-306.
    [197]Alder D. A distance in dependent tree model for exotid conifer Plantations in Last Africa[J]. Forest Science,1979,25(1):108-115.
    [198]Allison BJ, Clutter J L. A growth and yield model for Pinus radiata in New Zealand[J]. Forest Science, 1974,21(2):315-322.
    [199]Austin JM, Mckyey BG, Van Niel KP. Estimating forest biomass using satellite radar:an exploratory study in a temperate Australian Eucalyptus forest[J]. Forest Ecology and Management,2003,176: 575-583.
    [200]Boysen JP. Studier over skovtraemes forhold til lyset Tidsskr[J]. F. Skovaessen,1910,22:11-16.
    [201]Bragg DC. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainly [J]. Environmental Modelling and software,2005,20:1225-1238.
    [202]Brandeis TJ, Delaney M, Parrsol BR, et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. Forest Ecology and Management,2006,233:133-142.
    [203]Bruce D, Curtis O, Vancoevering C. Development of a system of taper and volume tables for red alder[J]. Forest Science,1968,14(3):1339-350.
    [204]Buehman RQ, Pederson S. P, Walters N R. A tree survival model with application to species of the Great Lakes region[J]. Can J For Res,1983,13:601-608.
    [205]Holz, Blattmenge, Zuwaehs.12 Fiehten im Plenterwald Mitteil, Schweiz, Anst. Forttl[J]. Versuchsw, 1952,28:109-156.
    [206]Fang ZX, Bailey RL. Height-diameter models for tropical forests on Hainan Island in southern China[J]. Forest Ecology and Management,1998,110,315-327.
    [207]Clutter JL. Compatible growth and yield models for Loblolly pine[J]. Forest Science,1963,9(3): 354-371.
    [208]Costanza R, D'arge R, Groot RD, et al. The value of the world's ecosystem services and natural capital[J]. Nature,1997,387(6630):253-260.
    [209]Botkin DB, Woodwell GM, tempel N, et al. Forest productivity estimated from carbon dioxide uptake[J]. Ecology,1970,51(6):1057-1060.
    [210]Daniel S, Richard F. Simple Competition Indices and Their Correlation with Annual Loblolly Pine Tree Growth[J]. Forest Science,1976,22(4):454-456.
    [211]Wit de HA, Palosuo T, Hylen G, et al. A carbon budget of forest biomass and soils in southeast Norw ay calculated using a widely applicable method[J]. Forest Ecology and Management,2006,255:15-26.
    [212]Demaerschalk JP. Integrated systems for the estimation of tree taper and volume[J]. Canadian Journal of Forest Research,1978.
    [213]Dong J, Kaufmann RK, Myneni RB, et al. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources and sinks[J]. Remote Sensing of Environment,2003,84(3) 393-410.
    [214]Drew T J, Flewelling J W. Some recent Japanese theories of yield-density relationships and their application to Monterey Pine Plantatinas[J]. Forest Science,1977,23:571-584.
    [215]Ebermeyr E. Die gesamte Lehreder Waldstreumit Rucksicht auf die themische statikdes Waldbaues[M]. Belln:J. Springer,1876:116.
    [216]Fang Z, Bailey RL. Height-diameter models for tropicalcforests on Hainan Island in southern china [J]. For. Ecol. Manage,1998,110:315-327.
    [217]Favrichon V. Modeling the dynamics and species composition of tropical mixed-aged natural forest: effects of alternative cutting regimes[J]. Forest Science,1998,44(1):73-79.
    [218]Genevieve L, Chhun-H U, Mathieu Fortin, et al. A Simple stem taper model with mixed effects for boreal black spruce[J]. European Journal of Forest Research,2009, (5):505-513.
    [219]Giese LAB, Aust WM, Kolka RK, et al. Biomass and carbon pools of disturbed riparian forests[J]. Forest Ecology and Management,2003,180:493-508.
    [220]Hamilton DA. A logistic model of mortality in thinned and unthinned mixed conifer stands of northern Idaho[J]. Forest Science,1986,32(4):989-1000.
    [221]Hamilton DA. Extending the range of applicability of an individual tree mortality model[J]. Can J of Res, 1990,20:1212-1218.
    [222]Hegyi F. A simulation model for man- aging jack-pine stands[J]. Royal College of Forestry, Stockholm, Sweden,1974,30:74-90.
    [223]Hide P, Nelson R, Kimes D, et al. Exploring LiDAR-RADAR synergy-predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment,2007,106:28-38.
    [224]HU Zheng-Yi, XU Cheng-Kai, ZHOU Li-Na, et al. Contribution of Atmospheric Nitrogen Compounds to N Deposition in a Broadleaf Forest of Southern China[J]. Pedosphere,2007,17(3):360-365.
    [225]Kaufman JB, Steele MD, Cummings DL, et al. Biomass dynamics associated wim deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest[J]. Forest Ecology and Management, 2003,176:1-12.
    [226]Khalid A. Hussein, Matthias S.用于干形描述的两个参数削度方程[J].林业科学,2008,44(6):20-27.
    [227]Labrecque S, Fournier RA, Luther JE, et al. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfound land[J]. Forest Ecology and Management,2006, 266:129-144.
    [228]Lehtonen A, Makipaa R, Heikkinen J, et al. Biomass expansion factors(BEFs)for Scots pine, Norway spruce and birch according to stand age for boreat forests[J]. Forest Ecology and Management,2004,188: 211-224.
    [229]Li CP, Xiao CW. Above and below ground biomass of Artem isia ordosica communities in three contrasting habitats of the Mu Us desert, northern China [J]. Journal of Arid Environments,2007,70 (2):195-207.
    [230]Lieth H, Whitaker RH. Primary productivity of the biosphere[M]. NewYork:Springer Vedag,1975.
    [231]Long. JN, Smith FW. Relation between size and density in developing etands A description and possiblem mechanisms[J]. Forest Ecology. Manage,1984,7:191-206.
    [232]Lowell KE, Mitchell RJ. Stand growth Projection:simultaneous estimation of growth and mortality using a single Probabilistic function[J]. Can J For Res,1987,17:1466-1470.
    [233]Lucas RM, Cronin N, Lee A, et al. Empirical relationships between AIRSAR backscatter and LiDAR·derived forest biomass, Queensland, Australia[J]. Remote Sensing of Environment,2006,100: 407-425.
    [234]Sun LP, Liu Z, Shou H, et al. Parameter optimization of gravity density inversion based on correlation searching and the golden section algorithm[J]. Applied Geophysics,2012,9(2):131-138.
    [235]Maniezzot C. An ANTS heuristic for the frequency assignment problem[J]. Future Generation Computer Systems,2000,20:927-935.
    [236]Marin PG, Jose J, Corral R. A system for calculation the merchantable volume of oak trees in the northwest of the state of Chihuahua Mexico[J]. Journal of Forestry Research,2009,20(4):293-300.
    [237]Matin GL, Alan R Ek. A comparison of competition measures and growth models for predicting plan tation red pine diameter and height growth[J]. Forest Science,1984,30(3):731.
    [238]Montes N, Gauquelin T, Badri W, et al. A non-destructive method for estimating above-ground forest biomass in threatened woodlands[J]. Forest Ecology and Management,2000,130:37-46.
    [239]Munro D D. Forest growth models-a Prognosis[C]. Proceeding of International Union of Forestry Research Organizations, Stockholm,1974.
    [240]Nascimento HEM, Nascimento, Laurance WF, et al. Total aboveground biomass in central Amazonian rainforests:a landscape-scale study[J]. Forest Ecology and Management,2002,168:311-321.
    [241]Newham RM, Smith JHG. Development and testing of stand models for Douglas-fir and lodge pole pine[J]. Forest Chron,1964,40:492-502.
    [242]Opie JE. Predictability ofindividual tree growth using various definitions of competing basel area[J]. Forest Science,1986,14(3):314-323.
    [243]Porte A, Bartelink HH. Modelling mixed forest growth:a review of model management[J]. Ecological modelling,2002,150:141-188.
    [244]Reineke LH. Perfecting a stand-density index for even-aged forests[J]. J. Agric. Res.1933,46:627-638.
    [245]Schumacher FX. A new growth clcye and its application to timber-yield studies[J]. L For,1939,37: 819-820.
    [246]Staebler R, George R. Early Effect of Two Successive Thinnings in Western Hemlock[J]. PNW old Series Research.1957,14(6):1-8.
    [247]Stage AR. An expression for the effect of aspect, slope, and habitat type on tree growth[J]. Forest Science,1976,22(4):457-460.
    [248]Suganuma H, Abe Y, Taniguchi M, et al. Stan d biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia[J]. Forest Ecology and Management, 2006,222:75-87.
    [249]Sullivan AD, Clutter JL. A simultaneous growth and yield model for Loblolly pine[J]. Forest Science, 1972.18:76-86.
    [250]Weller DE. Self-thinning exponent correlated with allometric measures of plant[J]. Geometry Ecology, 1987,68:813-821.
    [251]White J. The allometric interpretation to the self-thinning rule[J]. J. Theor. Biol,1981,89:475-500.
    [252]Yoda K. Self thinning in overcrowded pure stands under culitivated and natural condition (In-traspecific competition among higher plants. XI.) [J]. J. Biol Osaka City Univ,1963,14:107-129.
    [253]Yang YS, Guo JF, Chen GS, et al. Effect of Slash Burning on Nutrient Removal and Soil Fertility in Chinese Fir and Evergreen Broadleaved Forests of Mid—Subtropical China[J]. Pedosphere,2003,13(1): 87-96.
    [254]Zeide B. Self-thinning and stand Density[J]. Forest Science,1991,37(2):517-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700