用户名: 密码: 验证码:
冶金法制备太阳能级硅过程中氧化精炼除硼应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球能源危机的日益加剧为新能源尤其是太阳能光伏产业的快速发展提供了机遇,由于太阳能发电的巨大优势,世界光伏产业以每年高于30%的增长率高速发展,2009年全球太阳能电池产量已增长至10.5GWp,我国达到4382MW,超过全球份额的40%。太阳能级硅(SoG-Si)是光伏产业发展的基础,2011年晶体硅太阳能电池产量已经占到全部太阳能电池的88%,因此硅材料的供给和生产成本成为太阳能电池发展的关键。目前,太阳能级硅的生产技术主要有改良西门子法和硅烷热分解法,高成本和高环境负荷已经严重制约了光伏产业的发展,而以冶金级硅(MG-Si)为原料,低成本、低能耗和环境友好的冶金法多晶硅制备新工艺正迈向产业化进程,但该新工艺的关键和难点是冶金级硅中杂质元素尤其是B、P的有效去除,并使太阳能级硅纯度达到6N及以上。
     本文以硼含量为18ppmw的冶金级硅为原料,从多方面开展硅中杂质元素硼的氧化去除研究工作。研究发现,杂质在冶金级硅中呈深色、浅色和白色夹杂分布,深色夹杂分布在整个冶金级硅中,为熔渣型夹杂;浅色和白色夹杂位于硅的晶界处,为金属或金属间化合物。以Si-Me二元相图为基础,研究了冶金级硅中Fe、Al、Ca、Ti、Ni、Cu等金属杂质的存在形态,利用Si-B相图确定冶金级硅熔体中的物相形态为SiB6;通过Me-B、Si-Fe-B和Si-Al-B相图分析了B与Fe、Al、Ca间形成二元化合物FeB、Fe2B、AlB2、AlB12、CaB6及三元化合物Fe4.7Si2B、Fe5SiB2和Fe2Si0.4B0.6的可能性,研究发现,B与硅中其他元素间优先结合的顺序为TiB2>MnB2>AlB2>Co2B>NiB>Fe2B>MgB2>SiB3;实验表明,Si-B二元系中存在SiB4相,Si-Me-B相平衡实验也证明了FeSi2、CaB6和SiB6物相的存在,结果与二元相图吻合。
     由02和H20-02吹气氧化精炼除硼热力学可知,向冶金级硅熔体中吹入02和H20-O2混合气体,杂质元素硼分别以气态硼氧化物(BxOy)和硼氢氧化物(BxHzOy)的形式挥发,并得到了1412-2230℃下杂质元素硼去除限度与硼化合物分压的热力学关系。研究表明,硼气态氢氧化物的平衡分压远高于硼气态氧化物,因此,利用H20-O2混合气体除硼效果应该更好。在1450℃时,各气态硼氢氧化物中,挥发性最大的是BH02和B3H306,当硼含量降低至5~10ppmw时,BH02平衡分压达到10SPa以上,降低至0.1ppm时为2500Pa,且各气态硼氢氧化物的平衡分压随温度的升高反而降低,在硅抬包中进行的02精炼实验表明,硅中Fe、Cu、V、C的去除率均低于20%,Al、Ca分别为98.2%和92.9%,B从35ppmw降低至18ppmw,去除率接近50%,P主要以P2的形式挥发,由184ppmw降低至112ppmw。在直流电弧炉中利用Ar-H2O-O2气氛进行除硼精炼实验表明,当精炼时间为10min时,硼含量可从18ppmw降低至2ppmw,由于受多方面动力学因素的影响和制约,硼的实验去除效果与热力学限度的理论计算值之间存在较大差距。
     获得了平衡时硅中[%B]、熔渣中(%B)与aSiO2和acaO之间的热力学关系同时建立了CaO-SiO2熔渣与冶金级硅中杂质硼的电化学反应模型,该模型体现了硅中杂质硼与熔渣间的反应机理。熔渣精炼除硼实验表明,纯氧化物Si02基本起不到除硼的作用,这与热力学计算结果一致;采用CaO-SiO2熔渣时,当CaO/SiO2约为1.5时,硼的分配系数LB达到最大值1.58;当渣硅比为2.5、精炼时间3.0h时,硼含量可降低至1.8ppmw;向CaO-SiO2二元熔渣中添加MgO、Li2O、LiF和K20等形成CaO-SiO2-MeO三元熔渣精炼实验表明,添加MgO不利于除硼效率的提高,添加20%左右的Li20和LiF且当渣硅比为4:1时,硼含量可降低至1.3ppmw,硼的去除效率达到92.7%;添加30%K20时,硅中硼含量可降低至1.4ppmw;精炼后渣相的XRD结果表明,硅中杂质元素硼被氧化为B203并与加入的Li20形成Li2O·2B2O3。
     提出和探讨了MeClx熔盐去除冶金级硅中杂质元素硼的方法和反应机理,得到了1550℃条件下CuCl2、FeCl3、MgCl2、NaCl、CaCl2和AICl3熔盐的除硼限度与BCly分压的热力学关系。实验发现,在冶金级硅中添加50%-60%的FeCl3时,可将硼含量由18ppmw降低至3.1ppmw,利用FeCl3-SiO2和MgCl2-SiO2混合体系除硼时,除硼效率随着熔盐含量的增加而增大。可以推测,采用FeCl3熔盐精炼除硼时,FeCl3被还原为金属Fe后与Si结合为金属间化合物FeSi2,而由于MgCl2的直接分解和Mg蒸汽的挥发,采用MgCl2熔盐时,渣样中没有发现金属Mg。
With the aggravation of global energy crisis, the rapid development of new energy materials especially for Photovoltaic industry is provided with chance of a lifetime. The Photovoltaic industry in the world has been rising at a speed of growth rate for30%annually. In2009, the production of solar cells had reached to10.5GWp on a global scale. It was4382MW in China and was more than40%for global totals. The solar grade silicon (SoG-Si) is base of Photovoltaic industry and the crystalline silicon solar cells had a share of88%in market in2009so the supply and cost of silicon materials is crucial for solar cells. Presently, the production of SoG-Si has mainly two methods:Siemens technology and thermal decompositon of SiH4, which have restricted the development of Photovoltaic industry for their high cost and heavy environmental load. To our inspiration, the new technology for SoG-Si preparation with metallurgical method, for its low cost, low energy consumption and friendly environment, has been growing up and applying. But the critical points and puzzled problems are the removal of impurities in metallurgical grade silicon (MG-Si) especially for B and P and the requirement for6N purity for SoG-Si.
     In this paper, the features and removal of boron in MG-Si raw materials were systemically studied based on the MG-Si product with18ppmw for boron content. It was found that the impurities take on deep, light and white color inclusions in MG-Si. The deep inclusions confirmed as slag distribute in the whole MG-Si and the light and white ones that are thought to be metals or intermetallic compounds are lie in grain boundary of silicon. Based on binary phase diagrams between Si and impurity elements, the conformation of impurities Fe, Al, Ca, Ti, Ni, Cu etc in MG-Si raw materials was studied. The transformation among Si-B phases was analyzed and it was confirmed that SiB6is the form of Si-B phase in silicon melt. Based on Me-B, Si-Fe-B and Si-Al-B phase diagram systems, the probability of binary compounds FeB, Fe2B, AlB2, AlB12, CaB6and ternary compounds Fe4.7Si2B, Fe2Sio.4Bo.6were also analyzed. It was found that the preferential order for the combination between B and other elements is TiB2>MnB2>AlB2>Co2B>NiB>Fe2B>MgB2>SiB3. The phase equilibrium experiments indicated the existence of SiB4in Si-B binary system and also FeSi2, CaB6and SiB6in Si-Me-B systems, which was consistent with Si-Fe, Ca-B and Si-B phase diagrams.
     The thermodynamic process of boron removal by O2and H2O-O2gas blowing was studied andit was found that the impurity boron is volatilized in forms of gaseous boron oxide species (BxOy)and gaseous boron hydrate species (BxHzOy) and the thermodynamic relationships betweenboron removal limitation and partial pressures of gaseous species at1412?2230°C wasobtained. It showed that the partial pressure of gaseous boron hydrate species is much higherthan that of gaseous boron oxide species so it is preferable to for boron removal with H2O-O2gasblowing. At1450°C, the volatilization of BHO2and B3H3O6is most among all gaseous boronhydrate species. The partial pressures of BHO2reach to105Pa and2500Pa when the boron levelis reduced to5ppmw and O.lppmw respectively and the thermodynamic relationships displaythat on the contrary the partial pressures of gaseous boron hydrate species will reduce with theincrease of temperature. The experimental results by O2gas blowing in ladle showed that theremoval rates of impurities Fe,Cu, V and C in MG-Si is lower than20%and it is98.2%and92.9%for A1and Ca. B is reduced from35ppmw to18ppmw which is close to50%and P isreduced from184ppmw to112ppmw which is volatilized in forms of gaseous P2. Theexperimental results by Ar-H20-02gas blowing in DC arc furnace showed the removal rate ofboron increased with the prolongation of refining time and it was reduced from18ppmw to2ppmw when the time reached to1Omin. But it has great difference between the boron removalresults in experiments and the calculated value for boron removal limitation in thermodynamicfor the effects and constraint for dynamic factors.
     The thermodynamic relationships among boron level in silicon [%B], boron level in slag asi0and aCre obtained as
     the same time, the electrochemical reactive model between Ca0-Si02slag and boron in MG-Siwas established, which displays the reactive mechanism between boron in silicon and molten slag. Theexperiments of slag refining in induction furnace showed it is not helpful to boron removal forpure Si2,which is accordant to thermodynamic results. The maximal value for partitioncoefficient of boron in silicon is1.58for Ca0-Si02slag when the composition of CaO/SiC>2is1.5. The boron level in silicon is reduced to1.8ppmw with the slag and silicon ratio2.5andrefining time3.Oh. The expeirmental results adding MgO, Li2,LiF and K2O to Ca0-Si02binary molten slag showed it is disadvantageous for boron removal with the addition of MgO.The boron level is respectively reduced to1.3ppmw and1,4ppmw when the slag and silicon ratio is4:1with the addition of20%LbO and30%K2O. The efficiency of boron removal is92.7%,The XRD spectrogram of refined slag showed that the experimental results with alloyed Si-Bsample are accordant to those of MG-Si refining and boron in MG-Si is oxidized into B2O3which combines into Li20*2B203with Li20.
     The method of boron removal for MG-Si with molten salt MeClx refining was brought forward.The thermodynamic relation between boron level in silicon and equilibrium partial pressure ofBCly°with molten salt CuCb、FeCb、MgCh、NaCK CaCl2and AICI3at1550C was obtained.It was found by experiments the boron level in silicon is reduced from18ppmw to3.1ppmw withadding50%~60%FeCl3to MG-Si. The efficiency of boron removal increases with the higherratio of molten salt in mixed FeCl3-Si02and MgCb-Si02systems. It is presumed that FeCb isreduced to Fe, which combines into intermetallic compound FeSi: with Si when using FeCl3refining. However, Mg is not found in slag with MgCb refining maybe the decomposition ofMgCb and volatilization of Mg.
引文
[1]阙端麟,等编.硅材料科学与技术[M].杭州:浙江大学出版社,2000.
    [2]屠海令,赵国权,郭青蔚.有色金属(冶金、材料、再生与环保)[M].北京:化学工业出版社,2003.
    [3]何允平.工业硅生产和冶金法太阳能级多晶硅的制取[J].新材料产业,2009, (4)52-56.
    [4]单继周,蒋元力,曹国喜.工业硅的生产工艺条件研究进展[J].河南化工,2011,6:21-24.
    [5]何允平.新材料产业.工业硅生产和冶金法太阳能级多晶硅的制取[J],2004,4:52-56.
    [6]李化海,杨永森.工业硅炉系列化技术参数探讨[J].铁合金,2007,38(6):22-25.
    [7]范林勇,郑晶晶,刘志明,简水生.工业硅生产的热力学分析与工艺改进[J].铁合金,2008,39(5):12-17.
    [8]Bruno Ceccaroli, Otto Lohne. Solar Grade Silicon Feedstock [M]. Edited by A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Norwegian,2003, p.161-166.
    [9]A. Schei, J. K. Tuset, H. Tveit. Production of High Silicon Alloys. Tapair Forlag, Trondheim, Norway,1998:13-16.
    [10]Miiller A, Ghosh M, Sonnenschein R, et al. Silicon for photovoltaic applications [J]. Mater Sci Eng B,2006,134 (2-3):257-262.
    [11]Kaminski A, Vandelle B, Fave A, et al. Aluminium BSF in silicon solar cells[J]. Sol. Energy Mater. Sol. Cells,2002,72(1-4):373-379.
    [12]http://www.materialsone.com/materials/class/books_show.php?books_id=733.
    [13]邱克强,龙桂花,陈少纯.对发展我国太阳能级多晶硅低成本制备技术的战略思考与选择.新材料产业,2008,6:20-28.
    [14http://www.ce.cn/cysc/ny/xny/200803/12/t20080312_14803257.shtml.
    [15]刘道春.太阳能光伏发电技术及其发展前景[J].大众用电,2009,3:19-20.
    [16]Ma Wenhui, Masaru Ogura, Takeshi Kobayashi, et al. Preparation of solar grade silicon from optical fibers wastes with thermal plasmas [J]. Sol. Energy Mater. Sol. Cells,2004(81): 477-483.
    [17]Rousseau S, Benmansour M, Morvan D, et al. Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath[J]. Sol. Energy Mater. Sol. Cells,2007,91 (20):1906-1905.
    [18]罗绮雯,陈红雨,唐明成.冶金法提纯太阳能级硅材料的研究进展[J].中国有色冶金,2008,1:12-14.
    [19]US Department of Energy, National renewable energy laboratory, Photovoltaics energy for the new millennium, The National 2000-2004 Photovoltaics Program Plan, January 2000.
    [20]Chandra P. Khattak, David B. Joyce, Frederick Schmid. A simple process to remove boron from metallurgical grade silicon [J]. Solar Energy Materials & Solar Cells,2002,269 (74):77-89.
    [21]S. Rousseau, M. Benmansour, D. Morvan, J. Amouroux. Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath[J], Solar Energy Materials & Solar Cells,2007,91(20):1906-1905.
    [22]王世江,高宏玲.2010年全球太阳电池产业发展总结[J].太阳能,2011,(11):32-34,29.
    [23]http://www.materialsone.com/materials/class/books_show.php?books_id=733.
    [24]吴建荣,杨佳荣,昌金铭.太阳电池硅锭生产技术[J].中国建设动态:阳光能源,2007,1:40-42.
    [25]Dominique S, Roland E. Silicon feedstock for the multi-crystalline photovoltaic industry [J]. Solar Energy Materials and Solar cells,2002,72(1-4):27-40.
    [26]郭景杰,黄锋,陈瑞润,等.太阳能电池用多晶硅铸造技术研究进展[J].特种铸造机有色合金,2008(7):516-521.
    [27]Rannveig K, Oyvind M, Birgit R. Growth rate and impurity distribution in multicrystalline silicon for solar cells [J]. Maerials Science and Engineering,2005, A413-414:545-549.
    [28]Martin A G. Crystalline and thin-film silicon solar cells:state of the art and future potential. Solar Energy,2003,74(3):181-192.
    [29]顾列铭.多晶硅面临“三大”阴影[J].生态经济,2009,4:20-23.
    [30]http://www.chinabgao.com/freereports/20732.html.
    [31]王晓刚,邓丽荣.光伏产业和多晶硅技术现状与发展[J].西安科技大学学报,2008,28(4):724-729.
    [32]蔡建利,王赞,陈军,等.多晶硅的生产、消费及发展建议.河南化工,2008,25(10):1-5.
    [33]http://www.gov.cn/zwgk/2009-09/29/content_1430087.htm
    [34]产业经济研究院.2009-2011年全球与中国太阳能光伏产业调研及投资咨询报告.2009,7:57-63.
    [35]http://www.cs.com.cn/xwzx/03/201009/t20100908_2586741.htm.
    [36]王振龙,夏良俊,赵万生.半导体硅材料的电火花加工技术研究[J].电加工与模具,2004, (1):13-16.
    [37]葛涛.在我国西部建设多晶硅大厂的必要性和可行性[J].上海有色金属,2002,23(4):184-187.
    [38]鲁瑾,祝大同,等.多晶硅产业发展浅析[J].中国集成电路,2007,28(1):16(3):28-32.
    [39]周篁.关于我国高纯硅产业发展问题.中国能源,2008,30(1):5-7.
    [40]http://baike.ofweek.com/371.html. http://blog.sina.com.en/s/blog_4afdca8c010081yn.html
    [41]陈德胜.如何提高工业硅的产品质量[J].轻金属.2003(5):1.
    [42]屠海令,万群,译.杰克逊K A主编.材料科学与技术丛书—半导体工艺[M],北京:科学出版社,1999,9-12.
    [43]C. Alemanya, Trassyb C. Refining of metallurgical-grade silicon by inductive plasma[J]. Solar Energy Materials & Solar Cells.2002 (9):1-2.
    [44]宋东明,谢刚,俞小花,等.西门子法生产多晶硅过程中尾气的分离及综合利用[J].化学工业与工程,2010,27(6):551-555.
    [45]金名.多晶硅生产:毒污染高耗能不容忽视[J].中国质量万里行,2008,5:52-53.
    [46]王航舟.改良西门子法生产多晶硅的工艺流程及其污染分析[J].大科技:科技天地,2011,11:450-451.
    [47]Rogers I O. Handbook of semiconductor silicon technology. Noyes Pub. New Jersey,1990: 33.
    [48]Yaws C L, Li K Y, Hopper J R, et al. Process feasibility study in support of silicon material Task I. Final report. DOE/JPL-954343-21. Lamar Univ., Beaumont, TX (USA):Dept. of Chemical Engineering,1981.
    [49]李永青.硅烷法制备多晶硅工艺的探讨[J].河南化工,2010,19:28-30.
    [50]Bathey B.R., M.C. Cretella, Solar grade silicon. Journal of Materials Science,1982.17: 3077-3096.
    [51]White C M, Ege P, Ydstie B E. Size distribution modeling for fluidized bed solar-grade silicon production[J]. Powder Technol,2006,163:51-58.
    [52]Guenther C, Brien TO, Syamlal M. A numerical model of silane pyrolysis in a gas solids fluidized bed[C]. Fourth International Conference on M ultiphase Flow. New Orleans,2001.
    [53]梁骏吾.光伏产业面临多品硅瓶颈及对策[J].科技导报.2006(6):3-4.
    [54]龙桂花,吴彬,韩松,等.太阳能级多晶硅生产技术发展现状及展望[A].2008年全国湿法冶金学术会议.2008.
    [55]张呜剑,李润源,代红云.太阳能多晶硅制备新技术研发进展[J].新材料产业,2008,29(6):20-33.
    [56]陈甘棠,王樟茂.多相流反应工程[M].杭州:浙江大学出版社,1996:89-93.
    [57]阳永荣,戎顺熙,等.湍动流态化的流型与流型过渡[J].化学反应工程与工艺,1990,16(2): 63-65.
    [58]Lutwack, R, A U.S. View of silicon production processes, in:3th European Photovoltaic Solar Energy Conference, Cannes,1980, p.220.
    [59]Breneman, W C, Farrier E G, Morihara H. Preliminary process design and economics of low cost solar grade silicon production, in:13th IEEE Photovoltaic Specialists Conference, Washington,1978, P.339.
    [60]李昀珺,铁生年.流化床法制备太阳能级多晶硅冷态研究[J].青海大学学报:自然科学版,2010,28(4)::1-21.
    [61]Toshiyuki Nohira, Kouji Yasuda and Yasuhiko Ito. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nature materials,2003, (2):397-401.
    [62]Kouji Yasuda, Toshiyuki Nohira, Koji Amezawa, Yukio H. Ogata, and Yasuhiko Ito. Mechanism of Direct Electrolytic Reduction of Solid SiO2 to Si in Molten CaCl2[J]. Journal of The Electrochemical Society,2005,152(4):69-74.
    [63]Yasuda K, Nohira T, Hagiwara R, Ogata Y H. Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon [J]. Electrochimica Acta,2007,53(1): 106-110.
    [64]赖延清,田忠良,张治安,等.一种熔盐电解法制备太阳级硅材料的方法[P],200710034619,2007.
    [65]田忠良,贾明,赖延清,等.熔盐直接电沉积及电解精炼硅研究[J].中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-523.
    [66]张明杰,李继东,陈建设.太阳能电池及多晶硅的生产[J].材料与冶金学报,2007,6(1): 33-38.
    [67]刘仪柯,马文会,戴永年,杨斌,刘大春.融盐电解法直接制备太阳能级硅新工艺的探讨[J].有色金属:冶炼部分,2008,(2):31-33.
    [68]Koji A, Eichiro O, Hitoshi S, et al. Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method. Journal of Crystal Growth,2007,308:5.
    [69]Rannveig K,(?)yvind M, Birgit R. Growth rate and impurity distribution in multicrystalline silicon for solar cells. Materials Science and Engineering:A,2005,413-414:545.
    [70]Miki T, Morita K, Sano N. Thermodynamics of Phosphorus in Molten Silicon. Metallurgical and Materials Transactions B,1996,27(12):937.
    [71]Rogers I O. Handbook of semiconductor silicon technology. No yes Pub. New Jersey,1990: 33.
    [72]席珍强,励旭东.建立太阳能级硅材料标准的先期研究报告.中国建设动态:阳光能源,2008,1:4.
    [73]Morita K, Miki T. Thermodynamics of solar-grade-silicon refining. Intermetallics, 2003,11(11-12):1111.
    [74]裴丙红,张红斌,曹美姣,王远明,何云华,李守军.论GH901合金真空熔炼铸锭中硼的宏观偏析.特钢技术,2006,12(48):5.
    [75]梁骏吾.电子级多晶硅的生产工艺.中国工程科学,2000,2(12):36.
    [76]苗军舰,陈少纯,丘克强.西门子法生产多晶硅的热力学.无机化学学报,2007,23(5):796.
    [77]WEI Kui-xian, MA Wen-hui, DAI Yong-nian, YANG Bin. Study on Phosphorus Removal from Metallurgical Grade Silicon by Vacuum Distillation. ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYAISENI,2007,46(sup.):69.
    [78]郭瑾,李积和.国内外多晶硅工业现状.上海有色金属,2007,28(1):20.
    [79]Naomichi Nakamura, Hiroyuki Baba, Yasuhiko Sakaguchil and Yoshiei Kato. Boron Removal in Molten Silicon by a Steam-Added Plasma Melting Method. Materials Transactions, 2004,45(3):858.
    [80]http://wenku.baidu.com/view/70dc866baflffc4ffe47ace0.html.
    [81]Hunt L P, Kosaj V K, McCormick J R, et al. Production of solar grade silicon from purified metallurgical silicon [C]. In: Record of the 12th IEEE Photovoltaic Specialists Conference, 1976:pp.125-129.
    [82]I.C. Santos, et al. Purification of Metallurgical Grade Silicon by Acid Leaching [J]. Hydrometallurgy,1990,23:237-246.
    [83]汤培平,刘瑞聪,陈晓敏,等.湿法冶金去除太阳能级硅中硼的研究[J].无机盐工业,2011,43(3): 27-30.
    [84]Vedde J, Tronstad R. Proceedings of 21st European Photovoltaic Solar Energy Conference, 2006, Dresden, Germany:976.
    [85]Teixeira, Leandro A, Morita K. Thermodynamics of Boron Removal from Molten Silicon with CaO-SiO2 Slag. Current Advances in Materials and Processes,2007,20(1):83.
    [86]Tanahashi M, Shinpo Y, Fujisawa T, et al. Distribution Behavior of Boron between SiO2-saturated NaOo.5-CaO-SiO2 Flux and Molten Silicon. Journal of the Mining and Materials Processing Institute of Japan,2002,118(7):497.
    [87]王新国,丁伟中,沈虹,张静江.金属硅的氧化精炼.中国有色金属学报,2002,12(4):827.
    [88]Yuge N. Baba H, Sakaguchi Y, et al. Purification of metallurgical silicon up to solar grade. Sol. Energy Mater. Sol. Cells,1994,34:243.
    [89]Fujiwara H, Otsuka R, Wada K, et al. Silicon purifying method, slag for purifying silicon and purified silicon[P]. Japan,066523,2003.
    [90]DietL J. Silicon Processing for Photovoltaics Ⅱ. Proc.8th E.C. Photovoltaic Solar Energy Conf, Vol.1, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1988),599.
    [91]Kichiya S, Kouichi S, Toshio N, et al. Gaseous removal of phosphorus and boron from molten silicon. J. Japan Inst. Melts,1990,54(2):161.
    [92]Anders Schei. Method for Refining of Silicon [P]. US 5,788,945,1998,5,8.
    [93]Leandro Augusto Viana TEIXEIRA, Kazuki MORITA. Removal of Boron from Molten Silicon Using CaO-SiO2 Based Slags [J]. ISIJ International,2009,49(6):783-787.
    [94]M.D. Johnston, M. Barati. Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon [J]. Journal of Non-Crystalline Solids,2011,357: 970-975.
    [95]LUO Da-wei, LIU Ning, LU Yi-ping, ZHANG Guo-liang, LI Ting-ju. Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting[J]. Transactions of Nonferrous Metals Society of China,2011,21(5):1178-1184.
    [96]CAI Jing, LI Jintang, CHEN Wenhui, CHEN Chao, LUO Xuetao. Boron removal from metallurgical silicon using CaO-SiO2-CaF2 Slags[J]. Transactions of Nonferrous Metals Society of China,2011,21:1402-1406.
    [97]Yin Changhao, Hu Bingfeng, Huang Xinming. Boron removal from molten silicon using sodium-based slags[J]. Journal of Semiconductors,2011,32(9):092003-1-092004.
    [98]罗大伟,张国梁,张剑,李军,李廷举.冶金法制备太阳能级硅的原理及研究进展[J].铸造技术,2008,29(12):1721-1726.
    [99]伍继君,戴永年,马文会,等.冶金级硅氧化精炼提纯制备太阳能级硅研究进展[J].真空科学与技术学报,2010,(1):43-49.
    [100]Khattak C P, Joyce D B, Schmid F. Production of Solar Grade Silicon by Refining of Liquid Metallurgical Grade Silicon. Proc. Symp. on Materials and New Processing Technology for Photovoltaics, Proc.1983(83-11):478.
    [101]Khattak C P, Joyce D B, Schmid F. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon, NREL/SR-520-30716, US:National Renewable Energy Laboratory,2001
    [102]Fujiwara H, Otsuka R, Wada K, et al. Silicon purifying method, slag for purifying silicon and purified silicon [P]. Japan,066523,2003.
    [103]Sharp Co. The method of refining silicon and the refined silicon[P]. Japan, 200580023743.X,2005.
    [104]Wu Jijun, Ma Wenhui, Dai Yongnian, et al. Removing boron from metallurgical grade silicon by vacuum oxidation refining. Proceedings of the 8th Vacuum Metallurgy and Surface Engineering conference, Shenyang China:2007.51.
    [105]Rannveig K,(?)yvind M, Birgit R. Growth rate and impurity distribution in multi crystal line silicon for solar cells. Materials Science and Engineering:A,2005,413-414:545.
    [106]孙世海.定向凝固提纯多晶硅研究[D].大连:大连理工大学,2010.
    [107]Miki T, Morita K, Sano N. Thermodynamics of Phosphorus in Molten Silicon. Metallurgical and Materials Transactions B,1996,27(12):937.
    [108]N Yuge, K Hanazawa, K Nishikawa, et al. Removal of Phosphorus, aluminum and calcium by evaporation in molten silicon [J]. Journal of the Japan Institute of Metals,1997. 61(10):1086-1093.
    [109]K Hanazawa, N Yuge, Y Kato. Evaporation of phosphorus in molten silicon by an electron beam irradiation method [J]. Materials Transactions,2004,45(3):844-849.
    [110]PEI Bin-xiong, ZHANG Hong-bin, CAO Mei-jiao, WANG Yuan-ming, HE Yun-hua, LI Shou-jun. Argumentation on the macrosegregation of boron in vacuum melting pouring ingot of GH901 alloy [J]. Special Steel Technology,2006,12(48):5-13.
    [111]J.C.S. Pires, J. Otubo, A.F.B. Braga, P.R. Mei. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology, 2005,169:16-20.
    [112]Xu Peng, Wei Dong, Yi Tan, Dachuan Jiang. Removal of aluminum from metallurgical grade silicon using electron beam melting[J]. Vacuum,2011,86:471-475.
    [113]Alemany C, Trassy C, Pateyron B. Refining of metallurgical-grade silicon by inductive plasma. Sol. Energy Mater. Sol. Cells,2002,72(1-4):41.
    [114]Delannoy Y, Alemany C. Plasma-refining process to provide solar-grade silicon. Sol. Energy Mater. Sol. Cells,2002,72(1-4):69.
    [115]Naomichi Nakamura, Hiroyuki Baba, Yasuhiko Sakaguchil and Yoshiei Kato. Boron Removal in Molten Silicon by a Steam-Added Plasma Melting Method. Materials Transactions,2004,45(3):858.
    [116]黄齐刚.台湾多晶硅评述[J].石油通讯,2007(669):26-29.
    [116]M. Dhamrin, R. Ozaki, T. Saitoh. Quality evaluation and improvement of iron-doped electromagnetic multycrystalline silicon wafers [J]. Solar Energy Materials and Solar Cells, 2002,74:203-211.
    [117]A. Istratov, T. Buonassisi, R. J. McDonald, et al. Metal content of multicrystalline silicon for solar cells and its impaction minority carrier diffusion length[J]. J. Appl. Phys., 2003,94:6552-6559.
    [118]Wolf S De, Szlufcik J, Delannoy Y, et al. Solar cells from upgraded metallfugical grade (UMG) and plasma-purified UMG mulgicrystalline silicon substrates. Sol. Energy Mater. Sol. Cells,2002,72:49-58.
    [119]He Yunping, Yu Zhichun.40 years History of Metal Silicon Production in China.8th International Ferroalloys Congress Proceedings (INFCON 8), June 7-10,1998,99-103.
    [120]A. Schei, H. Rong, A. G. Forwald. Impurity distribution in silicon, Silicon for the chemical industry, Geiranger, Norway, June 1992:16-18.
    [121]Y.P. He. Symposium of Iindustrial Silicon, Beijing:Metallurgical Industry Press,1991, 280-281, (in Chinese).
    [122]J.M. Juneja, T.K. Mukherjee:'A study of the purification of metallurgical grade silicon', Hydrometallurgy,1986,16, (1),69-75.
    [123]T. Margaria,J-C.Anglezio, C. Servant.工业硅中金属间化合物[J].铁合金,1994 (5): 43-48.
    [124]戴永年.二元合金相图集[M].北京:科学出版社,2009:518.
    [125]A. Schei, H. Rong, A.G. Forwald:'Impurity Distribution in Silicon'in'Silicon for the Chemical Industry', Vol.1,11-23,1992, Trondheim, Institute of Inorganic Chemistry.
    [126]T. Margaria: 'Identification and Control of the Characteristics of Silicon Used in Direct Synthesis'in'Silicon for the Chemical Industry1 Vol.2,69-80,1994,
    [127]Trondheim, Tapir Forlag. T. Margaria:'Silicon Refining:Experimental Studies and Industrial Means to Control Silicon Quality'in'Silicon for the Chemical Industry' Vol.3,21-32, 1996, Trondheim, Tapir Forlag.
    [128]Olesinski RW, Abbaschian G J. ASM Hand book Vol.3 Alloy Phase Diagrams [M], Ohio: ASM International, Materials Park,1984.
    [129]Armas B, Male G, Salanoubat D. Determination of the boron-rich side of the B-Si phase diagram [J]. Journal of the Less Common Metals,1981,82:245-254.
    [130]Manfrinetti P, Fornasini M L, Palenzona A. The phase diagram of the Ca-Si system [J]. Intermetallics,2000,8(3):223-228.
    [131]Chen H M, Zheng F, Liu H S, Liu L B, Jin Z P. Thermodynamic assessment of B-Zr and Si-Zr binary systems [J]. Journal of Alloys and Compounds,2009,468:209-216.
    [132]PURE 4.4 SGTE Pure Elements (Unary) Database, Scientific Group Thermodata Europe 1991-2006.
    [133]Wojciech Gierlotka. Thermodynamic description of the Hg-Te binary system [J]. Journal of Alloys and Compounds,2010,494(1-2):102-108.
    [134]T.B. Massalski, Binary Alloy Phase Diagrams,2nd Edition, ASM, Materials Park, OH, 1990.
    [135]S.P. Gordienko, Powder Metall. Met. Ceram.1995,34 (11-12):660-662.
    [136]B. Armas, C. Chatillon, M. Allibert, Rev. Int. Hautes Temper. Refract.1981,18:153-165
    [137]A.I. Zaitsev, Russ. J. Gen. Chem.2002,72 (2):183-192.
    [138]Trumbore F A. Solid Solubilities of Impurity Elements in Germanium and Silicon [J]. Bell Syst. Tech. J.,1960,39:205-233.
    [139]Babizhetskyy V, Roger J, Deputier S, Jardin R, Bauer J, Guerin R. Solid state phase equilibria in the Gd-Si-B system at 1270K [J]. Journal of Solid State Chemistry, 2004,177:415-424.
    [140]Wolf S De, Szlufcik J, Delannoy Y, et al. Solar cells from upgraded metallurgical grade (UMG) and plasma-purified UMG mulgicrystalline silicon substrates. Sol. Energy Mater. Sol. Cells,2002,72:49-58
    [141]P. Chartrand, S. A. Degterov, GEriksson, K.Hack, B.R. Mahfoud, J. Melancon, A.D.Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad,2002,26:189-228.
    [142]Tatsuya Tokunaga, Hiroshi Ohtani, Mitsuhiro Hasebe. Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Fe-Si-B system[J], Computer Coupling of Phase Diagrams and Thermochemistry 28 (2004) 354-362.
    [143]Yu.V. Efimov, G.G. Mukhin, E.M. Lazarev, N.A. Korotkov, L.A. Ryabtsev, V.N. Dmitriev, T.M. Frolova, Russ. Metall.4 (1986):167-173.
    [144]N.F. Chaban, Yu.B. Kuz'ma, Inorg. Mater.6 (1970) 883-884.
    [145]T. Yoshikawa, K. Morita, Thermodynamic Property of B in Molten Si and Phase Relations in the Si-Al-B System, Mater. Trans.,2005,46(6):1335-1340.
    [146]Viala J C, Bouix J. Alliages bore-silicium riches en bore partie I:Caracterisation des phases et domaines dexistence [J]. Journal of the Less Common Metals,1980,71(2):195-206.
    [147]R. Tremblay, Roch Angers. Preparation of Hig Purity SiB4 by Solid State Reaction hetween Si and B [J]. Ceramics International,1989,15,73-78.
    [148]R. E. Hoffman, D. TurnbullApplPhys[J].1951,23:634.
    [149]陈忠景,陈为民,林政伟.锗硅单晶扩散系数理论探讨及各晶向扩硼实验[J].半导体学报,1987,8,(04):429-432.
    [150]何念银,艾韬,胡迎飞,郑金标.硅材料除硼处理[J].化学世界,2009(4):197-199, 204.
    [151]W. Hume-Rothery. Atomic diameters, atomic volumes and solid solubility relations in ailoys[J]. Acta Metallurgica,1996,14,(1):17-20.
    [152]潘金生,田民波.材料科学基础[M],北京:清华大学出版社,1998.
    [153]A. Schei, J.Kr. Tuset, H. Tveit. Production of High Silicon Alloy. Tapair Fortag, Trondheim, Norway,1998:275-299.
    [154]F.A. Trumbore. Solid solubilities of impurities elements in germanium and silicon. The Bell Syst. Techn. J, January,1960,205-233.
    [155]CHASE M W. NIST-JANAF thermochemical tables [M].4th ed. New York:American Chemical Society and the American Institute of Physics for the National Institute of standards and Technology,1998:221-1754.
    [156]M.D. Johnston, M. Barati. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications [J]. Solar Energy Materials & Solar Cells,2010,94:2085-2090.
    [157]Kichiya Suzuki, Tsuyoshi Sugiyama, Kiyotaka Takano, Nobuo Sano. Thermodynamics for Removal of Boron from Metallurgical Silicon by Flux Treatment [J]. J. Japan Inst. Metals,1990, 54(2):168-172.
    [158]K. MORITA, K. KUME, N. SANO. A Newly Developed Method for Determining SiO2 Activity of the Silicate Slags Equilibrated with Molten Silicon Alloys [J], ISIJ Int.,2000,40 (6): 554-560.
    [159]Zou yuanxi, Chou Jicheng, Chao Pennion. Activities in liquie CaO-SiO2 and CaO-Al2O3 slag. Scientia Sinica,1963,12(8):1249-1250.
    [160]V.D. Eisenhuttenleute. Slag Atlas (2nd Edition) [M]. Germany:Verlag-Stahleisen GmbH, Dusseldorf,1995.
    [161]黄希祜.钢铁冶金原理(第3版)[M].北京:冶金工业出版社,2002:197-198.
    [162]I.D. Sommerville, D.A.R. Kay. Activity determinations in the CaF2-CaO-SiO2 system at 1 450℃ [J]. Metallurgical and Materials Transactions B,1971,2(6):1727-1732.
    [163]王恩慧.工业硅氯化精炼原理的探讨[J].轻金属,1995,1:46-49.
    [164]姚登华.硅铁炉外氯化精炼实践研究[J].铁合金,2001,32(2):10-12.
    [165]李小明,张建妮.以氧代氯精炼工业硅的工艺研究[J].新技术新工艺,2001,(6): 37-38.
    [166]http://www.fe-si.com/web/InfoShow.jsp?psite=html&sId=574&typeCls=231.
    [167]http://1jz51676.blog.163.com/blog/static/97258085200958105538518/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700