用户名: 密码: 验证码:
UMBIRFPA的计算机仿真及非均匀性校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非致冷微测辐射热计红外焦平面阵列(UMBIRFPA)是当代信息科学技术中红外技术学科的具有带动性的学科研究前沿之一。论文从红外技术、红外探测器和UMBIRFPA的历史、现状到发展趋势进行了比较全面的阐述。介绍了包括UMBIRFPA在内的红外探测器在军事及民事中的应用,重点描述了UMBIRFPA在民用上的广阔前景。
    UMBIRFPA的研制涉及到器件原理研究、红外材料的研制、微机械制造技术、低功耗信号读出技术、信号处理技术、红外成像技术、器件封装技术等方面。本文以对微测辐射热计工作原理的研究为基础,建立了UMBIRFPA的物理模型,对微测辐射热计进行了计算机仿真,并着重对UMBIRFPA的非均匀性问题进行了深入的研究。
    微测辐射热计是UMBIRFPA的核心部分,它是把红外辐射转换为温度变化再转换为电学量变化的象元单位。论文研究了微测辐射热计的结构与工作原理,并详细分析了红外辐射、传播、成像、吸收,给出了热平衡过程的计算方法。由于微测辐射热计在施加偏置电压的情况下,电热效应与红外辐射的共同作用使它表现出与其他红外探测器完全不同的一些特征,文中给出了响应率、噪声、噪声等效功率、噪声等效温差、光学增益、探测率等参数的计算方法,这些参数中的部分是微测辐射热计独有的,或者与其他的红外探测器的同一参数有所区别。
    非均匀性是任何焦平面阵列中必须解决的一个重要问题,而UMBIRFPA的非均匀性问题更为突出,尤其特别的是它受UMBIRFPA衬底温度的影响非常严重。如果要用传统的两点校正法来校正,必须采用昂贵的恒温系统,而且增加了系统的复杂程度。文中分析了UMBIRFPA的非均匀性受衬底温度影响的原因,计算了衬底温度对非均匀性影响的大小,提出采用三点非均匀性校正新方法来克服衬底温度的影响,并分析了这种新方法的原理、实现方案和校正系数的获取流程。新方法使得对衬底温度控制变化范围的要求从0.01K降低到5K左右,因此控温更方便并且温度控制的方法可以从制冷改变为加热,这样可以大大降低系统的成本和复杂程度。
    UMBIRFPA是一种新型的红外探测器件,微测辐射热计的工作原理复杂,其性能受到很多因素的影响,目前国内尚处于发展初期,缺少实际的设计经验和理论认识,同时UMBIRFPA又是在集成电路工艺线上生产的,投资大、周期长,如果设计不当,不仅可能导致灵敏度降低、动态范围缩小、噪声增大、非均匀性增大等问题,更可能的是根本就不能用于成像,从而造成很大损失。本论文根据UMBIRFPA的原理,建立它的软件仿真系统,它可以根据给定的结构、环境、电路设置等参数首先模拟光热、热电转换过程,并可根据电路结构,模拟校准、参数调节并读出信号,给出读出电流和电压、光学增益、光学增益比、非均匀性等各特征量的定量变化过程,预测制成后器件的各种性能参数。因此通过对该模型的仿真,可以帮助人们认识微测辐射热计的原理与规律,分析设计过程中的不合理因素,检验各种设计方案,确定某些参数的最佳设置,以减少研制过程的时间和费用。
    最后论文还给出了UMBIRFPA中部分相关电路的设计方案。
The uncooled microbolometer infrared focal plane arrays (IRFPA) is the leading edge of research on infrared technology in information science today. In this paper, the history, present status and trend in development of infrared technology, infrared detectors and UMBIRFPA were rounded represented. The military and civil applications of UMBIRFPA were introduced. Especially, much prospect of UMBIRFPA is described.
    There are various techniques involved in the development of UMBIRFPA, such as principle of the device, micro-machined technique, readout integrated circuit(ROIC), signal process, infrared imaging, device capsulation and so on. In this paper, the physical model of UMBIRFPA is established and computer simulated based on the research on the principle of microbolometer. At the same time, the nonunifomity of UMBIRFPA is deeply studied.
    Microbolometer, which is the key part of UMBIRFPA, is the unit absorbing the Infrared radiation and changing it into heat quantity and electrical quantity. The author studied the construction and principle of the microbolometer and analyzed infrared radiation, transmission, imaging and absorbing. Then the computing method of thermal equilibrium process is given. As the microbolometer which is voltage biased express some characters different from other infrared detectors under the effect of electric heat and infrared radiation together, the computing method of parameters ,such as responsivity, noise, noise equivalent temperature different(NETD), noise equivalent power(NEP), optical gain, detectivity and so on is given in this paper. Some of these parameters are particular compared with other detectors, and some have difference between microbolometer and other detectors.
    Nonuniformity which must be corrected in all focal plane array is more greater in UMBIRFPA. It is special that nonuniformity be effected by substrate temperature in UMBIRFPA. The costly constant temperature system must be employed if using the traditional two point correction method, moreover, the system is more complex. In this paper, the reason for which the substrate temperature effects the nonuniformity of UMBIRFPA is analyzed. It is brought forward that using three point correction method to minish the substrate temperature's influence on nonuniformity of UMBIRFPA. The principle of the new method, the way to realize the method and the flow process to obtain the correction coefficients were given simultaneously. With the method, the control range of substrate temperature can be increased from 0.01k to 5K, and the temperature method can be changed from cooling to heating. So the cost and complexity of system can be reduced.
    As UMBIRFPA is a new type of infrared detecting device, its work principle is complex and its performance is affected by many factors. In the initial stage of developing, the design experiment and theoretical understanding are little interiorly. Furthermore, the problems such as sensitivity reduced, dynamic range shortened, nonuniformity increased come forth if UMBIRFPA is not designed properly. Even it can't be used in imaging. This will cause a large waste because UMBIRFPA is produced on IC production line, the investment is huge and the period is long. The author established s software simulation system base on the principle of UMBIRFPA. The system can simulate the transfer process of photo-thermal and thermal-electric at a given parameter setting of structure, environment and circuit. On the basis of circuit structure, the calibration, parameter adjusting and signal readout can be simulated, the vary process of readout circuit, readout voltage, optical gain, optical gain rate, and uniformity can be given. In addition, all kinds of character parameters of device can be forecasted. By means of simulating the model, it can help people to realize the principle and laws of microbolometer, analyze the improper factors in design course, verify the rationality of different design scheme, confirm the best setting of some parameters. Consequently, the expense in the produce process can
引文
1. 汤定元,糜正瑜.光电器件概论.上海:上海科学技术文献出版社,1989
    2. 汤定元. 关于我国红外技术发展的一些回忆. 红外技术, 2001,22(1):2~7
    3. 褚君浩.现代红外物理研究新进展.激光与红外,1998,28(5):276~279
    4. 苏君红,郑为建.红外线的二百年——从科学探索到技术创新.红外技术, 2001,23(1):1~2
    5. 陈东波.固体成像器件和系统.北京:兵器工业出版社,1991
    6. 朱惜辰.红外探测器的进展.红外技术,1999,21(6):12~15
    7. 王义玉.红外探测器.北京:兵器工业出版社,1993,
    8. 吴诚,苏君红,潘顺臣等. 非制冷红外焦平面技术评述(上). 红外技术,1999,21(1):6~9
    9. 吴诚,苏君红,潘顺臣等. 非制冷红外焦平面技术评述(下). 红外技术,1999,21(2):1~3
    10. 王海.非制冷固体成像技术的发展.红外,1999,(4):1~4
    11. 邵式平.室温型热释电红外探测器焦平面阵列新进展.红外与激光工程,1998,(4):33~36
    12. 孙志君.红外焦平面阵列技术的发展现状.半导体光电,2000,21(增刊):29~32
    13. 杨亚生.PtSi红外焦平面阵列技术的发展概况.红外与激光,2000,30(1):48~50
    14. Hans D.Tholl, D.Krogmann, O.Giesenberg.New Infrared Seeker Technology.SPIE,1998,484~493
    15. D.A.Scribner, M.R.Kruer, J.M.Killiany.Infrared Focal Plane Array Technology.Proceedings of the IEEE,79(1):66~85,1991
    16. Michael A.Soel,Stanley Rudman,Robert Ryan etc.MULTVIEW:A Novel Multi-spectral IR Camera.SPIE,3063:239~256,1997
    17. Hanson C etc. Uncooled thermal imaging at Texas Instruments. SPIE,2020: 330~339,1993
    18. Belcher, et al. Uncooled monolithic ferroelectric IRFPA technology. SPIE,3436: 611~622,1998
    19. 孙志君.非制冷红外焦平面阵列技术.传感器世界,2000,(2):1~9
    20. W.Radford[著].贡树行[译].应用于微测辐射热计的非制冷型320×240元焦平面阵列.红外,1998,(2):1~10
    21. 苏君红.迎接红外技术新的挑战.红外技术,1999,21(4):2
    22. 蔡毅,汤锦亚.对红外热成像技术发展的几点看法.红外技术,2000,22(2):2~6
    23. 蔡毅,潘顺臣.红外技术在未来军事技术中的地位和作用.红外技术,1999,21(3):1~6
    24. 韩建忠,吴景生,陈励夫.国外红外焦平面相关技术发展.激光与红外,1998,28(5):273~275
    25. D.D.Ferris,R.W.McMillan,N.C.Currie etc.Sensors for military special operations and law enforcement application.SPIE,1997,3062:173~180
    26. Steven R.Barrios,Raymond Kwok,James D.McMullen etc.Staring Infrared Panoramic Sensor(SIRPS) for Surveillance and Threat Detection.SPIE,3061: 585~590, 1997
    27. McEwen R K. European Uncooled Thermal Imaging Technology. SPIE,3061: 160~179,1997
    28. 张艳冰,喻松林,东海杰.双波段红外焦平面探测器.红外技术,2000,22(3):27~30
    29. 曾戈虹.红外焦平面器件的研制与展望.红外技术,1995,17(3):1~5
    30. 李尚俊.非制冷测辐射热计红外焦平面阵列.半导体光电,2000,21(3):73~76
    31. 苏吉儒,魏建华,庄继胜.赴向21世纪的非制冷热成像技术,红外与激光工程,1999,(6):41~45
    32. 金伟其,候光明,刘广荣. 非制冷焦平面热成象技术及其应用. 红外技术,1998,20(6):6~11
    33. 蔡毅,潘顺臣. 红外技术在未来军事技术中的地位和作用. 红外技术,1999,21(3):1~7
    34. 孙志君.红外焦平面阵列技术的军用市场展望. 传感器世界,1999,(5):1~5
    35. 王泽和.红外成像技术在海军中的一些应用.红外技术,2000,22(6):33~36
    36. [苏]Ю·波利索夫[著].程促华[译].红外线的应用.北京:国防工业出版社,1981
    37. 孙志君.红外焦平面阵列技术的商用展望.传感器世界,1999,(1):1~6
    38. 金伟其,郭宏,苏学刚等.热成像系统及医学热诊断技术.红外技术,1999,21(5):6~12
    39. 黄荣华.红外技术及其在工业生产中的应用.北京:水利出版社,1987
    40. Thomas Breen等. 非致冷微热辐射计敏感器的多种用途(上). 红外,2000,(5):11~16
    41. Thomas Breen等. 非致冷微热辐射计敏感器的多种用途(下). 红外,2000,(6):8~14
    42. 白长城,张海兴,方湖宝. 红外物理.北京:电子工业出版社,1989,3
    43. 陈衡.红外物理学.北京:国防工业出版社,1985
    44. 张敬贤,李玉丹,金伟其.微光与红外成像技术.北京:北京理工大学出版社,1995.9
    45. 高凤武,李继祥.应用光学.解放军出版社,1986.9
    46. 陈玻若.红外系统.北京:1998.12
    47. 汪涛,贾功贤,袁祥辉.非致冷微测热辐射计的设计.半导体光电,2001.22(2):78~81
    48. 汪涛,刘成康,袁祥辉.非致冷微测辐射热计的热平衡分析.红外与激光工程,2001.30(3):218~221
    49. F.P.因克罗普拉,D. P.德威特,《传热基础》,宇航出版社,1985年2月。
    50. Jerminek H etc. Micromachined, uncooled, VO2-Based, IR Bolometer arrays. SPIE 2746: 60~71, 1996
    51. Herring R J etc. Design and performance of the ULTRA 320×240 uncooled focal plane array and sensor. SPIE 2746: 2~12, 1996
    52. K.C.Liddiard, Design and Fabrication of Thin Film Monolithic Uncooled Infrared detector Arrays, Proc, SPIE 2255, pp62-71, 1994.
    53. Hubert Jerominek, Timothy D.Pope et al, 64×64, 128×128 and 240×240 pixel uncooled IR bolometric detector arrays, Proc, SPIE 3061, pp.236-247, 1998.
    54. Kruse P.W., Uncooled infrared focal plane arrays. Proc. IEEE-ISAF 94 Conference, 1994.
    55. Eustace L. Dereniak; Robert E. Sampson. Detector Dewar cooler assemblies trade-off with equipment needs: a key issue for cost reduction . Proc. SPIE 2746: 235-245, 1996.
    56. 汪涛,袁祥辉,吕果林,黄友恕.利用微机械技术制造非致冷微测辐射热计.压电与声光,2001.23(5)(增刊):218~221
    57. 唐海蓉,金伟其,仇谷峰.二代热成像系统的三维噪声模型.红外技术,2000,22(6):7~11
    58. 房红兵,皮德富,王广民等.凝视热成像系统的三维噪声分析法.红外技术,2000,22(5):8~11
    59. Marasco P L, et al. Uncooled infrared sensor performance. SPIE 2020: 363~378, 1993
    60. M.H.Unewisse, S.J.Passmore, K.C.Liddiared, R.J.Wabon. Performance of uncooled semiconductor film bolometer detector. SPIE 2269: 43~52, 1994
    61. 胡得明,顾伯奇,陈勤. GB/T 13584——92,红外探测器参数测试方法,中华人民共和国国家标准.国家技术监督局,1992
    62. 陈昆峰,汪永忠,应承平.红外探测器的噪声测量.红外技术,1997,19(6):21~24
    63. 董亮初,丁瑞军,何震凯等.红外焦平面参数定义和测试方法的讨论.红外与激光工程,1997,26(3):15~16
    64. 《红外焦平面测试评价技术研究》课题组.焦平面探测器测试与评价.上海:中国科学院上海技术物理研究所,1995:2
    65. 董亮初,丁瑞军,梁平治等. GB/T 17444-1998,红外焦平面阵列特性参数测试技术规范,中华人民共和国国家标准.国家质量技术监督局,1999
    66. 《红外焦平面测试评价技术研究》课题组.焦平面探测器测试与评价.上海:中国科学院上海技术物理研究所,1995:27~63
    67. L.J.Kozlowski等[著]. 顾聚兴[译] .HgCdTe、InGaAs和量子阱GaAs/AlGaAs凝视红外焦平面阵列的性能(上).红外,1999,(11):1~8
    68. L.J.Kozlowski等[著].顾聚兴[译].HgCdTe、InGaAs和量子阱GaAs/AlGaAs凝视红外焦平面阵列的性能(下).红外,1999,(11):27~32
    69. 汪涛,刘成康,袁祥辉. 非致冷微测辐射热计的特性参数. 激光与红外,2001,31(3):177~179
    70. W. Radford, etc. Microbolometer uncooled infrared camera with 20mK NETD.SPIE, 1998, 3379: 22~35
    71. 中华人民共和国国家标准.红外焦平面特性参数测试技术规范(第三草稿).国家技术监督局,1997
    72. A.F.Milton,F.R.Barone ,M.R.Kruer.Influence of nonuniformity on infrared focal plane array performance.Opt.Eng,1985,24:855~862
    73. 周建勋,王利平,刘滨.红外图象非均匀性产生的原因分析.红外与激光工程,1997,26(3):11~13
    74. 李兵.固体图象传感器(SSIS)的非均匀性校正研究.重庆:重庆大学硕士学位论文,1997
    75. 胡晓梅.红外焦平面探测器的非均匀性与校准方法研究.红外与激光工程,1999,28(3):9~12
    76. 胡晓梅.提高两点温度定标法精度的焦平面非均匀性校准技术研究.红外与激光工程,2000,29(2):19~21
    77. D A Scriber, M R Kruer, J C Gridley ,K Sarkady.Physical limitations to nonuniformity correction in IR focal plane arrays.Instrum..Eng,1987,865:185~202
    78. Vidhnu Gopal.混合焦平面阵列的非均匀性控制和设计.Opt. Eng., 1993,31:2330~2335
    79. Gill L. Duykers. Test Results of a "Factory" Calibration Technique for Non-Uniformity Correction of an InSb Infrared System. SPIE Vol. 3063:209
    80. 王钰,陈钱,殷德奎等.实时红外图像非均匀性校正技术研究.红外与毫米波学报,1999,18(2):151~154
    81. 刘会通.红外焦平面阵列剩余非均匀性的测试和检验.激光与红外,1998,28(5):305~307
    82. 王钰,陈钱,殷德奎等.实时红外图像非均匀性校正研究.激光与红外,1999,29(4):8~10
    83. 曹治国,魏洛刚,张天序等.基于神经网络的焦平面器件非均匀性校正技术研究.红外与激光工程,2000,29(1):65~68
    84. D.A.Scribner,K.A.Sarkady,J.T.Caulfield etc.Adaptive Nonuniformity correction for IR Focal Plane Arrays Using Neural net works.SPIE,1991,1541:100~108
    85. 焦李成.神经网络应用与实现.西安:西安电子科技大学出版社,1993
    86. J.M.Mooney,F.D.Shephard,W.S.Ewing etc.Responsivity nonuniformity limited performance of infrared staring cameras.Opt.Eng,1989,28(11):1151~1161
    87. M.T.Eismann,C.R.Schwartz.Focal Plane Array Nonlinearity and Nonuniformity Impacts to Target Detection with Thermal Infrared Imaging Spectrometers.SPIE,1997,3063:164~167
    88. Mooney J M,Shepherd F D.Characterizing IR FPA Nonuniformity and IR Camera Spatial Noise.Physics and Technology,1996,37:595~605
    89. M.D.Nelson,J.F.Johnson,T.S.Lomheim.General noise processes in hybrid infrared focal plane arrys.Opt.Eng,1991,30:1682~1700
    90. R. W .Helfrich.Programmable compensation technique for staring arrays.SPIE,1979,178:110~121
    91. Satoru C Tanka.A need and method for nonuniformity correction in solid state image sensor .SPIE,1982,350
    92. K.Hartnett,C.Marshall,N.Butter et al.Compensation electronics for staring focal plane arrays.SPIE,1981,282:73~78
    93. D.L.Perry ,E.L.Dereniak.Linear theory of nonunifromity correction in infrared staring sensors.Opt.Eng,1993,32(8)1854~1859
    94. Broekaert M.Nonlinearity and nonuniformity correction for the IRIS family of IRCCD thermal imagers.SPIE,1994,2269:507~523
    95. 熊辉,杨卫平,沈振康.红外焦平面阵列非均匀性校正算法研究.系统工程与电子技术,1998,(12):40~43
    96. W. Radford, etc. 320(240 silicon microbolometer uncooled IRFPAs with on-chip offset correction.SPIE,1996,2746: 82~92
    97. M.Schulz, L.Caldwell.Nonuniformity correction and correctability of infrared focal plane arrays.Infrared Phys.Technol. 1995,36:763~777
    98. Yuan Xianghui,Wan Wenlue.New method for nonuniformity correction of solid state image sensor.SPIE,1995, 2564:160~163
    99. 汪涛,贾攻贤,袁祥辉. 非致冷微测辐射热计的计算机仿真. 第15届全国红外科学技术学术会议论文2001,(10):742~746
    100. 李庆林,皮德富,周士源. 非致冷微测辐射热计的数学模型. 红外技术,2000,22(3):16~18
    101. 顾文韵,皮德富,周士源. 非致冷微测辐射热计的研制方案. 红外技术,2000,22(5):10~14
    102. Hess, Glenn T.; Sanders, Thomas J. Etc. 3D focal plane array modeling for IRFPA process, operation, and performance simulations. SPIE Vol. 3063:50-59, 1997
    103. 田种运,类胜琼,孙娟. 室温工作的低成本氧化钒红外焦平面器件. 红外与激光工程,1998,27(5):32~35
    104. 李本俊等. CMOS集成电路原理与设计. 北京:北京邮电大学出版社,1997
    105. 张兴等. 微电子学概论. 北京:北京大学出版社,2000
    106. 童诗白等. 模拟电子技术基础. 北京:高等教育出版社,1988
    107. 施阳等. MATLAB语言精要及动态仿真工具. 西安:西北工业大学出版社,1997
    108. 潘晓辉,陈强. MATLAB5.1全攻略宝典. 北京:中国水利水电出版社,2000
    109. 刘西钉,梁平治,沈学础. 非致冷红外微测辐射热计的自热效应分析及重要参数测定. 红外与毫米波学报,1999,18(1):27~31
    110. 周士源,皮德富,顾文韵. 微测辐射热计性能的模拟分析. 红外技术,2000,22(5):15~18
    111. 刘昌林,李仁豪.64×64元InSb阵列CMOS读出电路.半导体光电,2000,21(增刊):53
    112. 袁祥辉,吕果林,黄友恕等.红外焦平面CMOS单元读出电路.半导体光电,1999,20(2):123~124
    113. 刘成康,李兵,汪涛等.制冷型红外CMOS读出集成电路的发展现状.红外技术,2000,22(4):39~41
    114. 袁祥辉.固体图象传感器及其应用.重庆:重庆大学出版社,1996
    115. 康华光.电子技术基础(模拟部分,第3版).北京:高等教育出版社,1988
    116. 孙彦君,白古山,石广元 等.MOS集成器件电子学.北京:电子工业出版社
    117. [美]施敏.半导体器件物理.北京:电子工业出版社,1988
    118. 贾新章,郭跃.OrCAD/Pspice 9实用教程.西安:西安电子科技大学出版社,1999
    119. 王利平,周建勋,张保民.红外焦平面探测器的输入电路性能分析.红外技术,1996,18(4):21~25
    120. 李本强.CMOS集成电路原理与设计.北京:北京邮电大学出版社,1997
    121. Steven Decker, R Daniel McGrath, Kevin Brehmer etc.A 256×256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-Parallel Digital Output.IEEE JOURNAL OF SOLID-STATE CIRCUITS,1988,33(12):2081~2090
    122. Hon-sum Philip Wang .CMOS Active Pixel Image Sensors Fabricated Using a 1.8-v,0.25-um CMOS Technology.IEEE Tran .On Electron Devices,1998,889~893
    123. Jerris F Johnson.Direct injection readout circuit model.SPIE,1994,2226:120~129
    124. Chih-Cheng Hsieh,Chung-Yu Wu,Far-Wen Jih etc.High-Performance CMOS Buffered Gate Modulation Input(BGMI) Readout Circuit for IR FPA.IEEE,1998,33(8):1188~1198
    125. Tai-Ping Sun,Yuan-Lung Chin,Wen-Yaw Chung etc.Novel CMOS Readout Techniques for Uncooled Pyroelectric.SPIE,1998,3360:60~71
    126. Z Zhou ,B Pian, E R Fossum .CMOS active pixel sensor with on-chip successive approximation analog-to-digital converter.IEEE,1997,44:1759~1763
    127. J Nakamura ,B Pian,T Nomoto, T Nakamura.On-focal-plane processing for current-mode active pixel sensors.IEEE,1997,44:1747~1758
    128. 程开富.使用CMOS读出装置的红外焦平面阵列.红外与激光技术,1995,24(3):28~33
    129. 李兵,潘银松,袁祥辉等.固体图像传感器非均匀性实时校正研究.红外技术,2000,22(7):30~33
    130. A.F.Milton.Readout mechanisms for infrared focal plane arrays.Instru. Eng.,1983,443:112~119
    131. D.J.Burt.Readout techniques for focal plane arrays.Instru.Eng.1988,865:2~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700