用户名: 密码: 验证码:
有机红外热探测材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外热释电探测器是利用材料的热释电效应探测红外辐射的器件,具有室温工作、广谱响应、不需偏压、功耗小、便携性好等优点。在热释电材料中,聚偏二氟乙烯(PVDF)及其共聚物是目前压电、热释电性能最好的有机材料。但在PVDF的四个结晶相中,具有最大自发极化的β相不能自然形成,限制了其应用范围。如何得到β相的PVDF成为人们研究的热点之一。另外,热释电探测器属于电学读出系统,存在需要复杂的电信号转换技术的支撑及灵敏度低的不足。因此,对于非电读出热探测器的研制显得极为迫切和必要。本论文以有机红外热探测材料为中心,着重对聚合物热释电材料—PVDF和非电读出机制的红外探测材料—液晶材料的热光性能进行了研究。
     采用溶液旋涂法制备了PVDF薄膜,通过改变热处理条件、溶剂的种类、极化电场,研究以上因素对PVDF结晶行为的影响。结果发现:缓慢冷却后的PVDF晶型以α相为主;冰水淬冷处理对PVDF薄膜β相的形成有利。60℃得到一定含量的β相PVDF,150℃处理主要得到了α相PVDF,而120℃热处理得到的主要为β相PVDF。以N,,N-二甲基甲酰胺(DMF)为溶剂制备的PVDF尊膜,比以二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)为溶剂所得PVDF薄膜的β相含量高。通过对极化前后PVDF薄膜的X-衍射(XRD)图谱分析,发现极化处理有利于PVDF的β相含量的提高。通过对不同热处理温度和极化后的PVDF薄膜的介电常数进行测试,发现极化后的PVDF薄膜的介电常数最高,其次是120℃热处理所得PVDF薄膜,介电常数较小是60℃和150℃热处理所得PVDF薄膜,说明经极化处理的PVDF薄膜和120℃处理36h,冰水淬冷的PVDF薄膜的极性较强,β相含量较高,进一步证实了IR和XRD的分析结果。
     PVDF的改性研究,一是采用高能紫外光辐照对PVDF进行改性。二是采用PMMA与PVDF共混改性的研究。结果发现:辐射照度的大小是影响PVDF晶型的主要因素,辐射时间对晶型改变的影响不明显。发现20 mw/cm2的照度处理几乎对样晶未产生任何影响。经照度为40、60 mw/cm2辐射后的PVDF,β相含量明显增加,而当照度达到80 mw/cm2后,所得PVDF以α相为主。即紫外辐射处理时照度为40、60 mw/cm2的辐射照度对PVDF的β相含量提高有利。PVDF与PMMA的共混可以提高PVDF中p相的含量,当PVDF/PMMA=70/30时,共混物中PVDF的β相含量较高,结晶度较大。以上改性方法的优点为设备简单,原料廉价,制备方便。为提高PVDF的铁电性能提供了新的研究方法。
     对在铁电液晶制备方面起重要作用的手性化合物S811的热力学、电学性能进行了研究。结果发现:S811的热释电潜中,在其相变温度附近出现了较强的热释电电流峰。同样,在S811的介电温谱中,在相变点附近出现了介电常数的突跃。这符合电介质发生相变或其他结构的微观上的变化时,介电常数将会出现异常的理论。S811的介电损牦值较小。另外,S811冷却过程中,在其相变前后,出现了双电滞回线,证明它是类似于反铁电体的材料。与无机热释电材料相比,虽然S811热释电系数P不是很大,但是其介电常数(ε)及介电损耗(tan6)均较小,导致其优值因子Fv、Fd值比较大,具有热释电探测应用的潜力。
     为了研制光学读出的红外探测器,研究了液晶小分子的折射率-温度变化关系。另外,为了改善液晶的成膜性能,采用热引发法,以甲基丙烯酸甲酯(MMA)和液晶材料(5CB)为主要原料,制备了聚合物与液晶不同比例的聚合物分散液晶(PDLC)和聚合物网络液晶(PNLC)薄膜,并对它们的结构、热光、电光效应进行了研究。结果表明:5CB、HHV液晶的折射率是温度的灵敏函数。通过DSC、POM分析发现液晶含量为30%的PDLC薄膜的分散性较好。利用椭偏仪建模分析得出30%的PDLC薄膜的热光系数较大,PDLC薄膜的电光性能测试结果发现该薄膜还具有较强的电光效应。PNLC薄膜的热光性能不及液晶小分子。当MMA含量为7%时所制备的PNLC薄膜的电光性能较佳。
     以液晶的旋光效应为理论基础,设计了一种非电读出的红外热成像光学系统。该系统与电学读出红外探测系统相比,具有设备小、成像方式简单、精度高等优点。针对该系统的研制,着重研究了胆甾液晶和扭曲向列相液晶的旋光度—温度变化的关系,并设计了一种旋光度—温度关系测量的光学系统。结果发现:这两种液晶的旋光度随温度呈线性变化,旋光度—温度变化率为2 Lux/℃左右。通过CCD形象化地证明了液晶旋光度随温度的灵敏变化的关系。另外,通过微囊化技术对液晶进行微囊化处理,改善其成膜性。在微囊处理中温度、pH值等因素对液晶的微囊化影响很大。以上有关液晶热光效应的研究,为其在非电读出红外探测器方面的应用提供了实验基础。
The devices of pyroelectric infrared detectors are based on materials pyroelectric effect to detect infrared radiation. They have the following advantages: working at room temperature, broad-spectrum response, no bias, low power consumption, portability. Among the pyroelectric materials, polyvinylidene fluoride (PVDF) and its copolymers possess excellent piezoelectric, pyroelectric properties. However, in the four crystalline phase of PVDF, theβphase with largest spontaneous polarization can not be formed naturally. The applications of PVDF are limited greatly. How to getβphase of PVDF film has become a subject for active research in the recent years. On the other hand, the pyroelectric infrared detectors belong to electrical readout system. They have the shortcomings of needing for complex electrical signal conversion technology and low sensitivity. Therefore, the research on non-electrical readout system of infrared detector is urgent and necessary. In this paper, we studied on the organic thermal detection materials:PVDF and liquid crystals respectively.
     The PVDF films were prepared by spin-coating solution method. The crystallization behaviors of PVDF were investigated by changing process temperature, solvent polarity and poling conditions. The results showed that the PVDF films of slow cooling treatment were a phase mainly, and ice water quenching treatment was favorable to the formation of (3 phase. The a phase PVDF film was obtained by ice water quenching treatment at 150℃. After 120℃quench treating, PVDF film was (3 phase mainly. There was a small amount ofβphase in PVDF film at 60℃. The crystallization behavior of PVDF films was influenced significantly by different solvent:DMSO, DMF, DMAc. Among them, choosing DMF as solvent, the content ofβ-phase in PVDF films was higher. After analyzing the XRD patterns of poled and unpoled PVDF films, we found that the poling process enhance theβ-phase diffraction intensity. The dielectric constants of PVDF films with different treatment condition were tested. The dielectric constant was closely related to the polarity of PVDF. The dielectric constant and the content of P-phase were investigated. The dielectric constant results were consistent with those of IR and XRD.
     On the modification of PVDF, firstly, high-energy ultraviolet light was used for modifing the PVDF films. Secondly, PMMA/PVDF blends were prepared by changing their mass ratios. The results showed that the UV radiant illuminations were found to induce the changes of PVFD films about the physical, chemical, thermal, structural respects in the range of 20~80 mW/cm2. The radiation time had little effect on the PVDF films. With 40、60 mw/cm2 radiant illuminations, theβphase constent was increased significantly, The PVDF film wasαphase mainly with 80 mW/cm2 radiation. The results of PMMA/PVDF blends showed that the PMMA content of blend had evident influence onβ-Phase crystal formation of PVDF. The blend film of PMMA /PVDF=30/70 had the highest PVDFβ-Phase content. The above methods have the advantages of simple, low cost and easy preparation, and are useful for enhance the ferroelectric properties of PVDF.
     The chiral dopant:(S)-(+)-4-{[(1-methylheptyl)oxy]carbonyl}phenyl-4-(hexyloxy) benzoate(S811) plays a major role in the preparation of ferroelectric liquid crystal. It was discovered exhibiting anti-ferroelectric and large pyroelectric behaviors near the phase transition. The electrical properties and thermodynamic behaviors of S811 had been investigated by pyroelectric, dielectric, polarization spectroscopy and DSC, PLM at different temperature. There was a sharp growth of dielectric constants at the phase transition temperture. Although the pyroelectric coefficient of S811 was low, but the figures of merit:Fv and Fd were large because of the low values of dielectric constant (ε') and dielectric loss values (tanδ). The outstanding pyroelectric performances of S811 made it possible as a novel pyroelectric material.
     In order to develop an optical readout infrared detector, the liquid crystal refractive index dependence of temperature was studied. To improve the liquid crystal film-forming property, the Poly (methyl methacrylate)-based polymer dispersed liquid crystal (PDLC) and polymer network liquid crystal (PNLC) materials were prepared by the method of thermal initiation by different 5CB and MMA mass ratios. The structures, thermo-optical, electrical-optical properties of PDLC and PNLC films were characterized. The results showed that when the liquid crystal (LC) 5CB was 30 percent in PDLC, the dispersed states of LC was well-proportioned, the variation of transmittance and thermo—optical coefficient were the largest. In the PNLC films, when the MMA was 7 percent, the thermo-and electrical optical properties were better.
     Based on the optical rotation effect of liquid crystal, a non-electrical readout system of infrared imaging was developed. Comparing with electrical readout system, the system was accuracy, simple, small equipment and so on. Another optical system was developed for studying on the relationships between the liquid crystal optical rotation vs temperature. In order to visualize the liquid crystal optical rotation and temperature relationships, we used a charge coupled device (CCD) camera to record the light intensity changes in the heating process. The results showed that the optical rotation of two kinds of liquid crystals:cholesteric liquid crystal and twisted nematic liquid crystal were very sensitive to temperature. Lastly, we improved the liquid crystal film-forming by the treatment of miro-encapsulated the liquid crystal. Through many times experiments, we found that temperature and pH were main influence factors in the micro-encapsulation process. The above studies provide experiment bases for the liquid crystal materials using in the application of non electrical readout infrared detectors.
引文
[1]田裕鹏.红外检测与诊断技术[M].北京:化学工业出版社,2006:225-226.
    [2]白洪斌,红外探测器在武器系统的应用[J].兵器.2001.(3):47-48.
    [3]A. Rogalski. Infrared detectors:Status and trends [J]. Prog. Quan Electr,2003. (27):59-210.
    [4]林武文.红外探测技术的发展[J].激光与红外.2006.9(36):840-843.
    [5]葛文奇.红外探测技术的进展、应用及发展趋势[J].红外技术与应用,2007,24(4):33-37.
    [6]陈继述,胡燮荣,徐平茂.红外探测器[M]:国防工业出版社,1986:1.
    [7]P. W. Kruse.The photon detection process [J]. Optical and Infrared Detectors,1980. (19):5-69.
    [8]P. W. Kruse. A comparison of the limits to the performance of thermal and photon detector imaging arrays[J]. Infrared Phys. Technol.1995.36 (5):869-882.
    [9]邢素霞,张俊举,常本康.非制冷红外热成像技术的发展与现状[J].红外与激光工程.2004.(33):441-444.
    [10]A. Rogalski, K.Chrzanowski. Infrared detection and devices [J]. Opto-electronics review,2002, 10(2):111-136.
    [11]刘卫国,金娜.集成非制冷热成像探测阵列[M].国防工业出版社,2004:5-8.
    [12]H. Jerominek, T. D. Pope, C. Alain. Miniature VO2-based Bolometric Detectors for High resolution Uncooled FPAs[J]. Proc. SPIE,2000, (4028):47-57.
    [13]K K. Deb. A Protein Microbolometer for Focal Plane Arrays [J]. Mat. Res Innovat,1999, (2): 318-320.
    [14]K. K. Deb. Update:A Protein Microbolometer for Focal Plane Arrays[J]. Mat. Res. Innovat. 1999, (3):66-68.
    [15]K. K. Deb. USP 6,6160,257.
    [16]吕泉.现代传感器原理及应用[M].北京:清华大学出版社,2006:28.
    [17]S. B. Lang, D. K. Das-Gupta. Pyroelectricity:fundamentals and application [J]. Ferroelectrics Review,2000, (2):217-354.
    [18]R. W. Whatmore. Pyroelectric devices and materials [J]. Rep.Prog.Phys.1986, (49):1335-1386.
    [19]钟维烈.铁电体物理学[M].北京:科学出版社,1996:78.
    [20]李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2001:216-241.
    [21]J. A. Stasiek, T. A. Kowalewski. Thermochromic liquid crystals applied for heat transfer research [J]. Opto-electronics Review,2002,10(1):1-10.
    [22]C. R. Smith. D. R. Sabatino. T.J. Praisner, Temperature sensing with thermochromic liquid crystals [J]. Experiments in Fluids,2001.30(2):190-201.
    [23]江勤,姜胜林,张海波,等.非制冷红外探测器用热释电材料的研究进展[J].红外与激光工程(增刊).2006,(35):127-132
    [24]侯识华,宋世庚.陶明德.热释电材料及其应用[J].电子元件与材料,200.19(6):26-30.
    [25]刘芸,张良莹,姚熹.钛酸铅系薄膜的热释电性能及其应用[J].压电与声光.1996.18(3):194-200.
    [26]宋柄文,红外探测器材料和HgCdTe材料的发展现状[J].红外技术.1999:21(5):1-
    [27]M. J. Abdullah, D. K. Das-Gupta. Dielectric and pyroelectric properties of polymer-ceramic Composite [J]. Ferroelectrics.1987. (76):393-401
    [28]M. D. Liu, P. Y. Wang. Y. K. Zeng et al. Structure and Properties of Sol-Gel Processed (Pb.La) TiO3 Ferroelectric Thin Film[J].Integrated Ferroelectrics,1994, (5):303-310.
    [29]L. L. Sun. B. Li. Z. G. Zhang, W. H. Zhong. Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process [J]. Eur. Polym. J,2010, (46):2112-2119.
    [30]T. T. Wang, J. M. Herbert. A.Gan. The applications of ferroelectric polymers [M]. Blackie: Gassow and London.1988:2.
    [31]殷之文.电解质物理学[M].北京:科学出版社,2002:336.
    [32]张庆新.莫志深.尼龙11结构与性能的研究进展[J].高分子通报,2001,(6):27-37.
    [33]S. Bauer, S. B. Lang. Pyroelectric polymer electrets [J]. IEEE.Trans on Dielectrics and Electrical Insulation.1966. (3):647-676
    [34]A. J. Lovinger. Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoro-ethylene. [J]. Macromolecules,1983,16 (9):1529-1534.
    [35]J. Xu, M. Johnson, G. Wilkes. A tubular film extrusion of poly(vinylidene fluoride):Structure /process/property behavior as a function of molecular weight[J]. Polymer,2004,45 (15): 5327-5330.
    [36]C. H. Du, B. K. Zhu, Y. Y. Xu. Effects of streching on crystalline phase structure and morphology of hard elastic PVDF fibers[J]. J. Appl. Polym, Sci,2007,104(4):2254-2259.
    [37]H. S. Nalwa. Ferroelectric Polymers:Chemistry, Physics and Applications [M]. New York: Marcel Dekker Inc.1995:10-15.
    [38]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2002:251.
    [39]R. Hasegawa, M. Kabayashi, H. Tadokoro. Polym. J.1972 (3):591-595.
    [40]B. E. EL-Mohajir, N. Heymans. Change in structural andmechanical behaviour of PVDF with processing and thermomechanical treatments.1.Change in structure [J]. Polymer,2001,42(13): 5661-5667.
    [41]K. Tashiro, H.Tadokoro, M. Kobayashi. Structure and piezoelectricity of poly(vinylidene fluoride)[J]. Ferroelectrics.1981, (32):167-75.
    [42]张沛霖,钟维烈,压电材料与器件物理[M].山东:山东科学技术出版社,1996:79-144.
    [43]E. Fukada. History and recent progress in piezoelectric polymers [J]. IEEE Trans. Ultrason. Ferroelectric. Freq. Control,2000. (47):1277-1290.
    [44]Y. Peng, P. Y. Wu. A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process [J]. Polymer,2004, (45):5295-5299.
    [45]Z. Y. Wang.H. Q. Fan. K.11 Su. Z. Y. Wen. Structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory[J]. Polymer,2006. (47): 7988-7996.
    [46]周洋,万建国,陶宝祺.PVDF压电薄膜的结构、机理与应用[J].材料导报.1996(5):43-46.
    [47]S. Tasaka, S. Miyata. The origin of piezoelectricity in poly(vinylidene fluoride)[J]. Ferroelectrics,1981.(32):17-23.
    [48]S. N. Fedosov, H. von Seggern. Pyroelectricity in polyvinylidene fluoride:Influence of polarization and charge [J]. J. Appl. Phys.,2008,103(1):014105-014105-8.
    [49]D. Q. Xiao, S. B. Lang. Measurement applications based on pyroelectric properties of ferroelectric polymers [J]. IEEE Trans. on Electr. Insul.1989, (24):503-516.
    [50]I. Seo. Piezoelectric polymers and their applications[J]. J. Jpn Soc. Precis. Eng.,1989, (55): 1374-1347.
    [51]R. G. Kepler, R. A. Anderson. Piezoelectricity and Pyroelectricity in Polyvinylidene fluoride [J]. J. Appl. Phys,1978,49 (8):4990-4994.
    [52]R. G. Kepler, R. A. Anderson, R. R. Lagasse. Pyroelectricity and the Electric Field Depend-ence of Crystallinity in Polyvinylidene fluoride [J]. Ferroelectrics,1984,57 (1):151-158.
    [53]E. L. Nix, J. Nanayakkara, G.R. Davies, et al. Primary and Secondary Pyroelectricity in Highly Oriented Polyvinylidene Fluoride[J]. J. Polym. Sci., Part B:Polym. Phys,1988,26 (1):127-140.
    [54]T. Furukawa, J. X. Wen, K. Suzuki, et al. Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers[J]. J. Appl. Phys,1986, (25):1178-1182.
    [55]R. Al-Jishi, P. L. Taylor. Field Sums for Extended Dipoles in Ferroelectric Polymers [J]. J. Appl. Phys,1985.57(3):897-901.
    [56]许煜寰.铁电与压电材料[M].北京:科学出版社.1978:37-38.
    [57]张福学,王丽坤.现代压电学(中山)[M].北京:科学出版社,2002:258-259.
    [58]K. Maeda. S. Tasaka, N. Inagaki, T. Kunugi. Ferroelectric properties of vinyl fluoride/trifluoro ethylene copolymers[J]. Polymer,1993.34 (16):3387-3390.
    [59]F. Bauer. Properties of ferroelectric polymers under high pressure and shock loading[J]. Nuclear Instruments and Methods in Physics Research B,1995. (105):212-216.
    [60]Z. G. Zeng, G. D. Zhu, L. Zhang, X.J. Yan. Effect of crystallinity on polarlzation fatigue of ferroelectric P(VDF-TrFE) copolymer films[J]. Chin.J. Polym, Sci.,2009.27(4):479-485
    [61]刘卫国,金娜.集成非制冷热成像探测阵列[M].北京:国际工业出版社,2004:139.
    [62]T. T. wang. Properties of Piezoelectric Poly (vinylidene fluoride) Films Irradiated by y-rays[J]. Ferroelectrics.1982.41 (1):213-223.
    [63]M. M. Nasef, H. Saidi, K. Zaman. M. Dahlan. Investigation of electron irradiation induced changes in poly(vinylidene fluoride) films[J]. Polymer Degradation and Stability,2002. (75): 85-92
    [64]H. S Virk. P. S. Chandi. A. K. Srivastava. Physical and chemical changes induced by 70MeV carbon ions in polyvinylidene difluoride polymer [J]. Nucl. Instrum, Methods Phys. Res., Sect. B,2001,(183):329-336.
    [65]L. Torrisi. R. Percolla. Ion beam processing of polyvinylidene fluoride [J]. Nucl. Instrum. Methods Phys, Res., Sect. B,1996, (117):387-391.
    [66]G. Botelho, M. M. Silva, A. M. Goncalves, et al. Performance of Electroactive Poly(vinylidene fluoride) Against UV Radiation[J]. Polym. Test,2008.27 (7):818-822.
    [67]张福学,王丽坤,现代压电学(中册)[M].北京:科学出版社,2002:264-265.
    [68]Q. M. Zhang. B. Vivek, X. Zhao. Giant Electrostriction and Relaxor Frerro-electric Behavior in Electron-Irradiated Poly(vinylidene-fluride-trifluoroethylene) Copolymer[J]. Science,1998, 280 (5372):2101-2104.
    [69]张联盟.游达0-3 PZT/PVDF压电复合材料的制备及其性能[J].复合材料学报,2004,21(3):142-145.
    [70]M. C. W. Lam, J. Li. Linear Pyroelectric Sensor Array Based on PCL/P(VDF/TrFE) Composite Integrated [J]. Ferroelectrics,2000. (35):1817-1825.
    [71]邹小平,张良莹,姚熹,王丽坤,张福学.热释电复合材料PZT-PVDF的介电性与热释电性[J].西安交通大学学报,1996,30(2):14-19.
    [72]杨文,常爱民,杨邦朝BST/PVDF 0-3型复合材料的热释电特性研究[J].红外技术,2002, 24(2):37-39.
    [73]王民,房昌水,卓洪弄,刘凤霞,李晓红TGS—PVDF复合材料的热释电性研究[J],科学通报,1990,(5):339-341.
    [74]李蕊PA11/PVDF合金材料的制备和电性能研究[D].武汉:武汉理工大学,2007.
    [75]任萍.具有压电性和热释电性的PVDF纤维的研究[D].天津:天津工业大学,2004.
    [76]Y. G. Li, A. Kaito. Crystallization and orientation behaviors of poly(vinylidene fluoride) in the oriented blend with nylon 11[J]. Polymer.2003. (44):8167-8176.
    [77]H. Kawai. The Piezoelectricity of Polyvinylidene Fluoride [J]. J J Appl. Phys.1969. (8): 975-976.
    [78]戚晓芳,余琨.拉伸法制备β型聚偏二氟乙烯薄膜工艺研究[J].机械工程材料,2004.28(12):4-6
    [79]冯玉军,井晓天,楼秉哲PVDF及其共聚物压电性和制备[J].传感器技术,1996,(4):14-17.
    [80]M. Wegener. W. Kunstler, K. Richter. et al. Ferroelectric Polarization in Stretched Piezo- and Pyroelectric Poly(vinylidene fluoride-hexafluoropropylene) Copolymer Films[J]. J Appl. Phys. 2002.92 (12):7442-7447.
    [81]M. Benz. W. B. Euler. O. J. Gregory. The Role of Solution Phase Water on the Deposition of Thin Films of Polyvinylidene fluoride [J]. Macromolecules, 2002,35 (7):2682-2688.
    [82]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004:38-40.
    [83]李淑红,马世红,李波.有机弱极性交替LB膜的铁电性[J].科学通报,2008,4(16):1754-1757.
    [84]D. Layey, S. J. Holder, W. H. A. Majid. High pyroelectric sensitivity in alternate layer LB super-lattices [J]. Mater. Sci. Eng. C.1995, (3):197-203.
    [85]严媚,马世红,刘丽英,王文澄.半花菁有序超薄膜热释电效应的产生机理[J].物理学报,1998.47(11):1917-1922.
    [86]L. M. Blinov, V. M. Fridkin, S. P. Palto, Ferroelectric polymer Langmuir films[J]. Thin Solid Films,1996. (284):469-473.
    [87]A. V. Bune, C. X.. Zhu, S. Ducharme. Piezoelectric and Pyroelectric films[J]. J Appl. Phys, 1999.85(1):2651-2655.
    [88]A. V. Sorokin, V. M. Fridkin, S. Ducharme. Pyroelectric study of polarization switching in Langmuir-Blodgett film of polyvinylidene fluoride trifluoroethylene [J]. J Appl.Phys.,2005, (98):044107-044109.
    [89]张华,张桂芳,压电和热释电聚合物PVDF及其应用[J].天津工业大学学报,2003,12(1): 35-39.
    [90]B. Hilczer. J. Kulek. The Effect of Dielectric Heterogeneity on the Pyroelectric Response of PVDF [J]. IEEE Transactions on Dielectrics and Electrical Insulation.1998.5(1):45-50.
    [91]J. Kulek,I. Szafraniak. B. Hilczer. M. Polomska. Dielectric and pyroelectric response of PVDF loaded with BaTiO3 obtained by mechanosynthesis [J]. Journal of Non-Crystalline Solids,2007. (353):4448-4452.
    [92]覃伟中,周啸.聚偏氟乙烯压电膜在医疗仪器中的应用[J].压电与声光,1995.(6):24-27.
    [93]D. Setiadi. T. D. Binnie. A. F. Armitage. K. Benjamin, H. Weller, A comparative study of integrated ferroelectric polymer pyroelectric sensors[J]. Integrated Ferroelectric,1998, (19):33.
    [94]S. F. Diaz. J. F. Zhu, N. Shamir. T. Charles. Campbell. Pyroelectric heat detector for measuring adsorption energies on thicker single crystals[J]. Sensors and Actuators B.2005. (107):454-460
    [95]王良御.廖松生.液晶化学[M].北京:科学出版社.1988:1-2.
    [96]谢毓章.液晶物理学[M].北京:科学出版社,1987:1-5.
    [97]P. Collings. Liquid Crystals:Nature's Delicate Phase of Matter [M]. Princeton:Princeton University Press,1990:1-3.
    [98]黄子强.液晶显示原理[M].北京:国防工业出版社,2007:3-10.
    [99]黄锡珉,黄辉光.李之熔译.液晶器件手册[M].日本学术振兴会第142届委员会编.北京:航天工业出版社,1992:15-26.
    [100]P. G. de Gennes. The Physics of Liquid Crystals[M]. Oxford:Clarendon.1974.
    [101]李昌立,孙晶,蔡红星,等.胆甾相液晶的光学特性[J].液晶与显示,2002,17(3):193-198.
    [102]S. Singh. Phase transitions in liquid crystals[J]. Physics Reports,2000. (324):107-269.
    [103]唐韶坤,张磊.郑文杰.李淑芬,张宏伟.胆甾型液晶用于体温的精密测量[J].高分子材料科学与工程,2008.24(5):128-130.
    [104]李伯符.液晶物理[J].液晶与显示,2001,16(3):227-239.
    [105]G. W. Gray. Thermotropic Liquid Crystals [M]. New York:Wiley,1987.
    [106]R. B. Meyer, L. Liebert, L. Strzelecki. P. Keller. J. Phys. Lett,1975, (36):L69-L71.
    [107]P. J. Collings. Ferroelectric liquid crystals:The 2004 Benjamin Franklin Medal in Physics presented to Robert B. Meyer of Brandeis University [J]. Journal of the Franklin Institute, 2005, (342):599-608.
    [108]G. Pandey, R. Dhar, V. K. Agrawal, R. Dabrowski. Characteristics of the dielectric relaxation modes of a newly synthesized fluorinated antiferroelectric liquid crystal 6F6B[J]. Physica B, 2007,(393):167-174.
    [109]Y. G. Fokin, T. V. Murzina, O. A. Aktsipetrov, S. Soria, G. Marowsky. Phase transitions in ferroelectric liquid crystals probed by optical second harmonic generation[J]. Surface Science. 2002. (507):724-729.
    [110]H. Yoshimitsu. Y. Tamura, M. Machida. NMR Study of Ferroelectric Liquid Crystal DOBAMBC [J]. Ferroelectrics,2007,348 (1):144-148.
    [111]马建标.功能高分子材料.北京:化学工业出版社,2002:259-290.
    [112]V. Percec. O. Hiroji. Molecular engineering of liquid-crystalline polymers by 'living' polymerization[J]. J. Mater. Chem.,1995. (5):1115-1123.
    [113]M. J. Baena,J. Barbara, P. Espinet et al. Ferroelectric Behavior in Metal-Containing Liquid Crystals:A Structure-Activity Study[J]. J. Am. Chem. Soc.,1994,116 (5):1899-1906.
    [114]J. Ruth. B. R. Ratna, J. Naciri. R. Shashidhar. Ferroelectric liquid crystalline polymers with large pyroelectric coefficients for infrared detectors[J]. SPIE. (1911):104-108.
    [115]J. Naciri. D. K. Shenoy. P. Keller et al. Synthesis and Pyroelectric Properties of Novel Ferroelectric Organosiloxane Liquid Crystalline Materials[J], Chem. Mater.2002, (14): 5134-5139.
    [116]E. H. Kim. J. Y. Woo, B. K. Kim. LC dependent electro-optical properties of holographic polymer dispersed liquid crystals[J]. Displays,2008, (29):482-486.
    [117]戴俊燕,刘伟昌,连彦青.刘德山.液晶聚合物网络研究进展[J].2000.13(3):349-350.
    [118]T. Y. Tsai, C. Y. Lee, C. J. Lee. Preparation and characterization of polymer-dispersed liquid crystal (PDLC) with different cation exchange capacity (CEC) clays[J]. Journal of Physics and Chemistry of Solids,2010. (71):595-599.
    [119]D. K Yang. L. C. Chien, J. W. Doane. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters[J]. Appl. Phys. Lett.,1992, (60):3102-3104.
    [120]L. Almatsy, A. Jakli. L. Rosta, G. Pepy. Structural memory effect in liquid crystal phases stabilised by silicaparticle aggregates[J]. Physica B,1998, (241):996-998.
    [121]窦艳丽,张万喜,秦创业等.聚合物分散液晶膜[J].化学进展,2007,9:1400-1405
    [122]任洪文,凌志华,朱希玲,黄锡珉.聚合物网络稳定液晶的电光偏振片[J].光学学报,2000,20(4):548-552.
    [123]王殿福,孙红军.液晶的最新技术—物性·材料·应用[M].北京:化学工业出版社.1991:28.
    [124]S. Brugioni, R. Meucci. Liquid crystals in the mid-infrared region and their applications[J]. Infrared Physics & Technology,2004, (46):17-21.
    [125]J. S. Yang, C. H. Hong, G. M. Choi. Heat transfer measurement using thermochromatic liquid crystal[J]. Current Applied Physics,2007, (7):413-420.
    [126]董凤良.基于MEMS的光学读出热成像技术的研究[D].安徽:中国科学技术大学2007.
    [127]张青川.光学读出红外成像研究进展[J].中国科学技术大学学报,2007,37(10):1204-1208.
    [128]H. J. Weller. D. Setiadi, T. D. Binnie. Low-noise charge sensitive readout for pyroelectric sensor arrays using PVDF thin film[J]. Sens. Actuators. A:Phys,2000,85 (3):267-274.
    [129]H. Su, A. Strachan. W. A. Goddard. Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers:PVDF and P(VDF-TrFE)[J]. Phys. Rev. B,2004.70(6):64101-64105.
    [130]L. L, Sun, B. Li, Z. G. Zhang. W. H. Zhong. Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process[J]. Eur. Polym. J.2010. (46):2112-2119.
    [131]何君曼,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2007:371-380.
    [132]A. Salimi, A. A Yousefi. FTIR studies of b-phase crystal formation in stretched PVDF films[J]. Polymer Testing,2003. (22):699-704
    [133]R. Gregorio Jr, E. M. Uneo. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)[J]. J. of Mater. Sci,1999, (34):4489-4492.
    [134]吴刚.材料结构表征及应用[M].北京:化学工业出版社.2001,209-278.
    [135]陈晔.杨德才.淬火温度对聚偏氟乙烯形态结构的影响[J].高分子学报,1995,(5):519-522
    [136]T. Hattori, M. Hikosaka.H. Ohigashi. The crystallization behaviour and phase diagram of extended-chain crystals of poly(vinylidene fluoride) under high pressure[J]. Polymer,1996,37 (1):85-91.
    [137]龙毅,李庆奎,强文江.材料物理性能[M].长沙:中南大学出版社,2009:188-191.
    [138]刘远立,朱平平.杨海洋,等.溶剂性能对部分解缠结聚氯乙烯有序结构形成的影响[J].高分子学报.2006,(3):528-531.
    [139]武利顺,孙俊芬,朱思君,等.聚醚砜和溶剂对聚偏氟乙烯结晶性能的影响[J].功能高分子学报.2005,18(3):1883-1885.
    [140]R. Al-Jishi, P. L. Taylor. Equilibrium Polarization and Piezoelectric and Pyroelectric Coefficients in Poly(vinylidene fluoride)[J]. J. Appl, Phys,1985,57(3):902-905.
    [141]胡慧霞,上官勇刚,左敏PMMA/PVDF共混体系相分离的时温依赖性[J].高分子学报,2009.(2):123-127.
    [142]高鸿宾.有机化学[M].北京:高等教育出版社,2005:296-309.
    [143]张蕾,陈荣敏,何炼.真空-紫外线对空间材料降解的研究进展[J].材料导报,2004.18(9): 18-20.
    [144]牛小玲,刘鹏.文卫国PMMA/PVDF共聚对PVDF的β相构型影响的研究[J].高分子通报,2010,(3):31-34.
    [145]于伯龄,姜胶东.实用热分析,纺织工业出版社.1990,3,29-31
    [146]R. W. Whatmore. Pyroelectric ceramics and devices for thermal infrared detection and imaging[J]. Ferroelectrics,1991. (118):241-259.
    [147]C. Hanson. Uncooled thermal imaging at texas instruments[J]. SPIE,1993.2020:330-334.
    [148]干福熹.信息材料[M].天津:天津大学出版社,2000:483-484.
    [149]A. M. Glass, J. S. Patel, J. W. Goodby, et al. pyroelectric detection with semectic liquid crystals[J]. J. Appl. Phys,1986. (60):2778-2781.
    [150]S. S. Bhattacharyya, M. Rahman, A. Mukherjee. S. L. Wu, B. K. Chaudhuri. Field induced modification of SmC*-SmCA* transition temperature of a fluorinated anti-ferroelectric liquid crystal[J]. Current Applied Physics,2009. (9):390-394.
    [151牛小玲,刘卫国,刘鹏.手性化合物S811的强热释效应及反铁电特性[J].材料导报,2011.25(1):17-19.
    [152]E. Gorecka. A. Chandani. Y. Ouchi. et al. Moleculer Orientational Structures in Ferroelectric, Ferroelectric and Antiferroelectric Smectic Liquid Crystal Phases as Studied by Conoscope Observation[J]. Jpn.J. Appl. Phys,1990.(29):131-137.
    [153]J. W. O'Sullivany, Y. P. Panariny, J. K. Vij. et al. Pyroelectric properties of an antiferroelectric liquid crystal[J]. J. Phys.:Condens. Matter.,1996, (8):L551-L556.
    [154]李蕊.基于PVDF的全有机介电材料制备、结构与性能[D].武汉:武汉理工大学,2010:6.
    [155]M. Rahman, A. Mukherjee, A. Yoshizawa,et al. Field driven ferroelectric-erroelectric transition:Evidenceof antiferroelectric Goldstone mode in the SmC*A phase[J]. Chemical Physics Letters 449 (2007) 92-95
    [156]N. M. Shtykov, J. K. Vij, R. A. Lewis.M. Hird. J. W. Goodby. Field-induced phase transitions in an antiferroelectric liquid crystal using the pyroelectric effect[J]. Phys Rev. E,2000,62(2): 2279-2286.
    [157]L. Pickwick, Handbook of Thennochromic Liquid Crystal Technology[M]. Hallcrest, Illionis, 1991.
    [158]C. R. Smith, D. R. Sabatino, T. J. Praisner. Temperature sensing with thermochromic liquid crystals, Exp. Fluids,2001, (30):190-201.
    [159]G. S. Grewal, M. Bharara, J. E. Cobb, et al. A novel approach to thermochromic liquid crystal calibration using neural networks[J]. Meas. Sci. Technol,2006, (17):1918-1924.
    [160]J. Li. S. T. Wu. Infrared refractive indices of liquid crystals[J]. Journal of applied physics. 2005, (97).073501-073505.
    [161]J. Li. C. H. Wen. S. Gauza. Refractive Indices of Liquid Crystals for Display Applications[J]. Journal of Display Technology,2005.1(1):51-61.
    [162]牛小玲.刘卫国,刘鹏.聚合物分散液晶PMMA/5CB的制备及电光性能研究[J].功能高分子学报.2011,24(1):99-102.
    [163]阳生红,李辉遒,张日理.Ba0.9Sr0.1TiO3薄膜的椭偏光谱研究[J].无机材料学报,2001.16(2):305-310.
    [164]V. Tkachenko. A. Marinol, F. Vital, el al. Spectroscopic ellipsometry study of liquid crystal and polymeric thin films in visible and near infrared. Eur, Phys. J. E.2004. (14):185-192.
    [165]F. X. Qiu. W. Zhang. D. Y. Yang. Synthesis. Characterization, and Thermo-Optical Properties of Azobenzene Polyurethane Containing Chiral Units[J]. J. Appl. Polym. Sci.2010. (115): 146-151.
    [166]W. J. Tropf, M. E. Thomas. Infrared Refractive Index and Thermo-optic Coefficient Measurement at APL[J]. Johns hopkins APL Technical Digest,1998. (19):293-298.
    [167]V. M. Fridkin. Ferroelectric Semiconductors. Nauka. Moscow,1976.
    [168]P. J. Collings, J. S. Patel. Handbook of Liquid Crystal Research[M]. Oxford University Press, 1997:8-12.
    [169]E. Hecht. Optics,3rd Ed[M]. Addison-Wesley. Massachusetts,1998.
    [170]王新久,液晶光学与显示[M].北京:科学出版社,2006:98-101.
    [171]M. Arimoto, H. Ichikawa, Y. Fukumori. Microencapsulalation of water soluble macromolecules with acrylic terpolymers by the Wurster coating process for colon-speific drug delivery[J]. J. Membr. Sci,2001. (192):55-57.
    [172]尹真.用CCD测试系统验证马吕斯定律实验[J].大学物理.2005,10(24):32-34.
    [173]俞书宏 张康林钱逸泰热变色胆甾相液晶的制备及微囊化技术的研究[J].高分子材料科学与工程,1999,15(5):151-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700