用户名: 密码: 验证码:
综采工作面“三机”控制中设备定位及任务协调研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家能源需求日益旺盛,以煤炭为主的能源结构将持续很长时间,而煤炭资源的安全高效开采问题,已经成为资源环境领域的重点研究课题。本文在国家“863”课题基金的资助下,以综采工作面“三机”装备—采煤机、液压支架和刮板输送机为研究对象,以实现井下工作面无人化采矿为目标,开展“三机”设备定位及任务协调研究。通过掌握“三机”协同运动规律,建立“三机”系统运动学模型,进而综合惯性导航理论以及超宽带无线传感网络定位理论,构建采煤机INS/UWB协同定位模型,实现封闭空间下采煤机高精度定位定姿。在此基础上,分析采煤机、液压支架与刮板输送机相互约束规律,开展工作面“三机”参数动态匹配技术研究,构建“三机”约束集合,进而建立“三机”任务协调机制,实现“三机”正常调度优化以及冲突消解,为智能化采矿提供理论支撑及技术支持。主要研究工作包括:
     1)综采工作面“三机”系统运动学模型的建立。分析了采煤机工作空间及运动规律,完成了采煤机姿态及位置表达,构建了采煤机空间运动学模型。在此基础上,掌握了液压支架推溜、移架规律,通过制定液压支架联动规则,建立了液压支架跟机联动模型。
     2)封闭空间下采煤机动态定位策略的研究。首先对纯惯性导航系统下采煤机定位展开了研究,确定了采煤机惯性导航系统编排,构建了采煤机惯性导航方程,提出了基于四元数的姿态解算策略,进一步在惯性试验平台上对纯惯性导航下采煤机定位性能进行了测试,揭示了惯性导航系统的优势与不足;在此基础上提出基于INS/UWB的采煤机组合导航策略,综合两个子系统存在的优势,研究了位置组合模式下的INS/UWB耦合机制,并进行了组合定位系统的可行性仿真研究,验证了理论模型的正确性。
     3)INS/UWB组合导航数据融合策略的研究。掌握了采煤机工况下INS/UWB组合导航系统误差传播特性,对INS与UWB子系统误差分别进行了建模,构建了系统误差方程,在此基础上确定了INS/UWB组合导航系统状态方程与量测方程,研究了基于模糊自适应Kalman滤波技术的INS/UWB组合导航数据融合策略,并进行了INS/UWB组合导航仿真研究;最后通过构建INS/UWB协同定位平台,开展了采煤机定位定姿试验研究,验证了INS/UWB组合导航理论模型的正确性,同时确定了系统精度。
     4)工作面“三机”集合约束下任务协调机制的研究。分析了采煤机、液压支架和刮板输送机之间的约束关联,进而研究了工作面“三机”工作参数动态匹配技术,在此基础上建立了“三机”协同任务控制模型,并采用动态规划理论进行了模型求解,进一步提出了基于通用部分全局规划的“三机”任务协调策略,并构建了“三机”协同运动仿真平台,开展了工作面“三机”任务协调试验研究,结果表明,通过建立“三机”实时任务视图,能够进行实时任务约束检测,实现“三机”协同工作,同时提高“三机”机组设备效率与总体效能。
Along with the strong increase of national energy demand, coal-dominated energystructure will last a long time. The safe and efficient mining issue has been a primaryresearch subject in the resources and environment flied, in order to improve equipmentautomatically and realize unmanned mining. Taking the Three Machines of shearer,hydraulic support and scraper conveyor as research object, this dissertation researchesthe positioning estimation and task coordination of Three Machines supported by theNational High Technology Research and Development Program of China. Kinematicsmodel of the Three Machines is established based on the collaboration motion rule of theThree Machines. Then the inertial navigation system (INS) integrated with the Ultra-wideband (UWB) are applied to derive the collaboration positioning model, which canobtain accuracy position and pose of shearer in the enclosed environment. Analyzing theconstraints rules among the shearer, hydraulic support and scraper conveyor, theparameter dynamic matching of the Three Machines is studied. A set of constraints isresearched to find the mechanism of task coordination. Finally the schedulingoptimization and conflict resolution of Three Machines is realized, which can providetheoretical and technical support for intelligent mining. The main research work includes:
     1) The kinematics model of the Three Machines is established on coal mine face.The position and pose equations of shearer is described by analyzing the working spaceand motion rule of shearer. Based on researching the propelling and advancing rules ofhydraulic support, the machinery-tracked model of hydraulic support is establishedthrough formulating the linkage rules of hydraulic support.
     2) Dynamic positioning strategy for shearer is proposed in the enclosedenvironment. Firstly the positioning estimation of shearer is researched by only using theINS. Strap-down inertial navigation machinery arrangement of shearer is fixed andinertial navigation equation of the shearer is established. Inertial navigation attitudesolution strategy is proposed based on quaternion. The positioning performance ofshearer is verified on the experiment platform, which reveals the advantage anddisadvantage of the INS. Secondly the integrated navigation strategy INS/UWB isproposed further. The coupling mechanism of INS/UWB integrates the advantage of thetwo methods. Finally the proposed method of INS/UWB is tested.
     3) Integrated navigation data fusion strategy is researched based on INS/UWB.Firstly the error propagation characteristic of integrated navigation system INS/UWB is studied based on the subsystem positioning error of INS and UWB. Then, systempositioning error state equation can be obtained. Secondly the state equation andmeasurement equation are established based on INS/UWB. Fuzzy adaptive Kalmanfiltering method is proposed and the integrated navigation simulation is researched.Finally the collaboration positioning platform is designed. The position and poseexperiment of shearer is researched, which can verify the integrated navigation model ofINS/UWB.
     4) Task coordination mechanism is studied under Three Machines constraints.Firstly a set of constraints among shearer, hydraulic support and scraper conveyor isfound and the parameter dynamic matching of the Three Machines is researched.Secondly Three Machines collaborative control system model is established, which issolved through dynamic programming theory. Generalized partial global planning(GPGP) task coordination mechanism of Three Machines is proposed and the simulationplatform is constructed. Experimental study of task coordination is developed. Theresults show that task coordination mechanism for Three Machines can detect taskconstraints, realize coordination running and improve the performance of ThreeMachines.
引文
[1]崔民选.2011中国能源发展报告[R].北京:社会科学文献出版社,2011.
    [2]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [3]余良晖,孙婧,陈光升.透视中国能源消费结构[J].中国国土资源经济,2006,07:7-9.
    [4]贾若祥.“十一五”我国节能降耗的重点和对策[J].中国能源,2008,30(2):13-15.
    [5]国家发展改革委员会.煤炭工业发展“十二五”规划[R].2012.
    [6]赵铁锤.2011年煤炭事故总量和百万吨死亡率大幅下降[DB/OL].北京:新华社,2012[2012-1-14]. http://www.gov.cn/jrzg/2012-01/14/content_2044343.htm.
    [7]徐刚.综采工作面配套技术研究[J].煤炭学报,2010,35(11):1921-1924.
    [8]张世洪.我国综采采煤机技术的创新研究[J].煤炭学报,2010,35(11):1898-1902.
    [9] Tu S.H., Yong Y., Zhen Y., Ma X.T., Qia W. Research situation and prospect of fullymechanized mining technology in thick coal seams in China[J]. Procedia Earth and PlanetaryScience,2009,1(1):35-40.
    [10]张守祥,范红霞.综采工作面自动化监控网络[M].煤炭工业出版社,2008.
    [11]孟宪臣,李洪,李洪刚.煤矿开采与掘进[M].煤炭工业出版社,2008.
    [12]方新秋,何杰,郭敏江,张斌.煤矿无人工作面开采技术研究[J].科技导报,2008,26(9):56-61.
    [13]吴立新,殷作如,邓智毅,齐安文,杨可明.论21世纪的矿山——数字矿山[J].煤炭学报,2000,25(4):337-342.
    [14] Shuey S.A. Mining technology for the21st century: Inco digs deep in Sudbury [J]. Eng&Mining J-China,1999(2):7-11.
    [15] Kelly M. Developing coal mining technology for the21st century [A]. Proc Mining Sci andTech[C]//Rotterdam: A. A.Balkema,1999:3-7.
    [16] Wu L.X., Yang K.M., Qi A.W., et al. Information classification&management for MGIS anddigital mine [C]. Proc.1st Int. Sym. onDE. Beijing: Science Press,1999:999-1004.
    [17] Wu L.X., Hu J.X., Xie C.L. AID-coding method containing quadrant label for non-boundary3DGIS [A]. Proc.2nd Int. Workshop on Dynamic and Multi-dimensional GIS [C]//Beijing:ISPRS,1999:105-108.
    [18] González Nicieza C., Menéndez Díaz A., álvarez Vigil A.E., álvarez Fernández M.I. Analysisof support by hydraulic props in a longwall working[J].International Journal of Coal Geology,2008,74(1):67-92.
    [19]孙继平.煤矿监控关键科学技术问题[J].神华科技,2009,7(3):3-5.
    [20]郝贵,张胜利,杨兴平.我国煤炭企业改革与发展模式探索——神华集团榆家梁煤矿模式透析[J].煤炭经济研究,2001,(6):65-67.
    [21] Schatzel S.J., Krog R.B., Garcia F., Marshall J.K. Prediction of longwall methane emissions andassociated consequences of increasing longwall face lengths: a case study in the PittsburghCoalbed [C]//Proceedings of11th U.S./North American Mine Ventilation Symposium.2006,1:375-382.
    [22] Henderson P. Interconnection of landmark compliant longwall mining equipment-shearercommunication and functional specification for enhanced horizon control[R]. CS IROExploration&Mining Report P2004/6,2004.
    [23] Reid D.C., Hainsworth D.W., McPhee R.J. Shearer guidance: a major advance in longwallmining[J]. Springer Tracts in Advanced Robotics,2006,24(1):469-476.
    [24]李晓豁,刘春生,李萍.滚筒式采煤机的动力学模型[J].黑龙江矿业学院学报,2000,10(2):1-4.
    [25]哈尔滨工业大学深圳研究院.红外广角通讯同步积分型采煤机定位系统及定位方法:中国,101251590A[P].2008-08-27.
    [26]许春雨,宋渊,宋建成,田慕琴.基于单片机的采煤机红外线位置检测装置开发[J].煤炭学报,2011,36(1):167-171.
    [27]张连昆,谢耀社,周德华,刘帆.基于超声波技术的采煤机位置监测系统[J].煤炭科学技术,2010,38(5):104-110.
    [28]夏护国.采煤机位置监测装置的原理与应用[J].矿山机械,2007,35(11):43-45.
    [29] Zhou L.J., Chen G.Z. Location strategy of shearer based on wireless sensor network[C]//2010International Conference on Apperceiving Computing and Intelligence Analysis, China,2010.
    [30]安美珍.采煤机运行姿态及位置监测的研究[D].煤炭科学研究总院,2009.
    [31]徐志鹏.采煤机自适应截割关键技术研究[D].中国矿业大学,2011.
    [32] Stentz A., Ollis M., Scheding S., Herman H., Fromme C., Pedersen J., Hegadorn T., McCall R.,Bares J., Moore R. Position measurement for automated mining machinery [C]//Proceedings ofthe1999International Conference on Field and Service Robotics,1999:299-304.
    [33] Reid D.C., Hainsworth D.W. Mining Machine and Method [R]. US Patent: Australian PatentPQ7131,2006.
    [34]方新秋,何杰,张斌,等.无人工作面采煤机自主定位系统[J].西安科技大学学报,2008,28(2):349-353.
    [35] Fang X.Q., Zhao J.J., Hu Y. Tests and error analysis of a self-positioning shearer operating at amanless working face[J]. Mining Science and Technology,2010,20(1):53-58.
    [36]张斌,方新秋,邹永洺,尉瑞,程远伟.基于陀螺仪和里程计的无人工作面采煤机自主定位系统[J].矿山机械,2010,9(38):10-13.
    [37] Einicke G.A., Ralston J.C., Hargrave C.O., Reid D.C., Hainsworth D.W. Longwall miningautomation—An application of minimum-variance smoothing[J]. IEEE Control SystemsMagazine,2008,28(6):28-37.
    [38] Hainsworth D.W. Automatic horizon control of coal mining machinery[C]//Proceedings of the4th International Symposium on Mine Mechanisation and Automation, May2-5,1997.
    [39] Schnakenberg G.H. Progress toward a reduced exposure mining system[J]. Min Eng.1997,49(2):73-77.
    [40] Schiffbauer W.H. A distributed communications and real-time control network for roboticmining[C]//Proceedings of the ACE Specialty Conference on Robotics for ChallengingEnvironments, Albuquerque, NM,1994.
    [41] Sammarco J.J. A guidance sensor for continuous mine haulage[C]//IEEE Industry ApplicationsConference, Oct6-10,1996, California, USA.
    [42] Steele J., Kleve A., Ganesh C. Control and scale model simulation of sensor guided LHD miningmachines. Proceedings of the IEEE Industrial Applications Society AnnualConference[C]//Dearborn,1991.
    [43]吕振,刘丹,李春光.基于捷联惯性导航的井下人员精确定位系统[J].煤炭学报.2009,34(8):1149-1152.
    [44] Baiden G. Multiple LHD teleoperation and guidance at Inco Limited[C]//Proceedings of theInternational Mining Congress,1993.
    [45] Stamos I., Allen P.E.3-D model construction using range and image data[M]. ComputerVisionand Pattern Recognition,2000.
    [46] Yu Y., Ferencz A., Malik J. Extractng Objects from Range and Radiance Images[J], IEEE TransVisualization and Computer Graphics,2001,7(1):23-45.
    [47]李金刚,孟二存,孟凡龙.综采工作面采煤机刮板输送机和液压支架配套分析[J].煤矿开采,2006,11(5):34-35.
    [48]曾勇伟.综采液压支架及“三机”配套选型系统软件的研制与应用[D].中国矿业大学,2008.
    [49]胡献民.综采工作面中部设备“三机”配套设计探讨[J].煤炭工程,2006,8:13-15.
    [50]刘振洲,王瑞贤,于海忠,王儒山.综采工作面“三机”正确选型及合理配套的探讨[J].煤矿安全,2006,6(1):36-38.
    [51]姚向荣,廖米和.底区薄煤层小综采装备三机配套参数优化及应用[J].煤炭技术,2006,25(5):43-47.
    [52]刘千晟.综采工作面设备配套设计[J].河北煤炭,2008,4:53-54.
    [53] Hainsworth D.W., Mallett, C.W., Stacey M.R. Project Numbat-an emergency mine surveyvehicle[C]//Proc. Third National Conference on Robotics, Melbourne, Australia,1990:91-98.
    [54] Zhang X.Q., Wang A., Li J.Z. Design and application of virt ual reality system in fullymechanized mining face[J]. Procedia Engineering2011,26:2165–2172.
    [55] Reid D.C., Hainsworth D.W., Ralston J.C., McPhee R.J., Ingram-Johnson P.G. Industrialethernet for control and information interconnectivity in automated longwall mining[J].Longwall Automation.2000,1:1-6.
    [56] HanY.L. Study of a fault diagnosis expert system for synthetic mining system hydraulicsupport[J]. Journal of Coal Science&Engineering.2000,6(1):72-75.
    [57]张伟.液压支架与机采设备的约束关系及其控制模型[J].中国矿业大学学报,2005,34(3):349-352.
    [58] Zhang W., Han X., Sun J.J. Mathematical model of electric hydraulic and powered supportcontrol system at a plough mining face[J]. Journal of China University of Mining andTechnology.2008,18(1):55–58.
    [59]张守祥,王汝琳,刘芳.综采跟机自动化系统分析与建模[J].工矿自动化,2006,4:4-7.
    [60] Zhang S.X. Augmented reality on long-wall face for unmanned mining[J]. Journal of Computers.2011,6(6):1213-1221.
    [61]韩伟,王国法,李政,张丽芳.液压支架移架速度的定量化研究[J].煤炭学报,2003,28(2):219-224.
    [62]李晓豁,高健.采煤机运动参数对块煤产量的影响[J].煤炭学报,2009,34(9):1268-1270.
    [63]姜学云.综采面输送机额定恒负荷运行法[J].煤炭学报.1989,1:82-89.
    [64]宫富章,吴青,荣亮,于希洋,何家健,陈卓.综采工作面全自动联合采煤机组的设计[J].工矿自动化.2011,6:117-120.
    [65]郝传波,宁云才,邢中光.智能型采煤工作面计算机辅助设计系统[J].煤炭学报,1998,23(1):22-26.
    [66]程冬.综采“三机联动控制系统研究[D].徐州:中国矿业大学,2010.
    [67]常富贵,章峰,黄轶.大倾角三软煤层放顶煤支架选型及三机配套[J].煤炭科学技术,2009,37(11):59-62.
    [68]卢双.基于UG的综采工作面设备配套尺寸参数化设计及运动仿真研究[D].太原理工大学,2011.
    [69]张进安.王家山矿大倾角特厚煤层长壁综放面“三机”配套研究[D].西安科技大学,2006.
    [70]李大卫,王莉,王梦光.遗传算法在有时间窗车辆路径问题上的应用[J].系统工程理论与实践,1999,(8):65-69.
    [71] Tan K.C., Lee L.H., Ou K. Artificial intelligence heuristics insolving vehicle routing problemswith time window constraints[J]. Engineer Applications of Artificial Intelligence,2001,14:825-834.
    [72] Wassan N.A. A reactive tabu search for the vehicle routing problem[J]. Operational ResearchSociety,2006,57(1):111-116.
    [73] Arkin E.M., Hassin R., Levin A. Approximations for minimum and min-max vehicle routingproblems[J]. Algorithms archive,2006,59(1):1-18.
    [74] Montemanni R., Gambardella L.M., Rizzoli A.E. Ant colony system for a dynamic vehiclerouting problem[J]. Combinatorial Optimization,2005,10:327–343.
    [75] Richards A., Phow J. Aircraft trajectory planning with collision avoidance using mixed integerlinear programming[J]. Proceeding of the American Control Conference,2002,23(2):10-13.
    [76] Kuwata Y. Real-time trajectory design for unmanned aerial vehicles using receding horizoncontrol[D]. MIT,2003.
    [77]吕旸,万小朋,师勇.基于混合整数线性规划的无人机防撞轨迹规划[J].飞行力学,2005,23(2):81-84.
    [78]田雪涛,席庆彪.基于混合整数线性规划无人机实时航迹规划[J].计算机仿真,2009,26(5):72-75.
    [79] John S.B. Coordination and control of UAV fleets using mix-integer linear programming[D].MIT,2002.
    [80]王大志,汪定伟,闫杨.一类多旅行商问题的计算及仿真分析[J].系统仿真学报,2009,21(20):6378-6381.
    [81] Bektas T. The multiple traveling salesman problem: an overview of formulations and solutionprocedures[J]. Omega,2006,34(3):209-219.
    [82] Marinakis Y., Migdalas A. Annotated bibliography in vehicle routing[J]. European Journal ofOperational Research,2007,177(3):2069-2099.
    [83] Applegate D.L., Bixby R.E., Chvátal V., Cook W.J. The traveling salesman problem: Acomputational study(Princeton in Applied Mathematics)[M]. Princeton University Press,2007.
    [84] Sharkey J., Balkan D., Ponomarev D. Adaptive reorder buffers for SMT processors[C]//Proceedings of the15th International Conference on Parallel Architectures and CompilationTechniques. Washington, USA,2006.
    [85] Robatmili B. Thread-sens itive Instruction Issue for SMT Processors[C]//Proceedings of th eIEEE Computer Architecture Letters. IEEE Press,2004.
    [86] Cazorla F. Dynamically controlled resource allocation in SMT processors[C]//Proceedings of the37th ACM/IEEE International Symposium on Microarchitecture. ACM Press,2004.
    [87] Lakhina A., Crovella M., Diot C. Diagnosing network-wide traffic anomalies[J]. ACMSIGCOMM Computer Communication Review,2004,34(4):219-230.
    [88] Lancieri L., Durand N. Internet user behavior: compared study of the access traces andapplication to the discovery of communities[J]. IEEE Transactions on Systems, Man andCybernetics, Part A,2006,36(1):208-219.
    [89] Lakhina A., Crovella M., Diot C. Mining anomalies using traffic feature distributions[C]//Proceedings of SIGCOMM, Philadelphia, PA, USA: ACM,2005:217-228.
    [90]田大新,刘衍珩,魏达.基于模式匹配的网络入侵检测系统[J].吉林大学学报,2003,21(4):412-416.
    [91] Morgan A. Solving polynomial systems using continuation for engineering and seientificproblems[M]. Englewood Cliffs: Prentice-Hall, Inc.,1987.
    [92] Wang Y.J., Liang Z.A. Global optimality conditions for cubic minimization problem with box orbinary constraints[J].Journal of Global Optimization,2010,47:583-595.
    [93] Canfield R.A. Multipoint cubic surrogate function for sequential approximate optimization[J].Struct Multidiscip Optim,2004,27:326-336.
    [94] Deb K. An efficient constraint handling methodfor genetic algorithms[J]. Computer Methods inApplied Mechanics and Engineering,2000,186(2/4):311-338.
    [95] Deb k., Sundar J., Chaudhuri S. Reference point based multi-objective optimization usingevolutionary algorithms[J]. International Journal of Computational Intelligence Resrearch,2006,2(3):273-286.
    [96]孟秀丽,易红,倪中华.基于多目标决策的协同设计冲突消解方法研究[J].计算机集成制造系统,2005,11(5):625-629.
    [97] Andrews P.S. An investigation into mutation operators for particle swarmoptimization[C]//Process of IEEE Congress on Evolutionary Computation: Vancouver,Canada:IEEE,2006:1044-1051.
    [98] Zhang Z.H., Zhang J., Li Y. Adaptive particle swarm optimization[J]. IEEE Transaction System,Man and Cybernetic,2009,39(6):1362-1391.
    [99] Aknine S., Pinson S., Shakun M.F. An extended multi-agent negotiation protocol[J].Autonomous Agents and Multi-Agent Systems,2004(8):5-45.
    [100] Smith R.G. The contract net protocol: High level communication and control in distributedproblem solver[J]. IEEE Transactions on Computers,1980,29(12):1104-1113.
    [101] Parunak H.V.D., Brueckner S., Sauter J. Synthetic pheromone mechanisms for coordination ofunmanned vehicles[A]. Autonomous Agents and Multi-Agent Systems. Bologna, Italy,2002.
    [102] Dolgov D., Durfee E.H. Satisficing strategies for resource-limited policy search in dynamicenvironments[A]. The First International Joint Conference on Autonomous Agents and Multi-Agent Systems: Part3Table of Contents[C]. Bologna, Italy,2002:1325-1332.
    [103] Decker K.S., Lesser V.R. Designing a family of coordination algorithms[R]. UMass ComputerScience Technical Report,1995.
    [104] Alexander J. Optimal and cooperative control of vehicle formations[D]. California Institute ofTechnology Pasadena,2002.
    [105] Hwang Y.K., Choi K.J., Hong D.S. Self-learning control of cooperative motion for humanoidrobots[J] International Journal of Control, Automation, and Systems,2006,4(6):725-735.
    [106]黄肖玲,柴天佑.复杂生产过程计划调度级联模型在选矿MES中的应用研究[J].自动化学报,2011,37(9):1130-1139.
    [107]苏平,伍乃骐,于兆勤.模块化组合设备的晶圆加工过程建模研究[J].中国机械工程,2007,18(11):1307-1311.
    [108] Qu Z.H. Cooperative control of dynamical systems-Applications to autonomous vehicles[D].University of Central Florida,2009.
    [109]周锐,吴雯漫,罗广文.自主多无人机的分散化协同控制[J].航空学报,29(增):S26-S32.
    [110]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011,47(2):102-108.
    [111]刘佳,陈增强,刘忠信.多智能体系统及其协同控制研究进展[J].智能系统学报,2010,5(1):1-9.
    [112] Valenti M., Schouwenaars T., Kuwata Y., Feron E., How J. Implementation of a manned vehicle-uav mission system[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit,2004, Providence, Rhode Island.
    [113]霍霄华,沈林成.多UCAV协同控制中的任务调度问题研究[J].系统仿真学报,2007,19(16):3623-3626.
    [114] Ren W. Cooperative control design strategies with local interactions[C]//IEEE Conference onNetworking, Sensing, and Control, Ft. Lauderdale, FL, April2006.
    [115]武鸣.综采工作面采煤工艺过程的排队论模型[J].贵州工学院学报,1985,1:173-180.
    [116]武鸣,况礼澄.综采工艺的排队论模型[J].煤炭学报,1989,4:67-73.
    [117]彭嵩,马青芳,肖建秋,王爱国,胡志坚.连续油管测井机协同控制研究[J].石油学报,2010,31(6):1031-1035.
    [118]陈哲.捷联惯性导航系统原理[M].北京:宇航出版社,1986.
    [119] Hu H.D., Huang X.L., Li M.M., Song Z.Y. Federated unscented particle filtering algorithm forSINS/CNS/GPS system [J]. Journal of Central South University of Technology,2010,17(4):778–785.
    [120] John E., Bortz. A new mathematical formulation for strapdown inertial navigation [J]. IEEETransactions on Aerospace and Electronic Systems,1971, AES-7(1):61-66.
    [121]焦丽,李晓豁,姚继权.双滚筒采煤机动力学分析及力学模型建立[J].辽宁工程技术大学学报,2007,4(26):602-603.
    [122]秦永元.惯性导航[M].北京:科学出版社,2006.
    [123]张荣辉,贾宏光,陈涛,张跃.基于四元数法的捷联式惯性导航系统的姿态解算[J].光学精密工程,2008,16(10):1963-1970.
    [124]刘危,解旭辉,李圣怡.捷联惯性导航系统的姿态算法[J].北京航空航天大学学报,2005,31(1):45-50.
    [125]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998.
    [126]李东明.捷联式惯导系统初始对准方法研究[D].哈尔滨工程大学,2006.
    [127] Xu Y., Chen X.Y., Li Q.H. INS/WSN-Integrated navigation utilizing LS-SVM and H-infinityfiltering[J]. Mathematical Problems in Engineering,2012,2012:1-19.
    [128] Evennou F., Marx F. Advanced integration of WiFi and inertial navigation systems for indoormobile positioning[J]. EURASIP Journal on Applied Signal Processing,2006:1-11.
    [129] Ruiz A.R.J, Granja F.S, Honorato J.C.P, et al. Accurate pedestrian indoor navigation by tightlycoupling foot-mounted IMU and RFID measurements[J]. IEEE Transactions on Instrumentationand Measurement,2012,1(61):178-188.
    [130]田孝华,廖桂生.一种有效减小非视距传播影响的TOA定位方法.电子学报.2003,31(9):1430-1436.
    [131]肖竹,黑永强,于全.脉冲超宽带定位技术综述[J].中国科学,2009,39(10):1112-1124.
    [132] Dai H., Zhou S.L., Chen M., Li J., Wu X.N. Quaternion based nonlinear error model for rapidtransfer alignment[J]. Journal of Astronautics,2010,31(10):2328-2334.
    [133] Chehri A., Fortier P., Tardif P.M. UWB-based sensor networks for localization in miningenvironments [J]. Ad Hoc Networks,2009,7(5):987-1000.
    [134]刘危,解旭辉,李圣怡.捷联惯性导航系统的姿态算法[J].北京航空航天大学学报.2005,31(1):45-50.
    [135]徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INSPGPS组合导航系统算法研究[J].宇航学报.2005,26(5):571-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700