用户名: 密码: 验证码:
基于应用网格环境的复杂地表波动方程基准面静校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静校正技术一直是复杂地表区勘探的“瓶颈”,目前生产中广泛使用的静校正方法都基于地表一致性假设,复杂地表区往往不满足这种假设,波动方程基准面静校正被公认为是复杂地表区最好的静校正方法之一。
     本论文对波动方程基准面静校正进行了深入的研究,包括波动方程基准面静校正的流程、初至波拾取及近地表模型的建立、波场延拓算法等。设计了更合理的实现流程,建立了较准确的近地表速度模型,提出了高精度的波场延拓算法,使得波动方程基准面静校正适应于地表起伏剧烈、近地表速度纵横向变化剧烈的复杂地表区。
     在对波动方程基准面静校正原理深入分析的基础上,设计了一套波动方程基准面静校正流程。实现流程主要包括9个步骤:①利用自动和人工相结合的方式进行初至拾取;②利用初至旅行时层析成像技术,获取近地表速度模型;③把炮集记录分为共炮点道集和共检波点道集;④在共炮点道集上,利用近地表速度模型,将所有检波点从地表向下延拓到高速层顶界面;⑤采用替换速度,将检波点波场从高速层顶界面向上延拓到水平基准面;⑥将延拓后的数据重排,生成共检波点道集;⑦在共检波点道集上,利用近地表速度模型,将所有炮点向下延拓到高速层顶界面;⑧采用替换速度,将炮点从高速层顶界面向上延拓到水平基准面;⑨将延拓后的数据重排,生成共炮点道集。
     从波动方程基准面静校正的实现流程可以看出,波动方程基准面静校正需要准确的地表结构和精确的延拓方法。
     本论文采用自动拾取和人工修正相结合的方式进行初至拾取,利用初至旅行时层析成像技术重建地表介质速度分布,对层析成像模型测试的结果证明,初至旅行时层析反演方法能获得较合理的近地表速度模型。
     波动方程波场延拓方法主要有Kirchhoff积分法、有限差分法和频率-波数域法,Kirchhoff积分法和有限差分法是一种近似解,波动方程在频率-波数域变换不会带来波的畸变,可以得到精确解。频率-波数域内的相移法和相移插值法都不能适应速度横向变化剧烈的地质条件,为了解决这一问题,本论文提出了“相移-时移法”,通过修改Stolt公式,使得波动方程基准面静校正不受校正量的限制,从而能适应地表起伏剧烈、近地表速度纵横向变化剧烈的地质条件。
     为了检验“相移-时移法”在频率-波数域进行波动方程基准面静校正的有效性,对建立的理论模型进行了试算,并对某复杂地表区的实际地震资料进行了处理。实验结果证明,所用的方法和建立的模型是正确有效的。用“相移-时移法”在频率-波数域进行波动方程基准面静校正消除了起伏地表和复杂地表结构对数据的影响,同时,还消除了由于地表起伏对地下构造形态产生的畸变,为后续处理的速度分析和同相叠加奠定了良好的基础。
     由于波动方程基准面静校正计算量巨大,要想投入工业化应用,需要在高性能计算环境下进行。在对高性能计算深入研究的基础上,本论文建立了一个适合地震资料处理的松耦合微机计算集群和一个石油应用网格,对建立的集群做了性能测试,并把波动方程基准面静校正程序移植到石油应用网格环境中。
As we all know, static correction is the bottleneck in complex near-surface structure area all the time. The static correction methods broadly used in practice are all base on the Surface Consistency Hypothesis. But complex topography can’t accord with the Hypothesis. So wave equation datum static correction is considered one of the best static correction method .
     In this paper, wave equation datum static correction is researched deeply, including implement flow, establishing near-surface velocity model and wavefield continuation. A reasonable implement flow is designed. An accurate velocity model is established. A high precision arithmetic of wavefield continuation is put forward. These makes wave equation datum static correction suitable for more complex topography, including rugged topography and velocity varying severely.
     Through deep analysis on the principle of wave equation datum static correction, a set of implement flow is designed. The flow includes nine steps:①Picking up refraction first break;②Obtaining near-surface structure by first break tomographic mothod;③Dividing seismic data into CSP gather and CRP gather ;④In CSP gather, continuating all receive points to the top of high velocity layer;⑤Continuating receive points to datum plane;⑥Resorting these data into CRP gather;⑦In CRP gather, continuating all shot points to the top of high velocity layer;⑧Continuating shot points to datum plane;⑥Resorting these data into CSP gather.
     The implement flow shows that wave equation datum static correction needs accurate near-surface structure and exact wavefield continuating arithmetic.
     First break can be picked through combinative method of automation and manual. Near-surface velocity model can be established through travel time inversion by shortest path ray tracing. The test result indicates that this method is correct and effective.
     Wave equation can be continuated by Kirchhoff approximation, finite-difference and method based on frequency-wavenumber field. Kirchhoff approximation and finite-difference aren’t exact arithmetic. Exact result can be obtained in frequency-wavenumber field. Phase shift and phase shift with interpolating can’t be used in most complex near-surface area, such as horizontal velocity varying acutely. In order to solve this problem,“phase-shift time-shift”arithmetic is proposed. The arithmetic modifies Stolt formula. Then, wave equation datum static correction can have arbitrary size correction.
     Many tests about the model and arithmetic are done, and practical seismic data of complex topography is processed. The result indicates that this implement project is correct. It can eliminate the bad influence of rugged topography and complex near-surface structure. Thus, it can establish a good foundation for velocity analysis and in-phase stacking.
     Wave equation datum static correction needs large computing resource. If the technology is applied into seismic data industry process, high computing environment is necessary. A computing cluster and a petroleum grid are built. Test result indicates this cluster has high efficiency. The program of wave equation datum static correction is migrated in grid.
引文
[1]伊尔马兹.地震数据处理[M] .黄绪德译.北京:石油工业出版社,1994
    [2]牟永光.地震勘探资料数字处理[M].北京:石油工业出版社,1990:26-32
    [3]马在田.三维地震勘探方法[M] .北京:石油工业出版社,1992:60-67
    [4]俞寿朋.高分辨率地震勘探技术.北京:石油工业出版社,1994:86-90
    [5]李庆忠.走向精确勘探的道路[M] .北京:石油工业出版社,1993
    [6]熊翥.复杂地区地震数据处理思路[M].北京:石油工业出版社,2002
    [7]王进海.关于动、静校正的思考[J].石油地球物理勘探,1999,34(增刊),51-56
    [8]张捷,吴津.美国静校正技术的发展动态[M].北京:石油工业出版社,1999(12)
    [9]贺振华,黄德济等.复杂油气藏地震波场特征方法理论及应用[M].成都:四川科学技术出版社,1999
    [10]阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000
    [11]凌云.地震资料高分辨率处理技术研究[D].成都:成都理工学院博士学位论文,1996
    [12]陈学强,段孟川,马伟宁等.塔里木盆地大沙漠区地震采集接收技术研究[R].新疆乌鲁木齐:中国石油学会第十三次西部技术交流会,2005
    [13]陈学强,段孟川,马伟宁等.塔里木盆地大沙漠区地震采集接收技术研究[R].新疆乌鲁木齐:中国石油学会第十三次西部技术交流会,2005
    [14] Mike Cox.反射地震勘探静校正技术[M].李培明,柯本喜译.北京:石油工业出版社,2004:74-75
    [15]王熙明.中国西部复杂山地山前带地震采集应用技术研究[D].成都:成都理工学院硕士论文,2002
    [16]李录明,罗省贤.多波多分量地震勘探原理及数据处理方法[M].成都:成都科技大学出版社,1997
    [17]王尚旭,阎玉魁,牟云龙.山地地震资料处理中的去噪和静校正技术[A].复杂地表与复杂构造条件下的地球物理勘探技术研讨会论文集[C].兰州:西北油气勘探编辑部,1999
    [18]贾承造.前陆冲断带油气勘探[M].北京:石油工业出版社,2000
    [19]钟木善,周熙襄.中国西部地区地震勘探的静校正问题[J].物探化探计算技术,1999,21(4):358-366
    [20]戴云,张建中.长波长静校正的一种解决方法[J].石油地球物理勘探,2000,35(3):315-325
    [21]王彦春,段云卿.拟合迭代折射静校正[C].中国地球物理学会年刊,北京:中国建材工业出版社,1996
    [22]凌云.模型初至地表一致性静校止[J] .石油地球物理勘探,1992,27(3):351-360
    [23]郑鸿明.折射波法相对静校正[C].地震资料处理技术论文集.北京:石油工业出版社,1995:231-249
    [24]张建中,王克斌.一种三维折射初至静校正新方法[J].石油地球物理勘探,2003, 38(6):608-610
    [25]刘连升.约束初至拾取与初至波剩余静校正[J].石油地球物理勘探,1998,33(5):604-610
    [26] Garnica T S.地形条件恶劣地区两种确定基准面方法的比较[A].SEG第67届年会论文集[C].北京:石油工业出版社,1999
    [27]王彦春,段云卿.拟合迭代折射静校正[A].中国地球物理学会年刊1996[C].北京:中国建材工业出版社,1996
    [28]王顺国.复杂山区静校正方法研究及结果[J].石油物探,1998,37(4):31-35
    [29]张宇.关于波动方程反问题的研究[D].北京:中国科学院计算数学与科学工程计一算研究所博士学位论文,1996
    [30]陈必远,马在田,管叶君.波动方程基准面静校正[A].地震资料处理技术论文集[C].北京:石油工业出版社,1995:250-252
    [31]耿建华,黄海贵,马在田.Kirchhoff积分波场延拓基准面静校正方法研究[J].同济大学学报,1996,24(6):44-48
    [32]张文生,张关泉,宋海斌.基于混合法波场外推的波动方程基准面校正[J].石油地球物理勘探,2001,36(2):12-15
    [33]李录明,罗省贤.波场延拓表层模型校正[J].石油地球物理勘探,2001 ,36(5):33-37
    [34]郑伟荣.复杂山区地震资料处理基准面的合理运用[J].石油地球物理勘探,2007, 35卷,增刊:22-26
    [35]钱荣均.复杂地表区时深转换和深度偏移中的基准面问题[J].石油地球物理勘探,1999,34(6):44-47
    [36]艾印双,郑天愉.波场延拓深度滤波方法[J].地球物理学报,1998,41(3):22-26
    [37] A.J.别尔克豪特.地震偏移波场外推法声波成像[M].北京:石油工业出版社,1983
    [38]杨文采,李幼铭.应用地震层析成像[M].北京:地震出版社,1993
    [39]李福中,邢国栋.初至波层析反演静校正方法研究[J].石油地球物理勘探,2000, 35(6):22-28
    [40]陈祥光,裴旭东.人工神经网络技术及应用[M].北京:中国电力出版社,2003
    [41]王华忠.地震波旅行时计算[J].石油地球物理勘探,1999,34(2):155-163
    [42]张建中,陈世军.复杂介质地震初至波数值模拟[J].计算物理,2003,20(5):429-433
    [43]庄东海,肖春燕,颜永宁.利用人工神经网络自动拾取地震记录初至[J].石油地球物理学报,1994,29(5):656-664
    [44]韩小伟.利用分形维拾取地震波初至的一种改进算法[J].石油地球物理勘探,2002,37(1):61-64
    [45]王金峰,罗省贤.BP神经网络的改进及其在初至波抬取中的应用[J].物探化探计算技术,2006,28(1):14-17
    [46]潘树林,高磊,周熙襄.一种实现初至波自动拾取的方法[J].石油物探,2005,44(2):163-166
    [47]于治华,胡存铭.关于初至时间标准值的计算方法[J].石油地球物理勘探,1997,32(1):188-192
    [48]裴正林,余钦范.基于小波变换和BP神经网络的地震波初至拾取方法[J].勘察科学技术,1999,30(4):61-64
    [49]庄东海,许云,乌达巴拉.地震道时窗属性特征检测初至时间的研究[J].江汉石油学院学报,1999,21(4):45-48
    [50]熊孝雨.初至波正反演方法研究[D].长沙:中南大学,2004
    [51]吕小林,刘洪.波动方程深度偏移波场延拓算子的快速重建[J].地球物理学进展,2005,20(1):24-28
    [52]张建中.复杂地区地震勘探静校正方法技术及应用研究博士后研究报告[R].东营:厦门大学物理学博士后流动站,胜利石油管理局博士后科研工作站,2004
    [53]李录明,罗省贤,赵波.初至波表层模型层析反演[J].石油地球物理勘探,2000, 35(5):559-564
    [54]李录明,罗省贤.复杂三维表层模型层析反演与静校正[J],石油地球物理勘探,2003,38(6):636-641
    [55]李家康,余钦范.近地表速度的约束层析反演[J].石油地球物理勘探,2001, 36(2):135-140
    [56]张建中.近地表介质地震初至波层析成像[J].厦门大学学报,2004, 43(1): 63-66
    [57]裴正林.复杂介质小波多尺度井间地震层析成像方法研究[J],地球物理学报,2003,46(1):113-117
    [58]戈革.地震波动力学基础[M].北京:石油工业出版社,1980
    [59]熊晓军,贺振华,黄德济.三维波动方程正演及模型应用研究[J].石油物探,2005,44(6):554-556
    [60]熊晓军,贺振华,黄德济.复杂地表的单程波动方程地震叠前正演[J].油气地球物理,2006, 4(21):14-17
    [61]熊晓军,贺振华,黄德济.起伏地表混合法波场延拓与成像[J].天然气工业,2007,27(1):44-46
    [62]熊晓军,贺振华等.基于波动方程的地震观测系统设计方法研究[J].中国矿业大学学报,2007,36(1):138-142
    [63]张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148
    [64]程玖兵,王华忠.波动方程共炮检距道集叠前深度偏移[J].石油地球物理勘探,2001,36(5):526-532
    [65]陈伟.起伏地表条件下二维地震波场的数值模拟[J].勘探地球物理进展,2005, 42 (2):26-31
    [66]褚春雷,王修田.非规则三角网格有限差分法地震正演模拟[J].中国海洋大学学报,2005,35(3):43-48
    [67]马在田.高阶近似有限差分偏移[A],北京:CGS/SEG联合国际会议论文集[C],1981
    [68]胡光眠.频率波数域地震波变速成像研究[D].成都:成都理工学院,2000
    [69]熊高君,贺振华等.三维定位原理与三维反射波场模拟[J].矿物岩石,2002,22(3):93-97
    [70]涂国田.剩余递归F-K波动方程偏移[J].物探与化探,1991,15(3):176-181
    [71]涂国田.串联F-K加相移插值法偏移[J].地球物理学报,1992,35(6):762-768
    [72]都志辉.高性能计算并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001
    [73]陈国良.并行算法的设计与分析[M].北京:高等教育出版社,1994
    [74]胡月,熊忠阳.一种新的BP算法并行策略[J].计算机工程,2005,31(8):148-150
    [75]红色集群网站[EB/OL],www.redcluster.net
    [76]中国网格信息中转站[EB/OL],http://www.chinagrid.net
    [77]都志辉,陈渝,刘鹏.网格计算[M].北京:清华大学出版社,2002
    [78]唐志敏,徐志伟.网格技术专题[J].计算机研究与发展,2002,39(8):897-980
    [79] John R .Berryhill.Wave equation datuming[J].Geophysics, 1979,V44:122-132
    [80] S.T.chen et.al.Experimental studies on downhole seismic sources[J].Geophysics,2002,150 (12):410-413
    [81] G.B.Madiba,G.A.McMechan.Seismic impedance inversion and interpretation of a gas carbonate reservoior in the Alberta Foothills[J].Western Canada, Geophysics, 2003,68(5):1460-1469
    [82] R.Spitzer,F.O.Nitsche,A.G.Green,H.Horstmeyer.Efficient acquisition, Processing, and interpretation strategy for shallow 3D seismic surveying: A case study[J].Geophysics, 68(5), 2003:1792-1806
    [83] Marsden,D .Static corrections——a review(part I)[J].The Leading Edge,1993,12(l):43-49
    [84] Palmer D. An introduction to the generalized reciprocal method of seismic refraction interpretation[J].Geophysics,46:1508-1518
    [85] Mendel, J. M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[J].Proc.IEEE, 1991,79:278-305
    [86] Bishop, T. N. Correcting amplitude, time, and phase mis-ties in seismic data[J].Geophysics, 1994,59 :946-953
    [87] Zhang J ,Wang K ,Chen S.3-D static correction though first arrivals[C].CPS/SEG 2004 international Geophysical Conference,2004,Volume I:35-37
    [88] J.R.Berryhill. Wave-equation datuming[J]. Geophysics, 1979,44:1329-1344
    [89] J.R.Berryhill. Wave-equation datuming before stack[J].Geophysics, 1984,44:2064-2066.
    [90] V.Shtivelman ,A.Canning, Datum correction by wave-equationextrapolation[J].Geophysics, 1988,53:1311-1322
    [91] Cox, M. J. G.Static corrections for seismic reflection surveys[M]. Tulsa,Oklahoma: Society of Exploration Geophysicist,1999:2-4
    [92] Velis D R ,Ulrych T J .Simulated annealing ray tracing in complex Three-dimensional media[J]Geophys. J. Int.2001,145:447-459
    [92] Esmat P. Fractal Dimension of a Trace as a Tool for First Arrival Picking. Proceeding of the 7th international symposium on recent advances in exploration geopthysics in Kyoto,2003
    [93] James A .Sethian, A.Mihai Popovici,3-D travel time computation using the fast marching method, Geophysics,1999,64:516-523
    [94] Alexander Mihai Popovici,James A Sethian.3-D imaging using higher order fast marching travel times,Geophysics,2002,67:604-609
    [95] Michaele.Murat,Albert j.Rudman. Automated first arrival picking:A neural network approach[J],Geophysical Prospecting,1992,12(5):956-962
    [96] Moser,T. J. Shortest path calculation of seismic rays[J].Geophysics, 1991, 56(1):59-67 .
    [97] Asawaka E.,Kawanaka T. Seismic ray tracing using linear travel time interpolation[J].Geophysics,1993,57(2):326-333
    [98] Klimes L.,Kvasnicha M.3-D network ray tracing[J].Geophysics,1994,116:726-738.
    [99] Moser T.,J Van Eck T, Nolet G.Hypocenter determination in strongly Heterogeneous earth models using the shortest path method[J]. Geophysics,1992,97:6563-6572
    [100] Fischer R.,Lees J. M.Shortest path ray tracing with sparse graphs[J].Geophysics,1993,58:987-996
    [101] Chen Q , Steve S. Seismi cattribute technology for reservoir forecasting and monitorlng[J].The Leading Edge,1997,V16(5):445-456
    [102] Belfer I, Landa E. Shallow velocity-depth model imaging by refraction tomography[J].Geophysical Prospecting,1996,44:859-870
    [103] Ling-Yun chino,Wen-Tzong Liang.Multiresolution parameterization for geophysical inverse problems,Geophysics,2003,68:199-209
    [104] Papazachos C, Nolet G.P and S deep velocity structure of the Hellenic area obtained by robust non-linear inversion of traveltimes[J].Geophys,1997,1 02:8349-8367
    [105] Xiong Xiaojun, He Zhenhua, Huang Deii. One-way wave equation seismic prestack forward modeling with irregular surfaces[Jl.Applied Geophysics,2006,3(1):13-17
    [106] Hudson J A.Wave speeds and atenuation of elastic wave in material containing cracks[J]. Geophysical Journal of the Royal Astronomiacl Society,1981,V64 (1):133-150
    [107] Dan Kosloff , Baysal E.Migration with the full wave-equation[J].Geophysics,1983,48 (3):677-687
    [108] Alfonso Gonzalez-Serrano et al.Wave-equation velocity analysis[J].Geophysics, 1984,49( 9):1432-1456
    [109] Loewenthal D .,Lu L .,Robersin R .The wave equation applied to migration[J]. Geophysics Pros., 1976,V24:380-399
    [110] Stolt,R .H.Migration by Fourier transform[J].Geophysics, 1978,V43:23-48
    [111] Gazdag, J. Wave equation migration with the phase-shift method[J].Geophysics, 1978,V43:1342-1351
    [112] Hatton,Lamer K.,Gibson B.S.Migration of seismic data from inhomogeneous media[J],Geophysics, 1981,V46:751-767
    [113] Diet rich Ristow.Fouier Finite-difference migration[J].Geophysics, 1994,V59(6):1882-1993
    [114] Dietrich Ristow et al.3-D implicit finite-difference migration by multi way spliting[J].Geophysics,1997,V62(2):554-567
    [115] Gazdag J.Wave equation migration with the phase-shift method[J].1978,43(5):1342-1351
    [116] Gazdag J,Sguazzero P.Migration of seismic data by phase-shift plus interpolation[J].1984,V49(l):124-131
    [117] C.J.Beasley,W.Lynn,K .Lamer et al.Cascaded f-k migration:Removing the restriction on depth-varying velocity[J].Geophysics, 1988,V53:1110-1119
    [118] John T.,Etgen.Fast prestack depth migration using a Kirchhoff integral method[C].SEP-51,1986,129-144
    [119] Guanquan,Zhang Shulun,Wang Ying xiang.A New algorithm for finit- difference migration of steep dips,Geophysics,1988,V53(2):167-175
    [120] Lumley D.,Biondi B. Kirchhoff three dimensional perstack time migration on the connection machine[R]. 1991,SEP-Report72:123-134
    [121] VidaleJ.Finite-difference calculation of travel times in three dimensions[J].Geophysics,1990,V55:521-526
    [122] Carter,Frazer L. Accommodating lateral velocity changes in Kirchhoff Migration by means of Fermat's principle:Geophysical[J].1984,V49:46-53
    [123] Epili,D .,Mc Mechan G.A. Implementation of 3-D prestack Kirchhoff migration with application to data from the Ouachita frontal thrust one.Geophysics, 1996,V61:1400-1411
    [124] Gray S.H. Eficient travel time calculation for Kirchhoff migration[J]. Geophysics,1986,V51:1685-1688
    [125] Gray S.H.,May W.P. Kirchhoff migration using eikonal equation travel times[J].Geophysics,1994,V59:810-817
    [126] Wang B,Pann K. Kirchhoff migration of seismic data compressed by matching pursuitd ecomposition[J].Geophys,1996,V155:1642-1645
    [127] Condor High Throughput Computing[EB/OL],http://www.cs.wisc.edu/conder/description.html
    [128] Yi S.Global optimization for NN training[J].IEEE Computer,1996,V3:45-54
    [129] Smarr L, Catlett C. Metacomputing[J].Communications of the ACM, 1992,V35(6):44-52
    [120] Foster I, Kesselman C. The grid:Blueprint for a new computing infrastructure [M]. San Francisco,CA:Morgan Kaufmann Publishers,1998
    [121] Foster I, Kesselman C, Tuecke S. The anatomy of the grid:Enabling scalable virtual organizations[J].International J Supercomputer Applications, 2001,15(3):1-3.
    [122] Foster I. What is the grid? A three-point checklist[J]. Grid Today-Daily News and Information For the Global Grid Community,2002,V1(6):32-36
    [123] Baker A, Buyya R, Laforenza D. The grid: A survey on global effort in grid computing[EB/OL],http://www.byte.com
    [124] Foster I, Kesselman C, Nick J, et al. The physiology of the grid:An open grid services architecture for distributed systemintegration[EB/OL],http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf
    [125] Tuecke S, CzajkowskiK, Foster I, et al. Grid service specfication[EB/OL],http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft03_2002_07-17.pdf
    [126] Foster I, Kesselman C, Nick J M,et al. Grid services for distributed system integration[J].Computer, 2002,V35(6):37-46
    [127] Erol Akarsu,Geoffrey C Fox,Wojtek Furmanski et al.WeFlow-High-Level Programming Environment and Visual Authoring Toolkit for High Performance Distributed Computing[C].In Proceedings of IEEE Supercomputing 98,1998-11
    [128] Ninf:A Global Computing Infrastructure[EB/OL],http://ninf.apgrid.org/documents/welcome.shtmlgrid/lurrgird/jsp/index.jsp
    [129] Globus Homepage[EB/OL],http://www.globus.org
    [130] MPICH-G2[EB/OL],http://www3.niu.edu/mpi/
    [131] Network Weather Service(NWS)[EB/OL],http://nws.cs.ucsb.edu
    [132] CoG Kit HomePage[EB/OL],http://www.globus.org/cog
    [133]Luis Ferreira et al , Globus Toolkit3.0 Quick Start [EB/OL], http://www.ibm.com/redbook

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700