用户名: 密码: 验证码:
冷变形和初次再结晶过程中取向硅钢Goss织构组分演变规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取向硅钢以单一的Goss织构({110}<001>)为主要特征,是一种在电力、电子等领域广泛应用的软磁材料,主要应用于制造各类变压器铁芯。取向硅钢制造设备和技术要求极高,被称为“钢铁中的艺术品”。
     在实际生产中,完整的Goss织构通过在最后的高温退火工序中发生晶粒异常长大而产生。初次再结晶退火后的显微组织与织构对最终退火时形成取向高度集中的Goss织构至关重要。本文以取向硅钢为研究对象,对其进行了冷轧、再结晶退火等处理,分别利用光学显微镜、X衍射技术和EBSD技术进行显微组织观察、宏观织构测定和微观晶粒取向测定。实验结果表明:(1)常化板为等轴状单相铁素体组织,晶粒大小不均匀。主要织构组分为{001}<110>、{112}<110>和Goss织构。样品表层织构很弱,亚表层与中心层均有强的{001}<110>与{112}<110>织构,各层Goss织构均较弱。EBSD结果表明,Goss晶粒主要分布在常化板表层及亚表层。(2)取向硅钢经冷轧后晶粒被拉长并逐渐碎化形成纤维状组织。各层织构均由α和γ纤维织构组成,随压下量的增大,α纤维织构{001}<110>和{112}<110>强度提高,漫散减小。γ纤维织构随压下量增大强度提高,并且样品表层织构逐渐向{111}<110>和{111}<112>取向集中,亚表层和中心层织构向{111}<110>取向集中。道次压下量逐渐降低的2#方案样品各层{111}<112>织构强度要高于道次压下量逐渐提高的1#方案。(3)取向硅钢初次再结晶退火后α纤维织构消失;γ纤维织构中{111}<110>织构消失并形成{111}<112>织构;Goss织构在中等压下量退火样品强度最高。EBSD结果显示,初次再结晶退火后样品内部Goss取向晶粒主要分布在表层,并且随退火温度的提高,Goss晶粒含量降低,但晶粒尺寸同平均尺寸相比逐渐增大。(4)道次压下量逐渐降低的2#方案冷轧样品在800℃×3min的退火制度后的初次晶粒细小均匀、Goss织构含量最高,有利于发生二次再结晶。
Grain-oriented Silicon Steel characterizes by a pronounced Goss texture ({110}<001> preferred crystal orientation). It has been widely used in electric power and electronic fields as a kind of important soft magnetic material. The products mainly apply to manufacture electrical transformer as core material. Preparation of Grain-oriented silicon steel needs for highly advanced equipment and technology, so that it has been considered as artwork of steels.
     The primary recrystallization microstructure and texture have vital effect on the development of highly oriented Goss texture during final annealing. In this experiment, the microstructure is observed with optical microscope, the X-ray texture analyses and EBSD technology are performed to the macroscopical texture and microcosmic grain orientation measurement of Grain-oriented Silicon Steel samples after cold rolling and recrystallization annealing. Results of this paper show that:(1) Normalized sample composes by single-phase ferrite grains with different size. Main texture components include {001}<110>,{112}<110>and Goss texture. Surface of sample covers with a weak texture layer contrasting with the subsurface and centre layer contain sharp {001}<110> and {112}<110> texture. All layers contain weak Goss texture. EBSD results show that Goss grains mainly locate at surface and subsurface in normalized sample. (2) Microstructure of cold rolled samples shows that the grains are elongated and fibered or disintegrated gradually. Texture of every layer all make up withαfiber texture andγfiber texture. Along with the increase of reduction,{001}<110> and {112}<110> texture ofαfiber texture enhance and the diffusion fall. Meanwhile, theγfiber texture increases and congregates to {111}<110> and {111}<112> orientation in surface layer,{111}<110> orientation in subsurface and centre layer. The {111}<112> texture in all layers of project 1# sample behaves more intensive than project 1#,s. (3) Vanishment ofαfiber texture,{111}<110> texture inγfiber texture and emergence of {111}<112> texture characterize the texture changement after primary recrystallization annealing. Well, sample with moderate reduction contains maximal Goss texture content. EBSD results show that Goss oriented grains mainly locate at surface layer after primary recrystallization annealing. With the annealing temperature rising, the content of Goss grains decreases while the grain size becomes lager than average size. (4) Project 2# cold rolled sample annealed under 800℃×3min contains the maximal Goss texture content and has the minimal grain size. Conclusions reveal 2# project sample is most suitable for developing secondary recrystallization.
引文
1. Chin G Y, Warwick J H. Ferromagnetic Materials [M], North-Holland Publishing Co,1980, 57-111.
    2.内山晋.应用磁学[M],天津:天津科学技术出版社,1982,217.
    3.王会宗.磁性材料及其应用[M],长沙:国防工业出版社,1984,24.
    4. Goss N P. New development in electrical strip steels characterized by fine grain structure approaching the properties of a single crystal [J], Transactions of the American Society for Metals,1935,23:1107.
    5. Walter J L. The sor by centennial symposium on the history of metallurgy [J], Transactions of the Metallurgical Society of AIME,1963,27:519-540.
    6.田口悟.新しぃ方向性けぃ素鋼板の開発[J],日本机械学会志,1978,81:46.
    7.坂倉昭.方向性珪素鋼板の開発[J],マテリア,1994,33(1):34.
    8. Takashi O. Progress of Iron & Steel Technologies in Japan in the Past Decade [J], Transactions of the Iron and Steel Institute of Japan,1985,25:884-886.
    9.李贺杰,韩静涛,皮华春,薛永栋.取向硅钢的研究与发展[J],唐山学院学报,2007,20(6):23-27.
    10.王良芳,陶永根.我国电工钢生产现状[J],电器工业,2006,(4):24-27.
    11.周世春.异步轧制和磁场退火下硅钢的形变与再结晶织构研究[D],沈阳:东北大学,2006.
    12.牛琳霞,陈卓.进口“油片”对我国取向硅钢市场的影响[J],冶金信息导刊,2007,(1):20-22.
    13.曲家庆.关于我国冷轧硅钢生产现状和需求预测[J],中国钢铁业,2007,(1):20-22.
    14.吴承汕.宝钢正加紧自主研制取向硅钢[J],功能材料信息,2007,(3):42-43.
    15.田中悟.电磁钢板[M],新日本制铁株式会社,1979.
    16.何忠治.电工钢[M],北京:冶金工业出版社,1996.
    17.刘良田.高牌号取向硅钢酸熔铝的控制[J],炼钢,1990,(2):1-6.
    18. Luis M Saiz, Angel Fernandez. Vacuum and its applications in the manufacture of special steels [J], Vacuum,1994,45(10-11):1067-1068.
    19. NIPP ON Steel CORP. Method for producing grain-oriented silicon steel sheet having excellent magnetic property [P], Japan:2002212639.
    20. Acciali Speciali Terni S. p. A. (Terni, IT), US. Patent. Processes for the production of grain oriented electrical steel strip starting from thin slabs [P], United States:6273964.
    21.朱兴元.连铸电磁搅拌工艺在取向硅钢生产中的应用研究[J],钢铁,1994,29(4):19-23.
    22.刘炤嵩.取向硅钢加热工艺的改进[J],武钢技术,1990,(7):38-39.
    23. Zhao Y, He Z Z, Pei D R, M J H, Wang L F. Influence of Mo on hot rolling textures of Fe-3%Si grain-oriented silicon steels [J], Scripta Metallurgica et Materialia,1995,32(2): 283-288.
    24.李树森.高磁感单取向硅钢板的热轧法[J],钢铁研究,1980,(z1):91-95.
    25.陈瑛.包括常化的单取向含硼硅钢的生产方法[J],钢铁研究,1980,(z1):48-51.
    26. Harase J, Shimizu R. Influence of annealing temperature before cold rolling and Cu content on the secondary recrystallization in nitrided Fe-3% si alloy [J], Magnetism and Magnetic Materials,2003,254-255:343-345.
    27.朱文英,孙焕德.取向硅钢冷轧工艺的进展[J],上海金属,2002,(7):10-13.
    28. Frantisek Rosypal. Decarburization annealing of grain-oriented silicon steel with AlN as inhibitor [J], Magnetism and Magnetic Materials,1994,133(1-3):220-222.
    29.石飞宏威,卢凤喜.取向硅钢板脱碳退火控制方法[J],武钢技术,1998,(2):45-49.
    30. Nakashima S, Takashima K, Harase J.Effect of silicon content and carbon addition on primary recrystallization of Fe-3 Pct Si[J], Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science,1997,28(3):681-687.
    31.杨佳欣,刘静,袁泽喜,王向欣,胡守天,杨皓.氧化镁及其添加剂对取向硅钢成品的影响[J],冶金信息导刊,2007,(6):38-40.
    32. Toshito Takamiya, Mitsumasa Kurosawa, Michiro Komatsubara. Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel [J], Magnetism and Magnetic Materials,2003,254-255:334-336.
    33.王东.缩短取向硅钢高温退火周期[J],节能技术.1993,(4):45-46.
    34.赵键,肖福明,张辉宁.绝缘涂层对高磁感取向硅钢片性能的影响[J],变压器.2002,39(5):25-27
    35.赵宇,何忠治.Sn对高磁感取向硅钢抑制剂强度的贡献[J],金属学报.1993,(11):497-499.
    36.赵宇,何忠治.微量Sn在高磁感取向硅钢中的晶界偏聚[J],金属学报.1992,(28):327-332.
    37.赵宇,何忠治.Cu在高磁感取向硅钢中的作用[J],钢铁研究,1994,(6):37-42.
    38.李军,孙颖,赵宇,喻晓军,李波.取向硅钢低温铸坯加热技术的研发进展[J],钢铁,2007,42(10):72-75.
    39.卢凤喜,姚成君.日本高磁感取向硅钢最新进展(Ⅰ)[J],金属功能材料,2006,13(3):34-37
    40.李永全,孙焕德.薄板坯连铸连轧工艺与硅钢生产[J],宝钢技术,2004,(6):60-62.
    41.于永梅,李长生,王国栋.薄板坯连铸连轧生产取向硅钢技术的研究[J],钢铁,2007,42(11):45-94.
    42.朱业超,王良芳,乔学亮.表面处理细化取向硅钢磁畴的方法与机理[J],钢铁研究,2006,34(6):50-53.
    43.杨玉玲,孙凤久,张瑞峰,齐小龙.激光局部氮化改善取向硅钢磁畴结构分布[J],东北大学学报,2002,23(2):189-191
    44. Bunge H J. Zur darstellung allgemeiner texturen [J], Z. Metallkd,1965,65:872-873.
    45. Bunge H J. Mathematische Methoden der Texturen Analyse [M], Berlin, Akademie Verlag, 1969,20-62.
    46. Chen L, Mao W, Feng H, Yu Y. Investigation of Online texture measurement in steel sheets based on X-ray area detector [J], Materials Science Forum,2002,408(412): 227-232.
    47. Roe R J. Description of crystallite orientation in polycrystalline materials III general solution of pole Figure inversion [J], Journal of Applied Physics,1965,36:2024-2025.
    48.梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF分析[M],沈阳:东北工学院出版社,1986:117-118.
    49. Lucke K, Pospiech J, Virnich K H, Jura J. On the problems of the reproduction of the true orientation distribution from pole figures [J], Acta Metallurgical,1981,29(1):167-185.
    50. Wang F, Xu J Z, Liang Z D. Effect of precipitate dispersion on the recrystallization texture of niobium-added extra-low carbon cold-rolled steel sheet [J], Textures and Microstructures,1989,10(6):217-235.
    51. Wang F, Xu J Z, Liang Z D. Quantitative texture analysis from x-ray diffraction spectra [J], Textures and Microstructures,1992,19(8):55-69.
    52. Wang F, Xu J Z, Liang Z D. Estimation of the true orientation distribution function determination of the maximum-entropy method by the Taylor model [J], Journal of Applied Crystallography,1991,24(16):126-138.
    53.王沿东,徐家祯.具有重叠衍射峰低对称晶系材料的定量织构分析[J],金属学报,1995,31(24):550-561.
    54. Wang Y D, Xu J Z, Liang Z D. The modified maximum entropy method (MMEM) in QTA for lower symmetry polycrystalline aggregates [J], Texture and Microstructure,1996, 26(3):112-119.
    55. Wang Y D, Liu Y D, Xu J Z, Liang Z D. A new algorithm of quantitative texture analysis adapted to thin films [J], Journal of Applied Physics,1996,79(3):7376-7378.
    56.王沿东,佟伟平.含磷深冲钢板的低分辨织构分析与弹性模量预估[J],金属学报,1999,35(6):627-635.
    57. Barnett M R. Role in grain shear bands in the nucleation of<111>//ND recrystallization texture in warm rolled steel[J], ISIJ International,1998,38(1):78-85.
    58.王绪,杨弟,毛卫民,章守华.超深冲IF钢退火过程中织构变化的ODF分析[J],钢铁研究学报,1995,7(1):60-65.
    59.毛卫民.金属材料的晶体学织构与各向异性[M],北京:科学出版社,2002.
    60.杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700