用户名: 密码: 验证码:
基于刚柔耦合捣固车司机室减振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应铁路高速、重载及轨道结构重型化的发展,各国铁路部门竞相采用大型养路机械,其中捣固车在铁路新建、大修和维修机械化的整道作业中工作量最大,对线路质量的优劣起着决定性作用。但是随着中国铁路高速发展的要求,捣固车自身的运行速度也在不断提高,由于其主车架构造比较特殊使其主车架刚度较小,当车辆在轨道上高速运行时,轮轨之间的激扰频率增大,导致高频振动的产生,并通过转向架传递给主车架,有可能引起主车架结构的剧烈振动,以往司机室是刚性连接在主车架上的,这样司机室将直接吸收主车架传来的振动,造成司机室振动的加剧,因此有必要考虑主车架弹性振动对捣固车动力学性能的影响,并通过在司机室与主车架之间加入减振装置来衰减并抑制司机室的振动,从而达到减振效果。
     本文首先基于有限元和多体动力学理论,利用相应的仿真软件ANSYS和SIMPACK建立考虑捣固车主车架弹性的车辆系统的刚柔耦合动力学模型,对捣固车进行动态响应分析,并在相同条件下计算两种模型的各项动力学指标,对比分析柔性主车架对车辆系统动力学性能的影响。分析结果表明,柔性主车架的振动位移和加速度相比刚性主车架大,且差异主要集中在高频范围,考虑主车架柔性会使车辆的临界速度降低,从而降低车辆的运行稳定性,司机室最大振动加速度及其平稳性指标都大于多刚体车辆系统,且安全性方面的性能指标相应的也增大,说明柔性主车架对捣固车的动力学性能具有一定的影响。
     其次建立了带有司机室减振装置的车辆系统动力学模型,通过分析司机室减振装置悬挂参数对车辆运行平稳性的影响,优化选取前后司机室减振装置刚度的理想取值范围。
     最后对比分析了有无减振装置对车辆平稳性指标的影响,结果表明,合理选取减振装置参数,能有效改善车辆系统运行各项平稳性指标,提高捣固车司机室的乘坐舒适性。
In order to adapt to the development of high speed, heavy haul and the track structure heavy of the railway, the railway department of all over the world have used large track maintenance machine, in the railway construction, repair and maintenance mechanization of the whole operation, tamping vehicle workload is the largest, and it plays a decisive role in the quality of track. But as for Chinese railway rapid development, the running velocity of tamping vehicle has been improved, with the special structure of carbody so that its stiffness is smaller, when the vehicle on the track with a high-speed, it will increase the excitation frequency between the wheel and rail, which lead to the generation of high frequency vibration, and it will be transferred to the carbody through the bogie, which may cause severe structure vibration of carbody, the cab is rigid connection on the carbody in the past, so the cab will absorb the vibration directly, then worsen the vibration of cab. So it is necessary to research the influence of the carbody elastic vibration on the tamping vehicle dynamic performance, And through the use of vibration damping device between the cab and carbody to attenuate the vibration of the cab so that to achieve damping effect.
     This paper bases on finite element analysis method and multibody system dynamics theory. Rigid flexible coupled vehicle system dynamic models were built up by ANSYS and SIMPACK corresponding, and the carbody were considered as flexible bodies in the models, then analyze dynamic response of the tamping vehicle. Setting the two models to be under the same condition, simulate and calculate their dynamic performance indexes to analysis the differences between them owing to the carbody flexibility. The results show that the vibration displacement and acceleration of elastic vehicle larger than the vibration displacement and acceleration of rigid vehicle especially in the high frequency range. It also indicates that the carbody flexibility can lower the vehicle's critical speed and the vehicle's running stability. The maximum acceleration and the vehicle's riding index of cab is larger than the Multi-rigid-body vehicle system, and the vehicle's safety index is also increase. It indicates that the tamping vehicle dynamic performance can be influenced by the carbody flexibility.
     Secondly, the vehicle system dynamic model is established with cab's vibration damping device, and then, based on a research of the suspension parameters of the cab's vibration damping device which may be influence on the vehicle riding quality, in order to select the reasonable stiffness of the cab's vibration damping device of ideal value range.
     Finally, analysis of the vibration damping device effect on vehicle's riding index. The results show that the reasonable selection of vibration damping device parameters can improve vehicle's riding index effectively and the tamping vehicle cab's ride comfort.
引文
[1]宋慧京,打造中国品牌产品,实现大型养路机械制造业持续发展.铁路大型养路机械论文集.2005,8-11
    [2]冯娜娜,张思婉.我国铁路线路大型养路机械的现状与发展.郑州铁路职业技术学院学报.2010,22(1):8-11
    [3]张忠勒.QQS-300型全断面道碴清筛机的使用与改进.铁道建筑.2002,2:26~27
    [4]高春雷,陆亦群,方健康.国内新型道床配砟整形车的研发.铁道建筑.2007,7:97~99
    [5]苏保生.动力稳定车稳定装置的国产化研究.铁道建筑.1997,2:31~34
    [6]罗德昭.D09-32型捣固车司机室锥形减振器的减振特性研究.机车车辆工艺.2004,6:15~17
    [7]杨东武.柔性多体系统动力学的建模研究.西安电子科技大学.硕士学位论文.2005
    [8]L.J.Howell. Power spectral density analysis of vehicle vibration using the NASTRAN computer program. SAE Tran. V83,Section 2,1974,1417-1424
    [9]G. Dinana, F.Cheli, S.Bruni and A.Collina. Dynamic interaction between rail vehicles and track for high speed train. Vehicle system dynamics supplement.24(1995),15-30
    [10]B.M.Eickhoff and A.J.Minnis. A review of modeling methods for railway vehicle suspension components. Vehicle system dynamics supplement.24(1995),469-496
    [11]Y.Suzuki and T.Tomioka. Method for flexible vibration damping of rolling stock carbody. QR. Of RTRI.38(1997),123-128
    [12]Y.Suzuki and K.Akutsu. Vibration analysis on truck frame of railway vehicle considering flexible rigidity. Transactions of the Japan Society of Mechanical Engineers, Part C. V63, n611,1997,2221-2228
    [13]Netter.H. New aspects of contact modeling and validation within multibody system simulation of railway vehicle. Vehicle system dynamics(supplement).1998
    [14]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析.中国铁道科学.1997,18(2):77~85
    [15]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真.铁道学报.2000,22(6):40-45
    [16]任尊松,孙守光,刘志明.构架做弹性体处理时的客车系统动力学仿真.铁道学报.2004,26(4):31~35
    [17]Pingbo Wu, Jing Zeng, Huanyun Dai. Dynamic Response Analysis of Railway Passenger Car with Flexible Carbody Model Based on Semi-Active Suspensions. Vehicle System Dynamics. 2004,41:774-783
    [18]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究.西南交通大学.博士 学位论文.2003
    [19]包学海,楚永萍,唐永明,周睿.弹性构架对车辆系统振动响应的影响.铁道车辆.2010,48(3):4-7
    [20]徐广勇.汽车半主动悬架自适应模糊控制的仿真研究.长安大学.硕士学位论文.2007:7-8
    [21]De Temmerman.J, Deprez K.Anthonis J, Ramon H. Conceptual cab suspension system for a self-propelled agricultural machine. Biosystems Engineering.2004,89(4):409-416
    [22]王有智,王仕达,殷承良.悬置姿态对驾驶室振动的影响.二汽科技.1992,(2):1-6
    [23]胡师金.沙漠车驾驶室悬置的合理配置.石油物探装备.1995,5(3):16~20
    [24]宋发宝,马力,张宇龙.整车刚柔多体全浮式驾驶室悬置隔振仿真.农业机械学报.2008,39(8):41~43
    [25]程道然.商用车驾驶室悬置系统非线性阻尼系数的匹配.机械设计与制造.2008,(9):225~227
    [26]洪沁.工程机械驾驶室隔振系统优化设计.噪声与振动控制.2003,4:25~28
    [27]徐金志,刘江波.某重型卡车驾驶室悬置系统改进.合肥工业大学学报(自然科学版).2007,30(s1):48~51
    [28]杜明龙.工程机械驾驶室减振分析及研究.山东大学.硕十学位论文.2011
    [29]Lowen, G. G. Jandransites, W. G. Survey of investigations into the dynamic behavior of mechanisms containing links with distributed mass and elasticity. Mechanism and Machine Theory.1972,7(1):3-17
    [30]Jandrasites, W. G. Lowen, G, G. The elastic-dynamic behavior of a counterweighed rocker link with an overhanging end-mass in a four-bar linkage, part I:theory. ASME J. Mechanical Design.1979,101(1):77-88
    [31]Martin Arnlod.Simulation algorithims in vehicle system dynamics.Luther University Halle,Germany.Technical Report 27(2004).
    [32]I.Kuti.Simulation of Vehicle Motions on the Basis of the Finite Element Method.Vehicle System Dynamics 2001,36(6):445-469.
    [33]WAFO Group.WAFO a matlab for analysis of random waves and loads,Lund University.Sweden.2000,8.
    [34]Su,Hong.Automotive CAE Durability Analysis Using Random Vibration Approach,MSC 2nd Worldwide Automotive Conference,Dearborn,MI.2000.
    [35]Winfrey, R.C. Elastic link mechanism dynamics. Trans.ASME.1971,93(1):263-272
    [36]Winfrey, R.C. Dynanlic analysis of elastic link mechanisms by reduction of coordinates. Trans.ASME.1972,94(2):577-582
    [37]Erdman, A.G, Sandor, G.N. and Oakberg, R.G. A general method for kineto elasto dynamic analysis and synthesis of mechanisms. Trans.ASME.1972,94(4):1193-1205
    [38]Imam, I., Sandor,G.N. and Kramer, S.N. Deflection and stress analysis in high speed planar mechanisms with elastic links. Trans.ASME.1972,95(2):541-548
    [39]Bahgat, B.M. andWillmert, K.D. Finite element vibrational analysis of planar mechanisms. Mec.Mach.Theory.1976,11:47-71
    [40]Caron, M. Modi, V. J. Planar dynamics of flexible manipulators with slewing deployable links. Journal of Guidance, Control and Dynamics.1998,21(4):572-580
    [41]C.Bodley, A.Devers and Frisch. A digital computer program for dynamic interaction simulation of controls and structures(DISCOS). Nasa technical paper 1219, May 1978.
    [42]Song, J.O and Haug, E.J. Dynamic analysis of planar flexiblemechanisms. Comput. Methods Appl. Mech. Eng.1980,24,359-381.
    [43]A.Shabana. Flexible multiboby dynamics:Review of past and recent developments. Multibody system Dynamics 1,2,1997,189-222.
    [44]O.Wallrapp. Standardization of flexible body modeling in multibody system codes, Part Ⅰ: Definition of standard input data. Mechanics of structrures and machines,1994,22(3) 283-304.
    [45]O.Wallrapp. Flexible bodies in multibody system codes. Vehicle system synamics.1998, 30(4):237-256.
    [46]H.CLAUS and W.SCHIEHLEN. Modeling and simulation of railway bogie structural vibrations. Dynamics of vehicle on roads and tracks.1997, August 22
    [47]S.Dietz, H.Netter and D.Sachau. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle system dynamics,1998,29(3):385-402.
    [48]S.Dietz, H.Netter and D.Sachau. Fatigue life prediction by coupling finite element and multibody system calculations. Proc.of DETC'97, September 14-17,1997, Sacramento, California.
    [49]Ryan R.R. Dynamics of flexible beams undergoing large overall motions. American Astronomical Society AAS Paper,1987,87-431.
    [50]Kane T.R., R.R. Ryan, A.K. Banerjee. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics,1987,10(2):139-151.
    [51]阳光武,肖守讷,金鼎昌.基于弹性构架的地铁车辆动力学分析.中国铁道科学.2004,25(4):42~45
    [52]倪振华.振动力学.西安交通大学出版社.1989,430-437
    [53]马少坤,于淼,崔皓东.子结构分析的基本原理和ANSYS软件的子结构分析方法.广西大学学报.2004,2(29):150~153.
    [54]周海亭,陈莲.子结构方法在ANSYS软件中的应用.噪声与振动控制.2001,4:16~18
    [55]王勖成.有限单元法.清华大学出版社.2003
    [56]Guyan. R.J. Reduction of stiffness and mass matrices. AIAA Journal.1965,3(15):56-75
    [57]翟婉明著.车辆-轨道耦合动力学(第二版).中国铁道出版.2002
    [58]陆佑方.柔性多体系统动力学.高等教育出版社.1993
    [59]殷学纲等.结构振动分析的子结构方法.北京:中国铁道出版社.1991,200-208
    [60]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999
    [61]严隽耄,傅茂海.车辆工程.第三版.北京:中国铁道出版社,2008
    [62]米彩盈.铁道机车车辆结构强度.成都:西南交通大学出版社,2007
    [63]朱伯芳.有限单元法原理与应用.北京中国水利水电出版社.1998
    [64]包学海,池茂儒,杨飞.子结构分析中主自由度选取方法研究.2009,36(4):18~20
    [65]万鹏.考虑轮对弹性时车辆系统动力学建模与仿真分析.西南交通大学,硕士学位论文.2008
    [66]翟鹏军,刘寅华,刘华,杨知猛.铁路货车回转阻力矩计算方法初探.内燃机车.2011,2:21-24
    [67]杜明龙.工程机械驾驶室减振分析及研究.山东大学,硕士学位论文.2011
    [68]钱海挺.抓料机司机室-座椅悬置系统振动特性分析及参数优化.西南交通大学,硕士学位论文.2008
    [69]刘梅,于波.人体舒适度研究现状及其开发应用前景.气象科技.2002,30(1):11-14
    [70]谢基龙,张燕,谢云叶.铁路凹底平车凹底架动态响应及其疲劳强度.机械工程学报.2010,46(16):16~22
    [71]池茂儒.铁道车辆振动响应特性.交通运输工程学报.2007,7(5):6~11
    [72]邬平波,薛世海,杨晨辉.基于弹性车体模型的高速客车动态响应.交通运输工程学报.2005,5(2):5~8
    [73]邬平波,宋银川,卢耀辉,曾京.基于弹性车体模型的客车系统响应分析.铁道机车车辆增刊.2002,204~207
    [74]梁云.提速客车车体振动研究.大连交通大学.硕士论文.2006
    [75]铃木,浩明.车辆通过缓和曲线时乘坐舒适度评价法.国外铁道车辆.2001,38(3):36-40
    [76]朱剑月,朱良光,周劲松,任利惠.地铁车辆运行舒适度与平稳性评价.城市轨道交通研究.2007,6:28~31
    [77]杨亮亮.基于柔性构架的高速客车动力学性能与疲劳强度研究.西南交通大学.硕士论文.2009
    [78]李洪洋.转K7型转向架刚柔耦合动力学研究.西南交通大学.硕士论文.2009
    [79]李笑.刚柔耦合转K6转向架动力学性能研究.西南交通大学.硕士论文.2007
    [80]Chizuru NAKAGAWA高频振动对横向和垂向乘坐舒适度影响的基础研究.国外铁道车辆.2011,48(1):30-32
    [81]Ken Iwanami提高乘坐舒适度的措施.国外铁道车辆.2008,45(3):33~35111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700