用户名: 密码: 验证码:
高速道岔几何不平顺动力分析及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速道岔几何形位的控制是道岔在铺设和养护维修阶段确保道岔高平顺性的关键。本文在参考国内外相关研究的基础上,对道岔区几何不平顺的控制方法及其对行车安全性和平稳性的影响进行了系统的研究,其主要内容如下:
     1.几何不平顺对道岔区轮轨接触几何关系的影响分析
     利用三次样条插值对道岔区各控制断面的轮廓进行了拟合,并实现了对任意非控制断面轮廓的插值,在此基础上运用区间线路轮轨几何关系的基本原理,编制了道岔区轮轨接触几何子程序。运用该程序分析了车轮沿道岔方向前进时轮对的摇头角以及道岔区轨道的方向、轨距、水平等几何不平顺对轮轨接触关系的影响。结果表明:即使不存在几何不平顺,道岔区内轮轨几何关系也会发生变化,而方向、水平不平顺可能会使道岔的结构不平顺进一步扩大,合适的轨距加宽能改善道岔的结构不平顺。
     2.建立了车辆-道岔耦合振动模型
     该模型中的车辆子系统由一个车体、两个转向架和四个轮对共七个刚体以及一二系悬挂所组成,对于车体和转向架考虑了侧滚、点头、摇头、横移和沉浮5个自由度,对于轮对考虑了侧滚、摇头、横移和沉浮4个自由度,即共有31个自由度,在组建车辆子系统的方程时,对哈密尔顿原理中现有的“对号入座”法则进行了改进,使之与有限元分析中的计算机编码法相统一。道岔子模型包含了道岔系统的各个部件,并考虑了尖轨和心轨的变截面特性,考虑了间隔铁、顶铁、连杆、外锁闭装置等部件的参振,考虑了滑床台对尖轨、心轨的非线性支承。实现了轮轨接触几何关系的动态计算,将动态计算出的道岔的结构不平顺与几何不平顺进行叠加,并作为系统的激励。
     3.车辆-道岔耦合振动特性及受几何不平顺的影响分析
     采用本文编制的仿真程序,分析了列车直向和侧向通过道岔时的动力学特性,并讨论了几何不平顺对行车安全性与平稳性的影响。结果表明:当列车直逆向过岔时,其垂向振动比横向振动激烈得多,且在转辙器部分的横向振动、辙叉部分的垂向振动比其它部分更激烈,应更注重辙叉部分高低不平顺、转辙器部分方向不平顺的控制;当列车侧逆向过岔时,其横向振动比垂向振动激烈得多,且这主要由道岔侧股导曲线上无外轨超高、圆曲线前无缓和曲线而引起的,道岔结构不平顺的影响较小.因此应根据列车的安全性和平稳性等指标来给定道岔侧股几何不平顺的控制标准,而不应采用直股或相应普通线路的控制标准。
     4.轨道几何不平顺控制方法研究
     提出并验证了在不同轨道不平顺控制方法控制下轨道不平顺谱范围的计算方法,从轨道不平顺谱的角度对几何不平控制方法进行研究,得出各种轨道不平顺控制方法的优劣,并结合几何不平顺条件下车辆-道岔振动特性分析的结果,提出了我国高速铁路无砟轨道区间线路及道岔区几何不平顺静态控制标准建议值。
     5.无砟轨道道岔几何形位精调软件的研究
     首先提出了利用轨道高程和平面的绝对偏差值来计算轨道高低和方向平顺性控制指标的新方法,并通过与用三维坐标计算的精确结果的对比验证了该方法的正确性。该方法能反映出调后模拟值、调前实测值和调整值的本质关系,且计算简单,有利于调整值的给出。之后,在系统分析道岔各几何形位的基础上,开发了无砟轨道道岔几何形位精调软件。目前该软件固化于江西日月明铁道设备开发有限公司生产的轨道几何状态测量仪中,已应用于实际无砟道岔的精调。现场应用结果表明,该软件用户界面友好,可操作性好,响应速度快,所计算出的调整建议值科学合理,便于实际工程的应用和推广
Geometric status control for high-speed turnout is the key to ensure the high regularity of the turnout during its maintenance phase. This paper, based on those former works worldwide, systematically studies the control techniques for geometric irregularity of the turnout and its influence on the security and the comfort of travelling, mainly focusing on these subjects:
     1. Influence of geometric irregularity on the contact relationship in the turnout zone
     The cubic spline interpolation is used to fit the profile of crucial sections in the turnout zone, and this is also applied on the other non-crucial sections. Furthermore, according to the basic theories of the wheel-rail geometric relationships, a subprogram for the turnout wheel-rail contact is designed. This program calculates the influences of geometric irregular factors on wheel-rail contact relations, such as yaw angle of the wheel-set, lateral profile irregularities, track gauges, and track horizontality. The calculating results reveal that:even if the geometric irregularities does not exist, the wheel-rail relationship still varies, and the lateral profile irregularities and track horizontality will enlarge the structural irregularity of the turnout, which can be ameliorated by suitable gauge widening.
     2. Establish a vehicle-turnout coupled vibration model
     In this model, the subsystem of the vehicle consists of one vehicle, two bogies, and four wheel-sets, totally seven rigid bodies, a primary suspension and a secondary suspension, therefore31degrees of freedom are considered:a vehicle or a bogie has5degrees of freedom:side-roll, pitch, yaw, horizontal and vertical movement, and a wheel-set has4degrees:side-roll, yaw. horizontal and vertical movement. During the formation of the equation of vehicle subsystem, the'"set-in-right-position" rules in the Hamilton principle is improved, to accord with the numeration rules in the finite element method. The sub-model of the turnout contains various parts of real turnout, considering the non-uniform section features of point rails and frog rails, the spacer block, the jacking block, the connecting rod and external locking devices, and also considers non-linear bearings of the sliding bed to the point rails and frog rails. Dynamic calculations of the geometric wheel-rail contact are realized, giving out the structural irregularity of the switch, which is added to the geometric irregularity to form the excitation of the system.
     3. Characteristics of the vehicle-turnout coupled vibrations and the influences of the geometric irregularity
     Adopting the program developed during this research, this article analyzes the dynamic characteristics of the vehicle and turnout while the train travels through the turnout straightly or by the sideline, and discusses the influences of the geometric irregularity on traffic security and comfort. The results show that while passing straightly. the vertical vibrations are more vigorous than the transverse vibrations and the lateral vibrations in the point rails and the vertical vibrations in the frog rails are more intense than the other positions, therefore the control of the lateral profile irregularities in the point rails and the vertical profile irregularities in the frog rails should be more noticed. While passing by the sideline, the lateral vibrations are more intense than the vertical vibrations, and are mainly caused by the lack of super elevation of outer rail on the sideline guide curve and the lack of transition curve on the circular curve. The influences of the structural irregularities on the vibrations of the switch are relatively small. And therefore, the standards of control on the geometric irregularity of the turnout in the sideline should be based not on those common standards for straight line and normal rail lines, but on the security and comfort of travelling.
     4. Control method for the track geometric irregularity
     A method for calculating the track irregularity spectrum are proposed and validated on different railways, using different methods of irregularity control. From the aspect of the track irregularity spectrum, this article studies the track irregularity control methods, and discusses the pros and cons of these methods. Finally some standard values are proposed by combining the characteristics of vehicle-turnout vibrations, these values are recommended specially for the static control of geometric status on the high-speed railway ballastless track, either in the turnout zone or in the interval sections on rail lines.
     5. Design of a software for precise adjustments of ballasteless turnout geometry status
     A new method for calculating control index of lateral and vertical profile irregularities is firsty proposed by adopting the absolute deviations of the altitudes and horizontal coordinates, and a comparison with the accurate calculating results in the three-dimensional coordinate has proved the correctness of this new method. This method can simply present the relationships among the actual measured values, simulated values and the adjust values. And based on systematic analysis on geometric status, the software'"Adjustment of Ballasteless Turnout Geometry Status" is developed. This software, fixed in the geometric status measure apparatus which is produced by Jiangxi Riyueming Railway Equipment Development Co., Ltd., has been applied in actually adjusting of ballastless railway turnout. Field application results show that this software is user-friendly, well operable, fast response and the proposed adjustment values are rational, proving it to be valuable for more applications and popularizes.
引文
[1]易思蓉.铁道工程[M](第二版).北京:中国铁道出版社,2009.
    [2]李成辉.铁路轨道[M].北京:中国铁道出版社,2010.
    [3]王平.高速铁路道岔设计理论与实践[M].成都:西南交通大学出版社,2011.
    [4]何华武.无砟轨道技术[M].北京:中国铁道出版社,2002.
    [5]王平,刘学毅,陈嵘.我国高速铁路道岔技术的研究进展[J].高速铁路技术,2010,1(2):6-13.
    [6]王平,陈嵘,陈小平.高速铁路道岔设计关键技术[J].西南交通大学学报,2010,45(1):28-33.
    [7]郭福安.我国高速道岔技术体系[J].中国铁路,2011(04):1-5.
    [8]何华武.时速250km级18号道岔设计理论与试验研究[J].铁道学报,2007,29(1):66-71.
    [9]王平,刘学毅.无缝道岔计算理论与设计方法[M].成都:西南交通大学出版社,2007.
    [10]高速道岔联合课题组.时速350公里18号无砟轨道道岔研制报告[R].2007.
    [11]王平,陈嵘.杨嵘山,刘学毅.桥上无缝道岔设计理论[M].成都:西南交通大学出版社,2011.
    [12]陈小平.高速道岔轨道刚度理论及应用研究[D].成都:西南交通大学博士学位论文,2008.
    [13]蔡小培.高速道岔尖轨与心轨转换及控制研究[D].成都:西南交通大学博士学位论文,2008.
    [14]周文.高速道岔尖轨矫直理论及应用研究[D].成都:西南交通大学博士学位论文,2008.
    [15]杨嵘山.桥上无缝道岔纵向力计算理论与试验研究[D].成都:西南交通大学博士学位论文,2008.
    [16]任娟娟.桥上无缝道岔区纵连式无砟轨道受力特性及结构优化研究[D].成都:西南交通大学博士学位论文.2009.
    [17]顾培雄.关于道岔现状及其发展问题[J].铁道建筑,1995(4):1-6.
    [18]沈长耀.我国铁路道岔整体技术发展的新阶段[J].铁道工程学报.2005(1):51-60.
    [19]卢祖文.我国铁路道岔的现状及发展[J].中国铁路,2005(4):11-14.
    [20]史玉杰.铁路道岔的最新研究进展[J].中国铁路,2003(11):24-25.
    [21]于春华.我国铁路道岔的发展[J].铁道知识,2005(4):16-17.
    [22]沈长耀.60kg/m钢轨12号提速道岔研制情况[J].铁道标准设计,1997(3):3-6.
    [23]侯爱滨.60kg/m钢轨18号提速道岔研究与设计[J].铁道标准设计,1998(6):25-26.
    [24]李毅,董彦录.提速道岔试制[J].铁道标准设计.1997(3):37-39.
    [25]魏建明.石文.常用道岔的类型[J].铁道建筑,1999(8):57-59.
    [26]史玉杰.秦沈客运专线道岔平面设计参数的研究[J].铁道学报,2001,23(4):94-97.
    [27]顾培雄.秦沈客运专线道岔综述[J].中国铁路,2002(7):15-18.
    [28]郭福安.秦沈客运专线可动心轨辙叉单开道岔技术特点[J].铁道建筑,2003(8):62-65.
    [29]杨西.客运专线铁路道岔的研制[J].铁道标准设计,2006(增刊):173-176.
    [30]王树国,顾培雄.客运专线道岔技术研究[J].中国铁路,2007(8):21-25.
    [31]王树国.客运专线60kg/m钢轨18号有砟道岔研究进展[J].铁道建筑,2008(1):81-83.
    [32]涂荣昌.高速铁路道岔结构与材质[J].中国铁道科学,1999,19(1):95-108.
    [33]杨卫平.法国高速铁路道岔技术特性[J].中国铁路,2006(8):40-41.
    [34]孔详安(译).TGV—法国高速铁路[M]成都:西南交通大学出版社,1997.
    [35]郭福安.国外高速铁路的道岔设计[J].中国铁路,2006(2):48-50.
    [36]李景东.欧洲铁路的曲线原理与道岔结构[J].铁道技术监督,2006.34(8):21-23.
    [37]韩启孟.德国铁路道岔技术介绍[J].铁道标准设计,1995(11):1-4.
    [38]刘学毅.王平.车辆-轨道-路基系统动力学[M].成都:西南交通大学出版社,2009.
    [39]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [40]Rao V. Dukkipati and Vijay K. Garg. Dynamics of Railway Vehicle Systems [M] Academic Press,1984.
    [41]Wickens A.H. The Dynamic Stability of Railway Vehicle Wheelsets and Bogies Having Profiled Wheels [J]. International Journal of Solids and Structures,1965 (1):319-341.
    [42]Scheffel H. The Influence of the Suspension on the Hunting Stability of Railway Vehicles [J]. Rail International.1979(8)
    [43]Huilgol R.R. Hopf-Friedrichs Bifurcation and the Hunting of a Railway Axle[J] Quarterly of Applied Mathematics.1978 (8):85-94.
    [44]Porter S.R. The Mechanics of a Locomotive on Curved Track [J]. The Railway Gazette, London,1935.
    [45]Newland D.E. Steering Characteristics of Bogies [J]. The Railway Gazette. London. 1968.
    [46]Newland D.E. Steering of a Flexible Railway Truck on Curved Track [J]. A.S.M.E. Trans. B. Journal Engineering for Industry,1969,91 (3):908-918.
    [47]Boocock D. Steady-state Motion of Railway Vehicles on Curved Track [J]. Journal of Mechanical Engineering Science,1969.11 (6):556-566.
    [48]Kalker J J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction [D]. Ph.D Dissertation. Delft University of Technology. Delft, Netherlands 1967.
    [49]Elkins J.A and Gostling R.J. A General Quasi-static Curving Theory for Railway Vehicles [C]. Proceedings 5th VSD-2nd IUTAM Symposium, Vienna,1977.
    [50]Elkins J.A and Bickhoff B.M. Advances in Nonlinear Wheel/Rail Force Prediction Method and Their Validation[C]. Paper Presented at the American Society of Wech. Engr's Conference, New York,7Dec,1979.
    [51]Kalker J J. Simplified Theory of Rolling Contact. Delft Progress Report,1973:1-10.
    [52]Nagurka M.L, Hedrick J.K and Wormley D.N. Curving Performance of Rail Transit Trucks [J]. Vehicle System Dynamics,1983 (12):18-23.
    [53]Winkler E. Die Lehre von der Elastizitaet und Festigkeit[J]. Verlag H. Domimicus, Prag,1867.
    [54]A.D.Kerr.轨道力学与轨道工程(中译本)[M].北京:中国铁道出版社,1983.
    [55]Timoshenko S. Method of Analysis Statical and Dynamical Stresses in Rail[J]. Proc. of the 2nd International Congress of Applied Mechanics. Zurich.1926:407-418.
    [56]Timoshenko等著,胡人礼译.工程中的振动问题[M].北京:中国铁道出版社.1979.
    [57]Criner H E and McCann G.D. Rail on Elastic Foundations under the Influence of High Spend Traveling Loads [R]. JAM,20-1 (1953).
    [58]Sauvage R. La Flexion des Rail sous Charge Roulants[Dj. Doctoral The ses (Universite de Paris).1961.
    [59]Effect of Flat Wheels on Track and Equipment [R]. Proc. of AREA,53 (1952).
    [60]Betzhold C. Erhohung der Beanspruchung des Eisenbahnoberbaues durch Wechsel-wwirkung zwischen Fahrzeug und Oerbau. Glaser Annalen (1957.4).
    [61]Lyon D. The Calculation of Track Forces due to Dipped Rail Joint. Wheel Flats and Rail Welds [R]. The Second ORE Colloquium on Technical Computer Programs. May. 1972.
    [62]Jenkins H H, et al. The Effect of Track and Vehicle Parameters on Wheel/rail Vertical Dynamic Forces [J]. Railway Engineering Journal.1972,3 (1):2-16.
    [63]A.D.Kerr(美)主编,上海铁道学院轨道教研室译.轨道力学及轨道工程(论文集).北京:中国铁道出版社,1983.
    [64]Sato Y. Abnormal Wheel Load of Test Train [J]. Permanent Way. Tokyo,1973(14) 1-8.
    [65]Ahlbeck D.R, H.C. Meacham, R.H. Prause. The Development of Analytical Models for Railroad Track Dynamics [M].A.D.Kerr(Ed.) Railroad Track Mechanics & Technol-ogy, Pergamon Press, Oxford,1978.
    [66]Newton S G, Clark R A. An Investigation into The Dynamic Effects on The Track of Wheel Flats on Railway Vehicles [J]. Journal of Mechanical Engineering Science, 1979,21 (4):287-297.
    [67]李定清.轨道接头区轮轨动力效应的研究[D].长沙:长沙铁道学院硕士学位论文,1984.
    [68]李定清.铁路轨道接头区轮轨动力效应的研究[J].长沙铁道学院学报,1985(04):47-59.
    [69]陈道兴.非线性轮轨动力效应研究[D].北京:铁道部科学研究院硕士学位论文,1986.
    [70]王澜.轨道结构随机振动理论及其在轨道结构减振研究中的应用[D].北京:铁道部科学研究院博士学位论文,1988.
    [71]许实儒,徐维杰,仲延禧.钢轨接头处轮轨冲击力的模拟分析[J].铁道学报,1989(4):99-109.
    [72]罗林,罗文灿,朱开明,李仰训.干线轨道不平顺紧急补修标准的研究[J].中国铁道科学,1990,11(2):1-24.
    [73]Clark R A, Dean P A, Elkins J A & Newton S G. An Investigation into The Dynamic Effects of Railway Vehicle Running on Corrugated Rails [J]. Journal of Mechanical Engineering Science,1982,24(2):65-76.
    [74]Grassie S L. The Corrugation of Railway Track [D]. Ph.D Dissertation. University of Cambridge,1980.
    [75]Grassie S L, Gregory R W, and Johnson K.L. The Behaviour of Railway Wheelsets and Track at High Frequencies of Excitation[J]. Journal of Mechanical Engineering Science,1982,24(2):103-111.
    [76]Grassie S L, Gregory R W, Harrison D and Johnson K.L. The Dynamic Response of Railway Track to High Frequency Vertical Excitation [J]. Journal of Mechanical Engineering Science,1982,24(2):77-90.
    [77]Grassie S L, Gregory R W, and Johnson K.L. The Dynamic Response of Railway Track to High Frequency Lateral Excitation [J]. Journal of Mechanical Engineering Science, 1982,24(2):91-96.
    [78]Grassie S L, Gregory R W. and Johnson K.L. The Dynamic Response of Railway Track to High Frequency Longitudinal Excitation [J]. Journal of Mechanical Engineering Science,1982,24(2):97-102.
    [79]Grassie S L, and Cox S.J. The Dynamic Response of Railway Track with Unsupported Sleepers [J]. Proceedings Institute Mechanical Engineers,1985,199 (2):123-136.
    [80]Munjal M.L and Heckl M. Some Mechanisms of Excitation of a Railway Wheel [J] Journal of Sound and Vibration,1982,81 (4):477-489.
    [81]Sueok A. Ayabe T, Kawakami M. and Tamura H. An Approximate Model with an Infinite Number of Vehicles for Analysis of Coupled Vibrations Between Railway Vehicle Wheels and Rail in Vertical Direction [J]. JSME International Journal.1988, 31 (4):739-747.
    [82]翟婉明.车辆-轨道垂向耦合动力学[D].成都:西南交通大学博士学位论文,1991.
    [83]翟婉明.高速客车对轨道的垂向动力作用研究[J].西南交通大学学报:1991.79(1):112-118.
    [84]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992.14(3):10-21.
    [85]翟婉明,孙翔,詹斐生.机车车辆与轨道垂向相互作用的计算机仿真研究[J].中国铁道科学,1993.14(1):42-50.
    [86]Zhai Wanming, Sun Xiang. A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track[J]. Vehicle System Dynamics,1994.23 (Supple-ment):603-615.
    [87]翟婉明.非线性结构动力分析的Newmark预测-校正积分模式[J].计算结构力学及其应用,1990,7(2):51-58.
    [88]翟婉明.大型结构动力分析的Newmark显式算法[J].重庆交通学院学报,1991.10(2):33-41.
    [89]Zhai Wanming. Two Simple Fast Integration Methods for Large-scale Dynamic Problems in Engineering [J]. International Journal for Numerical Methods in Engineering,1996.39(24):4199-4214.
    [90]Knothe K, Grassie S L. Modelling of Railway Track and Vehicle/Track Interaction at High Frequencies [J]. Vehicle System Dynamics,1993.22 (3-4):209-262.
    [91]Johan Oscarsson. Tore Dahlberg. Dynamic Train/Track/Ballast Interaction-Computer Models and Full-Scale Experiments [J]. Vehicle System Dynamics.1998.29 (Supple-ment 1):73-84.
    [92]Gerard Rio, Anthony Soive, Vincent Grolleau. Comparative Study of Numerical Explicit Time Integration Algorithms [J]. Advances in Engineering Software.2005. 36(4):252-265.
    [93]Zhai W M, Cai C B, Guo S Z. Coupling Model of Vertical and Lateral Vehicle/track Interaction [J]. Vehicle System Dynamics,1996,26(1):61-79.
    [94]翟婉明.车辆-轨道耦合动力学[M].第一版,北京:中国铁道出版社,1997.
    [95]Zhai Wanming. Wheel/rail Dynamic Interactions on Turnouts [C]. Proceedings of 12th International Wheelset Congress, Qingdao. September 1998:447-451.
    [96]翟婉明.铁路轮轨冲击振动模拟与试验[J].计算力学学报,1999,16(1):93-99.
    [97]Zhai W M, True H. Vehicle/track Dynamics on a Ramp and on the Bridge:Simulation and Measurements [J]. Vehicle System Dynamics,1999.33 (Supplement):604-615.
    [98]翟婉明,韩卫军,蔡成标,王其昌.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(6):65-69.
    [99]翟婉明.车辆-轨道耦合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14.
    [100]翟婉明.车辆-轨道耦合动力学[M].第二版,北京:中国铁道出版社,2002.
    [101]Hu Yongsheng, Dong R. Sankar S. An Investigation into the Dynamic Effects of Conventional Freight Car Running Over a Dipped-joint[C]. Proceedings of the International Conference on Vibration Engineering. Beijing,1994.
    [102]胡用生.机车车辆与轨道垂向藕合振动简化模型和仿真的研究[J].上海铁道学院学报,1995,16(1):1-12.
    [103]李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学博士学位论文,1996.
    [104]李成辉.高底不平顺不利波长及其与车速关系[J].西南交通大学学报,1997.32(6):633-636.
    [105]李德建,曾庆元.列车-直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(1):101-107.
    [106]刘学毅.钢轨波形磨耗的影响因素及减缓措施[D].成都:西南交通大学博士学位论文,1996.
    [107]刘学毅,王平,万复光.轮轨空间耦合振动分析模型及其应用[J].铁道学报,1998,20(3):102-108.
    [108]全玉云.机车车辆/轨道系统垂向耦合动力学有限元分析的研究[D].北京:中国铁道科学研究院博士学位论文,2000.
    [109]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [110]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000.
    [111]陈果,翟婉明,左洪福.轨道随机不平顺对车辆/轨道系统横向振动的影响[J]南京航天航空大学学报,2001,33(3):227-232.
    [112]陈果,翟婉明,左洪福.新型轮轨空间动态耦合模型[J].南京航天航空大学学报,2001,14(4):402-408.
    [113]Cooperider N K, Law E H, Hull R. Kadala P S, Tuten J M. Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints [C] Trans. ASME.1976:41-69.
    [114]Hull R, Cooperider N K. Influence of Nonlinear Geometry on Stability of Rail Vehicle [J]. Journal of Engineering for Industry. Trans. ASME.1977,99 (1).
    [115]杨国祯.磨耗形踏面轮轨接触几何参数的研究[J].中国铁道科学,1982(2):83-95.
    [116]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究[J].西南交通大学学报,1983(3):40-48.
    [117]严隽耄,王开文.任意形状轮轨的接触几何关系的计算[J].铁道车辆,1984(2):24-28.
    [118]王开文.车轮接触点迹线及轮轨接触几何参数的计算[J].西南交通大学学报,1984(2),89-99.
    [119]Shen Z Y, Hedric J K, Elkins J A. A Comparison of Alternative Creep-force Models for Rail Vehicle Dynamic Analysis [C]. Proc.8th IAVSD Symp, Cambridge,1984, 591-605.
    [120]孙翔.确定轮轨接触椭圆的直接方法[J].西南交通大学学报,1985(4),8-21.
    [121]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].成都:西南交通大学博士学位论文,2003.
    [122]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[Jj.工程力学.1999,16(5):65-70.
    [123]罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度性能分析[J].铁道标准设计,2000(6):2-4.
    [124]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值分析[J].铁道学报.1998,20(3):109-113.
    [125]雷晓燕,张斌,刘庆杰.轨道过渡段动力特性的有限元分析[J].中国铁道科学,2009,30(5):15-21.
    [126]张格明.160km/h线路轨道不平顺管理标准的研究[J].中国铁道科学.1995,16(4):31-41.
    [127]陈果,翟婉明,左洪福.高速铁路轨道不平顺的安全管理[J].西南交通大学学报,2001,36(5):495-499.
    [128]吴旺青.秦沈客运专线300km/h综合试验段轨道不平顺管理标准建议值的研究[Jj.铁道标准设计,2003(5):1-4.
    [129]Ripke B, Knothe K. Simulation of High Frequency Vehiele-track Interactions [J] Vehicle System Dynamics,1995,24 (Supplement 1):72-85.
    [130]Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction Computer Models and Full-scale Experiments [J]. Vehicle System Dynamics.1998.28 (Supplement 1): 73-84.
    [131]Andersson C, Oscarsson J, Nielsen J. Dynamic Train/track Interaction Including State-dependent Track Properties and Flexible Vehicle Components [J]. Vehicle System Dynamics,1999,33 (Supplement 1):47-58.
    [132]高锰钢辙叉调查小组.高锰钢辙叉使用情况调查[J].铁道建筑,1974(4):19-22.
    [133]刘语冰.道岔构造和设计[M].北京:中国铁道出版社,1983.
    [134]顾经文.高锰钢整铸辙叉的垂直不平顺及其与机车车辆的相互作用[D].北京:铁道部科学研究院硕士学位论文,1982.
    [135]范佳.固定式辙叉竖向荷载的计算分析[D].北京:铁道部科学研究院硕士学位论文,1985.
    [136]罗雁云,吴祖荣.列车通过辙叉时的振动分析[J].上海铁道学院学报,1986(3).
    [137]赵曦.固定式辙叉区轮轨动力有限元分析及其弹性值的优选[D].北京:铁道部科学研究院硕士学位论文,1988.
    [138]赵曦,顾培雄.固定式辙叉区轮轨动力有限元分析及其应用[J].中国铁道科学,1991,12(2):20-33.
    [139]张远荣.可动心轨辙叉道岔对高速运行条件的适应性[D].北京:铁道部科学研究院硕士学位论文,1991.
    [140]任尊松.铁路车辆通过道岔时的动力模拟计算[D].成都:西南交通大学硕士学位论文,1997.
    [141]王平,道岔区轮轨系统动力学的研究[D].成都:西南交通大学博士学位论文,1998.
    [142]王平.道岔区轮轨系统空间耦合振动模型及其应用[J].西南交通大学学报.1998,33(3):284-289.
    [143]王平,刘学毅,寇忠厚.道岔竖向刚度沿线路纵向分布规律的探讨[J].西南交通大学学报.1999.34(2):143-147.
    [144]王平,万复光.列车与可动心轨道岔的耦合振动及仿真分析研究[J].中国铁道科学,1999.20(3):20-30.
    [145]王平.道岔转辙器部分轮载分布规律的研究[J].西南交通大学学报:1999,34(5):550-553.
    [146]王平.道岔转辙器部分的力学特性分析[J].铁道学报, 2000,22(1):79-82.
    [147]任尊松.车辆-道岔系统动力学研究[D].成都:西南交通大学博士学位论文.2000.
    [148]任尊松,何小河.道岔区轮轨力转移与分配特性研究[J:.中国铁道科学.2008,29(1),1-6.
    [149]任尊松.孙守光.道岔区轮轨接触几何关系研究[J].工程力学.2008.25(11),223-230.
    [150]Zunsong Ren. Shouguang Sun and Gang Xie. A Method to Determine the Two-point Contact Zone and Transfer of Wheel-rail Forces in a Turnout [J]. Vehicle System Dynamics,2010,48(10):1115-1133.
    [151]赵国堂.高速铁路道岔区动力响应的模拟研究[J].中国铁道科学,1996,17(4).90-94.
    [152]朱剑月,顾福民,罗雁云.道岔尖轨轨下刚度改变对轮轨动力性能的影响[J]同济大学学报,2002,30(2),198-202.
    [153]朱剑月,罗雁云.尖轨轨下采用弹性滑床板对轮轨动力性能影响[J].铁道学报,2004,26(1),77-81.
    [154]孙加林.秦沈客运专线大号码道岔线型分析和动力响应研究[D].北京:中国铁道科学研究院硕士学位论文,2004.
    [155]徐娟娟.客运专线道岔轨距加宽式转辙器动力仿真分析[D].成都:西南交通大学硕士学位论文,2006.
    [156]吴安伟.列车-变截面道岔动力学仿真分析[D].成都:西南交通大学硕士学位论文.2006.
    [157]曾志平.高速铁路桥上无缝道岔伸缩力及列车-道岔-桥梁系统空间振动研究[D]长沙:中南大学博士学位论文,2006.
    [158]陈小平,王平.无碴道岔轨道刚度分布规律及均匀化[J:.西南交通大学学报,2006,41(4),447-451.
    [159]陈嵘.高速铁路车辆-道岔-桥梁耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2009.
    [160]陈嵘,王平,刘学毅.高速车辆与桥上道岔动态相互作用规律初探[J].铁道学报,2011,33(6),74-80.
    [161]廖利.直线电机轮轨交通系统车辆-道岔空间耦合动力学特性的研究[D].北京:北京交通大学博士学位论文,2009.
    [162J Yasuo S, et al. Characteristics of lateral Force Acting at Guard Rail on turnout [J]. Q Rep of RTRI,1988.29 (2):62-66.
    [163]Zarembski A M. Reducing Wheel/rail Forces in Turnouts [J]. Railway Track & Structures,1991(5):8-9.
    [164]Schmid R, Endlicher K O. Lugner P. Computer-simulation of the Dynamical Behavior of a Railway-bogie Passing a Switch [J]. Vehicle System Dynamics.1994,23(1) 481-499.
    [165]Andersson C, Dahlberg T. Wheel/rail Impacts at a Railway Turnout Crossing[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1998,212 (2):123-134.
    [166]Drozdziel J, Sowinski B, Groll W. Effect of Railway Vehicle-track System Geometric Deviations on its Dynamics in the Turnout Zone [J]. Vehicle System Dynamics,2000, 33 (Suppl):641-652.
    [167]Gunter Schupp. Christoph Weidemann, Lutz Mauer. Modelling the Contact Between Wheel and Rail Within Multibody System Simulation [J]. Vehicle System Dynamics. 2004,41 (5):349-364.
    [168]Elias Kassa, Clas Andersson, J C O Nielsen. Simulation of Dynamic Interaction Between Train and Railway Turnout [J]. Vehicle System Dynamics.2006,44(3): 247-258.
    [169]Elias Kassa, J C O Nielsen. Dynamic Interaction Between Train and Railway Turnout: Full-scale Field Test and Validation of Simulation Models[J]. Vehicle System Dynamics,2008,46 (Supplement 1):521-534.
    [170]Elias Kassa, J C O Nielsen. Stochastic Analysis of Dynamic Interaction Between Train and Railway Turnout [J]. Vehicle System Dynamics,2008,46 (5):429-449.
    [171]Hiroyuki K, et al. Dynamic Analysis of the Vehicle Running on Turnout at High Speed Considering Longitudinal Variation of Rail Profiles [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference-DETC2005.2005.2149-2154.
    [172]M Sebes. et al. Application of a Semi-Hertzian Method to the Simulation of Vehicles in High-speed Switches [J]. Vehicle System Dynamics,2006,44 (1):341-348.
    [173]S Alfi, S. Bruni. Mathematical Modelling of Train-turnout Interaction [J]. Vehicle System Dynamics,2009,47 (5):551-574.
    [174]Bjorn A Palsson, Jens C O Nielsen. Wheel-rail Interaction and Damage in Switches and Crossings [J]. Vehicle System Dynamics.2012.50(1):43-58.
    [175]曾庆元,杨平.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法[J]铁道学报.1986.8(2),48-59.
    [176]李东平.曾庆元,娄平.车辆多体系统动力学方程的有限元法[J].中国铁道科学.2004,25(5).33-38.
    [177]陈小平.板式轨道轮轨滚动噪声研究[D].成都:西南交通大学硕士学位论文.2005.
    [178]Kalker J J. Wheel-rail rolling contact theory [J]. Wear 144,1991,243-281.
    [179]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社,2007.
    [180]中国铁道科学研究院铁道建筑研究所.京沪先导段徐州东站桥上18号道岔动力性能综合试验报告[R].北京:中国铁道科学研究院.2011.
    [181]Park K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. Journal of Applied Mechanics,ASME,1975,42(2): 464-470.
    [182]伍林CRTS I型双块式无砟轨道精调技术研究[J].铁道标准设计,2010(01):74-79.
    [183]中华人民共和国铁道部CRTS I型双块式无砟轨道精调技术研究(铁建设[2009]674号)[S].北京:中国铁道出版社,2009.
    [184]中华人民共和国铁道部.高速铁路设计规范(TB1 0621—2009)[S].北京:中国铁道出版社,2009.
    [185]安国栋.高速铁路精密工程测量技术标准的研究与应用[J].铁道学报.2010.32(2):98-104.
    [186]罗林,张格明,吴青旺,柴雪松.轮轨系统轨道平顺状态的控制[M].北京:中国铁道出版社.2006.
    [187]王大伦,王志新,王康.数字信号处理—理论与实践[M].北京:清华大学出版社.2010.
    [188]徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    [189]徐东祝.双块式无砟轨道精调作业工艺研究[J].铁道科学与工程学报,2009(4):51-54.
    [190]刘世海,郭建钢,王波CRTS I型双块式无砟轨道静态调整和动态调整技术[J].铁道标准设计,2010(01):80-84.
    [191]吴维军.轨道三维测量关键技术的研究[D].南昌大学硕士学位论文,2009.
    [192]傅家良主编.运筹学方法与模型[M].上海:复旦大学出版社,2005:134-199.
    [193]肖书安,白洪林LEICA GRP1000用于无碴轨道施工测量[J].铁道标准设计.2006(12):20-22.
    [194]胡庆丰.安博格GRP1000轨检小车进行无碴轨道检测的作业方法[J].铁道勘察,2008(3):17-20.
    [195]杨成宽GEDO CE轨道检测系统在无砟轨道施工测量中的应用iJ].铁道工程学报,2009(3):57-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700