用户名: 密码: 验证码:
大型管网系统考虑腐蚀影响的抗震可靠性分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管网系统的抗震分析分为两个层次:单元层次和系统层次。单元层次的抗震分析主要是评价管网系统中的各结构单元(主要是管线)在地震作用下的性能,而系统层次则是评价整个管网系统在地震作用下的性能。抗震分析的最终目标,是指导工程系统的优化设计和系统改造,提高系统的抗震性能。本文从管网系统中腐蚀管线的抗震可靠度分析入手,实现了腐蚀管线的地震随机反应与抗震可靠度分析。在此基础上,发展了管网系统考虑腐蚀影响的抗震连通可靠度分析算法与抗震拓扑优化方法。具体内容包括:
     1.基于带吸收壁的齐次马尔科夫链,提出了管线腐蚀发生时间的离散分布模型,并根据管线腐蚀线性发展模型,推导给出了随服役时间变化的管线腐蚀剩余有效面积概率分布。更深入一步,在齐次马尔科夫过程的基础上,提出了管线腐蚀发生时间的连续分布模型,结合管线腐蚀线性发展模型,推导给出了随服役时间变化时管线腐蚀剩余有效面积的概率密度函数。
     2.利用弹性地基梁原理,结合管线腐蚀剩余有效面积的概率分布和概率密度函数,利用随机摄动理论推导给出了腐蚀管线在地震激励下位移和应力反应的均值和标准差。基于第三强度理论,给出了管线应力在地震作用下的极限状态方程,利用一次二阶矩方法研究了腐蚀管线的抗震可靠度。
     3.介绍了网络系统连通可靠度分析的概念,对三种应用较广泛的网络系统连通可靠性分析算法进行了叙述。然后,提出了以系统结构函数递推分解为基本特征的结构函数递推分解算法来进行系统可靠度分析,并利用结构函数和路事件集合进行了严格的数学证明。在此基础上,利用结构函数递推分解重新诠释了网络抗震连通可靠性分析的最小路递推分解算法,并推导给出了计算效率更高的改进最小路递推分解算法。利用算例对最小路递推分解算法和改进最小路递推分解算法进行了对比分析。
     4.提出了以系统互补结构函数递推分解为基本特征的互补结构函数递推分解算法来进行系统失效概率的分析,并进行了严格的数学证明。在此基础上,推导给出了可以计算网络失效概率的最小割递推分解算法和改进最小割递推分解算法。这类算法有效克服了最小路类递推分解算法在强震作用下网络系统计算结果收敛较慢的缺点。在此基础上,对最小路类递推分解算法和最小割类递推分解算法进行了对比分析,分析了两类算法具有不同适用范围的原因。
     5.在管网系统抗震可靠性分析基础上,进行了生命线工程网络系统抗震优化设计研究。选用改进最小路递推分解算法作为管网系统抗震可靠度分析工具,以管网建设造价为目标函数,管网拓扑结构为优化途径,管网抗震性能为约束条件,形成基于系统连通可靠性寻求管网最优拓扑结构的优化模型。结合系统单元投资重要度分析,采用遗传—模拟退火混合算法对管网拓扑优化问题进行优化求解。
     6.应用上述理论,对沈阳市天然气管网分别进行了不考虑腐蚀和考虑腐蚀作用的管线抗震可靠度分析、管网抗震连通可靠性分析与抗震拓扑优化研究。
     7.利用Microsoft Visual C++6.0软件,开发了城市供气管网抗震可靠性分析和优化软件。软件实现了城市供气管网系统的建模、分析和结果显示功能,具有界面友好,操作简便的特点,为城市供气管网的抗震研究和抗震设计提供了有力的工具。
The seismic analysis of networks can be classified into two levels, elements and systems. Herein, the seismic analysis of elements means to evaluate the pipelines performance after the earthquake while the seismic analysis of systems is focused on whether the whole network can meet the consumers' requirements after the earthquake or not. Moreover, the goal of the seismic analysis of networks is to provide an optimization and design tool which is used to improve the network performance subject to seismic wave propagation. In this paper, an approach for calculating the stochastic seismic responses of buried pipeline with corrosions is presented. Several algorithms for seismic connectivity reliability analysis and optimization of networks is established. The content of this paper can be expressed as follows
    1. Homogeneous Markov chain with absorbing barrier, an effect mathematics tool for simulating the evolution of system with discrete states, is used to simulate the occurrence of corrosion on the pipeline. Combining with linear corrosion development model, the probability distribution of the pipeline corroded section area, which is assumed as a discrete stochastic variable, is derived. Furthermore, homogeneous Markov process is used to model the occurrence of corrosion on the pipeline and the probability density function of pipeline corroded section area, which is assumed as a continuous stochastic variable, is derived.
    2. On the basis of above two corrosion models of pipeline, elastic foundation beam method, a classical method for analyzing the seismic response of pipeline subject to seismic wave propagation, is used to express the seismic axial displacement and axial stress of pipeline as the function of the random variable, pipe segments section areas. Using random perturbation approach, the random seismic response of pipeline is simplified as the linear function of pipe segments section areas. Then the mean and covariance of the seismic response is derived. According to the third strength method, the limit state equation of the pipeline under earthquake is given and the seismic reliability of the pipeline is derived using first order method.
    
     3. The concepts and three commonly used algorithms related to the network connectivity reliability analysis are introduced. Structural function recursive decomposition algorithm is presented to calculate the system reliability and several theorems are proved. On the basis of structural function recursive decomposition algorithm, the minimal path-based recursive decomposition algorithm(MPRDA) is explained from a new viewpoint. Furthermore, a modified minimal path-based recursive decomposition algorithm(MMPRDA) is derived. Also, MPRDA and MMPRDA are compared and the results indicate that MMPRDA owns higher efficiency than MPRDA.
     4. From the complementary viewpoint, complementary structural function recursive decomposition algorithm is also presented to calculate the system failure probability. On the basis of complementary structural function recursive decomposition algorithm, a minimal cut-based recursive decomposition algorithm(MCRDA) and a modified minimal cut-based decomposition algorithm(MMCRDA) are derived. These two algorithms have the advantage over MPRDA and MMPRDA on calculating the connectivity reliability of networks under strong earthquake which own low reliability edges. Also, the efficiency of MMPRDA and MMCRDA are compared and the reasons that MMPRDA is more suitable for the networks owning high reliability edges while MMCRDA is more suitable for the networks owning low reliability are analyzed.
     5. The goal of system connectivity reliability analysis is to guide network seismic optimization and design. In this paper, with network's cost and reliability as optimization object and restriction, a network topology optimization model is established. Combining with network elements investigation importance analysis, simulated annealing genetic algorithm are used to solve above optimization problem.
     6 Using above methods, the seismic reliability and optimal topology of gas network in Shenyang City are calculated with two cases being considered respectively, without corrosions and with corrosions.
     7 Using Microsoft Visual C+ +6.0 software, city gas system seismic reliability analysis and optimization software, is worked out. This soft-ware, owing friendly interface and convenient operation, can realize the modeling, analysis and displaying results of networks. The software provides powerful tool for the seismic research and design of gas network.
引文
[1] Abraham S. H(1982). A simple technique for computing network reliability, IEEE, Trans, Reliability, R-31(1): 114-118
    
    [2] K.K.Aggarwal, K.B.Misra(1975). A fast Algorithm for Reliability Evaluation. IEEE Trans, Reliability, R-24(1): 83-85.
    [3] A.Agrawal, A Satyanarayana(1985). Network reliability analysis using 2-connected digraph reductions , Networks, 15(3): 239-256.
    [4] M.Ahammed(1998), Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects, International Journal of Pressure Vessels and Piping,75(4): 321-329
    
    [5] S.B. Akers( 1979). Binary Decision Diagrams. IEEE Trans. Computers, 27(6): 509-516.
    [6] ALA(American Lifeline Alliance) (2001), Seismic fragility formulations for water system, ASCE.
    [7] Ariman T, Muleski G E(1981). A review of the response of buried pipelines under seismic excitations, International Journal of Earthquake Engineering and Structure Dynamics, (9):133-151
    [8] F. Beicheld, L. Spross(1987). An improved Abraham-method for generating disjoint sum, IEEE Trans Reliability, 36(1): 70-74.
    [9] K.S. Brace, R.L. Rudell, R.E. Bryant(1990). Efficient Implementation of an OBDD Package. Proc. 27~(th) Design Automation Conf: 40-45.
    [10] R.E. Bryant(1986). Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers, 35(8):677-691.
    
    [11] Chen W.W., Shih B., Chen Y.C. et al (2002). Seismic response of natural gas and water pipelines in the Ji-Ji earthquake, Soil Dynamics and Earthquake Engineering, 22(9): 1209-1214
    
    [12] Dotson W. P, Gobien J. O. (1979). A new analysis technique for probability graphs. IEEE Trans. Circuits & Systems, 26:855-865.
    [13] Duke C.M & D.F.Morgan(1975). Guideline for evolution of lifelines earthquake engineering. Proc. U.S. National Conference on Earthquake Engineering :367-376.
    [14] Eguchi R.T., Taylor C.E., et al.(1983). Earthquake performance of water supply systems, Earthquake behavior and safety of oil and gas storage facilities, Buried Pipeline and Equipment, PVP- 77: 406-416
    [15] Fratta L., Montanari. U. G(1973). A recursive method based on case analysis for computing network terminal reliability. IEEE Trans. Communications, 26(8): 1166-1177.
    [16] Klaus D. Heidtmanmm(1989). Smaller sums of disjoint products by subproduct inversion, IEEE Trans. Reliability, 38(3): 305-311.
    [17] Hindy A, Novak M.(1979). Novak M. Earthquake response of underground pipeline. Earthquake Engineering & Structural Dynamics.7(5):451-467
    [18] Holland J H(1975). Adaptation in Natural and Artificial Systems. MIT Press.
    [19] Hopfield J, Tank D(1985). Neural computation of decisions in optimization problems. Biological Cybernetics, 52(1): 141-152.
    [20] Hopfield J, Tank D(1986). Computing with neural circuits: a model. Science, 233: 625-633.
    [21] Hwang, H., Lin, H., Shinozuka, M.(1998). Seismic Performance Assessment of Water Delivery Systems. J. Infrastructure System, ASCE, 4(3): 118-125.
    [22] Ilkwon Jeong, Jujang Lee(1996). Adaptive Simulated Annealing Genetic Algorithm for System Identification, Engineering Applications of Artificial Intelligence, 9(5): 523-532
    [23] Kirkpatrick S, Gelatt Jr C D, Vecchi M.P(1983). Optimization by simulated annealing. Science, 220: 671-680
    [24] David J. Kruglinski, Scot Wingo, George Shepherd 著,希望图书创作室译(1999). Visual C++ 6.0
    [25] Sy-Yen Kuo, Shyue-Kung Lu, Fu-Min Yeh(1999). Determining Terminal-Pair Reliability Based On Edge Expansion Diagrams Using OBDD. IEEE Trans. Reliability, R-48(3): 234-246.
    [26] C. Lee(1959). Representation of Switching Circuits by Binary Decision Diagrams. Bell Syst. Tech. J., 38(7): 985-999.
    [27] Jie Li and Jan He(2002). A recursive decomposition algorithm for network seismic reliability evaluation. Earthquake Engineering & Structural Dynamics, 31(8): 1525-1539
    [28] Hung-Yau Lin ,Sy-Yen Kuo, Fu-Min Yeh(2003). Minimal Cutset Enumeration and Network Reliability Evaluation by Recursive Merge and BDD. Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC'03)
    [29] Lin, P.M., G.E. Alderson(1969). Symbolic network functions by a single path-finding algorithm. Proceedings of 7th Annual Allerton Conference on Circuit and System Theory: 196-205
    [30] M. O. Locks(1987). A minimizing algorithm for sum of disjoint products, IEEE Trans. Reliability, 36(4): 445-453.
    [31] T. Luo, K. S. Trivedi(1998). An improved algorithm for coherent-system reliability, IEEE Trans. Reliability, 47(1): 73-78.
    [32] Metropolis N, Rosenbluth A, Rosenbluth M et al(1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6): 1087-1092.
    [33] H. Mine(1958). Reliability of physical systems, IEEE Trans. Circuit. Theory, CT-6: 138-151.
    [34] F. Moskowitz(1958). The analysis of redundancy networks, IEEE Trans. Commun. Electron, 39: 627-632.
    [35] Muleski G.E., Ariman T. (1985). A shell model for buried pipes in earthquake. Int J of Soil Dynamics & Earthquake Engineering, 4(1):43-51
    [36] Nasser S. Fard, Tae-Han Lee(1999). Cutset enumeration of network systems with link and node failure. Reliability Engineering and Systems Safety 65(2): 141-146.
    [37] Nelson I., Weidlinger P.(1979). Dynamic seismic analysis of long segmented lifeline. J of pressure Vessel Technology, 101(1): 10-20
    [38] Newmark N.M.(1967). Problems in wave propagation in soil and rock. proc. Of international symposium on wave propagation and dynamic properties of earth materials.: 7-26
    [39] Newmark N.M, Hall W. J.(1975). Pipeline design to resist large fault displacement. Proceedings of first US conference on earthquake engineering: 416-425
    [40] L. B. Page, J. E. Perry(1988). A practical implementation of the factoring theorem for network reliability[J], IEEE Trans. Reliability, 37(3): 259-267.
    [41] L B. Page, J. E. Perry(1989). Reliability of directed networks using the factoring theorem, IEEE Trans Reliability, 39(4): 556-561.
    [42] L. B .Page, J. E. Perry(1990). Combining vertex decompositions with factoring in an all-terminal network reliability algorithm, Microelectron. Reliability, 30(2): 249-262.
    [43] Parmelee R, A,Ludtke C A(1975). Seismic Soil-Structure Interaction of Buried Pipelines . In : Proc of US National Conference Earthquake Engineering: 406-415
    [44] Satish J. Kamat, William E. Franzmeier(1976). Determination of reliability using event-based Monte Carlo simulation part II. IEEE Trans. Reliability, R-25:254-255.
    [45] A. Satyanarayana, M. K. Chang(1983). Network reliability and factoring theorem, Networks, 13(3): 107-120.
    [46] Scawthorn Charles, Ballantyne N.B., Blackburn E., (2000). Emergency water supply needs lessons from recent disasters, Water Science and Technology: Water Supply, 18(3):69-77.
    [47] Shen M Y, Zhang Z B, Niu X L(2001). Some advances in study of high order accuracy and high resolution finite difference schemes. In: New Advances in Computational Fluid Dynamics: Theory, Methods and Applications, Higher Education Press: 111 -145.
    [48] Shinozuka M. and Koike, T. (1979). Estimation of Structural Strains in Underground Lifeline Pipes, International Journal of Pressure Vessels and Piping, 34:31-48
    [49] Shigeru Node(1981). A decomposition method for lifeline risk analysis. Proceeding of the 2nd Specialty Conference of the Technical Council and Lifeline Earthquake Engineering, 171-186.
    [50] Shen Y.L. (1995). A new simple algorithm for enumerating all minimal paths and cuts of a graph. Microelectron. Reliability, 35(6):973-976
    [51] Singh H, Vaithilingam S(1996). Terminal reliability using binary decision diagrams. Microelectron Reliability, 36(3):363-365
    [52] S.Tsukiyama, I. Shirakawa, H. Ozaki,etc(1980). An Algorithm to Enumerate All Cut sets of a Graph in Linear Time per Cutset. Journal of the Association for Computing Machinery, 27(4):619-632.
    [53] Takada S(1980), Seismic response Analysis of Buried Vessels and Ductile Iron Pipelines, The 1980 Pressure Vessels and Piping conference, ASME, 23-32
    [54] Takada S., Tanabe K.(1987). Three-dimensional seismic response analysis of buried continuous or jointed pipelines, J of Pressure Vessel Technology, 109(l):35-42
    [55] Takada et,al.(2000). Analysis of causal factors generating large-scale deformation patterns in buried pipeline under the influence of lateral flows by liquefaction, 12WCEE
    [56] O. R. Theologou, Jacques G Carlier(1991). Factoring & Reductions for Networks with Imperfect Vertices. IEEE Trans, Reliability, R-40(2):200-217
    [57] D Torrieri(1994). Calculation of Node-Pair Reliability in Large Networks with Unreliable Nodes. IEEE Trans. Reliability, 43(3):375-377
    [58] Trifunac M.D., Todorovska MT(1997). Northridge California, earthquake of 1994: density of Pipe breaks and surface strains, Soil Dynamics and Earthquake Engineering, 16(3): 193-207
    [59] M. Veeraraghavan, K. S. Trivedi(1991). An improved algorithm for the symbolic reliability analysis of networks, IEEE Trans. Reliability, 40(4): 347-358.
    [60] Wang L. R. L., and Cheng, K. M.(1979). Seismic Response Behavior of Buried Pipelines, Journal of Pressure Vessel Technology, 101(1):21-30
    [61] Wang L. R. L., Zhang H.(1992). Buried pipeline system in a liquefaction environment. The proceedings of tenth world conference on earthquake engineering:5529-5534
    [62] R. K. Wood(1985). A factoring algorithm using Polygon-to-chain reductions for computing k-terminal network reliability, Networks, 15: 173-190.
    [63] R. K. Wood(1986). Factoring algorithm for computing K-terminal network reliability, IEEE Trans Reliability, 35(3): 269-278.
    [64] R. K. Wood(1989). Triconnected decomposition for computing K-terminal network reliability, Networks, 19: 203-220.
    [65] Fu-Min Yeh, Sy-Yen Kuo(1997). OBDD-based network reliability calculation. Electronics letters, 33(9): 759-760
    [66] Fu-Min Yeh, Shyue-Kung Lu, Sy-Yen Kuo(2002a). OBDD-Based Evaluation of k-Terminal Network Reliability. IEEE Trans. Reliability, 51(4):443-451.
    [67] Fu-Min Yeh, Hung-Yau Lin, Sy-Yen Kuo(2002b). Analyzing network reliability with imperfect nodes using OBDD. Proe of the 2002 Pacific Rim International Symposium on Dependable Computing(PRDC'02)
    [68] Y. B. Yoo, Narsingh Deo(1998). A Comparison of Algorithms for Terminal-Pair Reliability. IEEE Trans, Reliability, R-37(2):210~215.
    [69] Michael J.Young 著, 邱仲潘等译(1999). Visual C++6 从入门到精通.北京:电子工业出版社
    [70] Hongmei Yu, Haipeng Fang, Pingjing Yao, et al(2000). A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration, Computers & Chemical Engineering, 24(8):2023-2035
    [71] A.Zerva, A.H.S.Ang and Y.K.Wen(1998). Lifeline Response to Spatially variable Ground Motions, Earthquake Engineering and Structural Dynamics, 16(3):361-379
    [72] L. C. Zhao, J. C. Xu(1995). An efficient minimizing algorithm for sum of disjoint products, Microelectron. Reliability, 35(8): 1157-1162
    [73] 艾晓秋、李杰(2005a).考虑土体固液二相性质的地下管线地震反应研究.地震工程与工程振动,Vol.25(2):136-140
    [74] 艾晓秋、李杰(2005b).地下管线的有效应力地震反应分析.防灾减灾工程学报,Vol.25(1):1-7
    [75] 包元峰(2004).生命线工程网络系统抗震可靠性分析及优化.同济大学硕士论文,指导老师:李杰.
    [76] 包元峰,李杰(2006).基于遗传算法的生命线工程网络抗震优化设计,防灾减灾工程学报,26(1):21-27
    [77] 蔡希平、陈平等(1995).面向对象技术(第二版),西安:西安电子科技大学出版社
    [78] 曹晋华,程侃(1986).可靠性数学引论.北京:科学出版社
    [79] 陈国良,王煦法、庄镇泉等编著(1996).遗传算法及其应用,北京:人们邮电出版社
    [80] 陈国兴、孙士军(1998).上海引水工程过江管线抗震分析,南京建筑工程学院学报,1期:24-31
    [81] 陈建兵(2002).随机结构非线性反应概率密度演化分析.上海:博十学位论文,同济大学,指导教师:李杰教授
    [82] 陈建兵、李杰(2004).非线性随机结构动力可靠度的密度演化方法.力学学报.Vol.36(2):196-201
    [83] 陈建兵、李杰(2006).随机结构反应概率密度分析的切球选点法.振动工程学报,19(1):1-8
    [84] 陈玲俐(2002).城市供水管网系统抗震功能可靠性分析与优化.同济大学博士论文,指导老师:李杰
    [85] 陈艳艳、王东炜、王光远(1998).在役基础设施网络系统抗震加固优化策略.地震工程与工程振动,18(2):19-24
    [86] 陈艳艳、赵卓、王东炜(2000).生命线网络系统增设冗余单元的抗震加固优化策略.世界地震工程,16(4):14-18
    [87] 丁承民等(1997).利用正交实验法优化配置遗传算法参数.西安交通大学学报,31(9):81-86
    [88] 段常贵,王恒(2004).燃气管网布局优化技术的研究.煤气与热力,24(1):1-4
    [89] 冯启民,赵林(2001).跨越断层埋地管道屈曲分析.地震工程与工程振动,21(4):80-87
    [90] 甘文水、候忠良(1988).地震行波作用下埋设管线的反应计算,地震工程与工程振动,8(2):79-85
    [91] 甘文水、候忠良(1989).液化土中埋设输油管线的上浮反应,特种结构,3期,3-7
    [92] 高海(1997).地下管线抗震分析与试验.天津市政工程,9(1):29-33
    [93] 高小旺,王菁等(1998).供水管线震害预测方法.建筑科学,14(3):13-18
    [94] R.L.古德斯坦因著,刘文,李仲傧等译(1975).布尔代数.北京:科学出版社
    [95] 郭永基编著(2002).可靠性工程原理.北京:清华大学出版社,施普林格出版社
    [96] 韩阳,刘宏奎(2002a).生命线网络可靠性分析的类分法.地震工程与工程震动,22(2)::49~53.
    [97] 韩阳(2002b).用对偶理论求网络可靠度的下界解.华北水利水电学院学报,21(3):77-80
    [98] 韩阳(2002c).城市地下管网系统的地震可靠性研究.大连理工大学博士论文,指导老师:赵国藩
    [99] 何军(2002).生命线工程网络系统抗震可靠度分析方法研究.同济大学博士论文,指导老师:李杰
    [100] 何军,李杰(2003).单一震源下生命线系统失效概率分析的新方法(一)——系统可靠路径与失效路径的识别.地震工程与工程振动,23(3):53-59
    [101] 侯忠良(1990).地下管线抗震.北京:学术书刊出版社
    [102] 霍达,陈艳艳,王光远(2003).生命线网络系统结构设防水平决策遗传算法.土木工程学报,36(5):17-21
    [103] 江建华(2002).基于GIS的复合生命线工程系统地震反应仿真分析.同济大学博士论文,指导老师:李杰
    [104] 金星,洪延姬等著(2002).工程系统可靠性数值分析方法.北京:国防工业出版社
    [105] 冷建成,刘扬,赵洪基(2001).基于神经网络方法的油气集输管网拓扑优化设计,石油规划设计,12(6):7-9
    [106] 李继华、林忠民、李明顺等编著(1990).建筑结构概率极限状态设计.北京:中国建筑工业出版社
    [107] 李杰著(1992).地震灾害预测与防灾规划.郑州:河南科学技术出版社
    [108] 李杰,李国强著(1992).地震工程学导论.北京:地震出版社
    [109] 李杰著(1996).随机结构系统——分析与建模.北京:科学出版社
    [110] 李杰(1997).复合工程系统灾害反应分析与系统控制.自然灾害学报,6(3):1-9.
    [111] 李杰(1999).复杂生命线工程系统的地震反应分析与行为控制.中国科学基金,6期:335-338
    [112] 李杰著(2005).生命线工程抗震——基础理论与应用.北京:科学出版社
    [113] 李杰,陈建兵(2006a).随机动力系统中的广义密度演化方程.自然科学进展,16(6):712-719
    [114] 李杰,梁建文(2006b),生命线工程研究的基本进展与发展趋势.建筑、环境与土木工程Ⅱ(土木工程卷),北京:科学出版社,510-531
    [115] 李敏强,寇纪淞等编著(2002),遗传算法的基本理论及应用.北京:科学出版社
    [116] 李昕、周晶、陈健云(2001).考虑土体非线性特性的直埋管道—土体系统的动力反应分析.计算力学学报,18(2):167-172
    [117] 李宗珞,张大伦编(1989).材料力学(下).上海:同济大学出版社
    [118] 梁建文(1991).地下管线的地震反应和动态稳定.天津大学博士论文,指导老师:何玉敖
    [119] 梁建文(1996).地下管线地震反应和稳定性研究述评.天津大学学报,29(3),427-434
    [120] 梁颖,陈艳艳等(2005a).基于单元重要性分析的公路网络布局方案优化.北京工业大学学报,31(1):41-46
    [121] 梁颖,陈艳艳(2005b).基于单元重要度分析的公路网规划项目建设序列论证.北京工业大学学报,31(3):284-287
    [122] 廖炯生(1982a).网络可靠度的不交型算法(Ⅰ).宇宙学报,3期:51-56
    [123] 廖炯生(1982b).网络可靠度的不交型算法(Ⅱ).宇宙学报,4期,28-35
    [124] 林均岐,熊建国(2002).液化场地土中埋设管线的上浮反应分析,地震工程与工程振动,(2):98-100
    [125] 刘爱文,张素灵等(2002).地震断层作用下埋地管线的反应分析,地震工程与工程振动,22(20):22-27
    [126] 刘立名,余建星等(2002).海底输油管道腐蚀剩余寿命评估.中国海上油气(工程),14(3):42-44
    [127] 刘岩等(1996).模拟退火算法的背景与单调升温的模拟退火算法.计算机研究与发展,33(1):4-10
    [128] 楼世博等编著(1982).图论及其应用.北京:人民邮电出版社
    [129] 陆大(纟金)(1986).随机过程及其应用.北京:清华大学出版社
    [130] 卢开澄,卢华明编著(1995).图论及其应用.北京:清华大学社出版社
    [131] 梅启智等编著(1987).系统可靠性工程基础.北京:科学出版社
    [132] 孟炳泉,孙方裕(2002).基于最优保存和自适应性的混合遗传算法.高等学校计算数学学报,3期:244-253
    [133] 潘中良,熊银根(2001).一种基于小生境的遗传算法及其应用.中山大学学报(自然科学版),40(5):44-51.
    [134] 屈铁军,王前信(1993).地下管线多点地震激励纵向振动的级数解.地震工程与工程振动,13(4):39-45
    [135] 饶进军,包忠诩,黄菊花(2002).一种高效综合的遗传算法.南昌大学学报(工科版),24(1):1-4
    [136] 日本阪神大地震考察组(1992).日本阪神大地震考察报告.北京:地震出版社
    [137] 邵维忠、杨芙青著(1998).面向对象的系统分析,北京:清华大学出版社
    [138] 沈世杰(1989).地下管道在地震波作用下地动力反应分析探讨.特种结构,4期:3-9
    [139] 孙艳芯,张祥德(1998).利用二分决策图计算网络可靠度的一个有效算法.东北大学学报(自然科学版),19(5):543-545.
    [140] 台湾地区建筑师协会(1999).集集大地震考察报告
    [141] 汤爱平,欧进萍,董莹(2000).生命线系统的震害特征及其对震后应急反应的影响.世界地震工程,16(1):84-88
    [142] 同济大学上海防灾救灾研究所(1999).上海市煤气系统和供水系统地震灾害预估及抗震对策研究报告(二)
    [143] 同济大学,沈阳建筑大学(2004a).沈阳市生命线工程系统抗震能力分析与系统改造研究报告之三:沈阳市主干供气管网抗震分析报告
    [144] 同济大学,沈阳建筑大学(2004b).沈阳市生命线工程系统抗震能力分析与系统改造研究报告之四:沈阳市供水、供气管网系统抗震优化分析报告
    [145] 王东炜(1993).城市建筑网络系统抗震可靠度的预测、决策和最优分配.武汉工业 大学博士论文,指导老师:李桂青
    [146] 王光远等著(1999).工程结构与系统抗震优化设计的应用方法.北京:中国建筑工业出版社
    [147] 王海波,林皋(1988).半无限弹性介质中管线地震反应分析.土木工程学报,20(3):80-91
    [148] 王烜(2005).城市燃气管线网络系统优化设计研究.哈尔滨工业大学博士学位论文,指导教师:段常贵教授
    [149] 王军,邹向东(2003).郑州市燃气系统腐蚀调查.中国腐蚀调查报告:129-133,北京:化学工业出版社
    [150] 王晓华,卫月琴,朱红卫等(2001).煤气管道的电化学腐蚀与防腐蚀措施浅析.煤化工,2期:39~40.
    [151] 王朝瑞编著(1997).图论.北京:北京理工大学出版社
    [152] 卫书麟(2005).大型供水管网抗震可靠性分析与优化.同济大学硕士论文,指导老师:李杰
    [153] 尉宇,孙德宝(2001).自适应最优保存的模拟退火遗传算法及应用.华中科技大学学报,29(9):46-48
    [154] 武小悦,沙基昌(1998).网络可靠度分析全概分解法的计算机化算法.系统工程与电子技术。6期:71-73
    [155] 武小悦,沙基昌(1999).网络系统可靠度的BDD算法.系统工程与电子技术,7期.72~73.
    [156] 吴志远,邵惠鹤,吴新余(1997).遗传退火进化算法.上海交通大学学报,31(12):69-75
    [157] 肖位枢主编(1993).图论及其算法.北京:航空工业出版社
    [158] 邢伟等(1998).遗传算法中算子的性质.东北大学学报(自然科学版),19(5):540-542
    [159] 邢文训,谢金星(1999).现代优化计算方法.北京:清华大学出版社
    [160] 熊占路(1987).用离散模型分析地下管道的地震应力.第二界全国地震工程会议论文集
    [161] 徐士良(1995).FORTRAN常用算法程序集(第二版).北京:清华大学出版社
    [162] 杨振明著(1999).概率论.北京:科学出版社
    [163] 叶耀先,魏连,陈聃(1982).浅埋埋地管线的振动性状.地震工程论文集:193-213,北京:科学出版社
    [164] 油气田及管道建设设计专业标准化委员会主编(2003).输气管道工程设计规范(GB50250-2003),北京:中国计划出版社
    [165] 袁英同,关建庆,刘香敏(2003).集油管道剩余寿命的统计预测.江汉石油学院学报,25(1):101-102
    [166] 俞国燕,郑时雄等(2000).复杂工程问题全局优化算法研究.华南理工大学学报(自然科学版),28(8):104-110.
    [167] 赵成刚,冯启民(1992).管网系统的抗震问题述评.自然灾害学报,1(2):102-111
    [168] 赵成刚(1993).生命线地震工程中的几个基本问题.地震工程与丁程振动,13(2):52-59
    [169] 赵成刚,冯启民等编著(1994).生命线地震工程.北京:地震出版社
    [170] 赵国藩,金伟良,贡鑫生(2000).结构可靠度理论.北京:中国建筑工业出版社
    [171] 赵庆华(2002).鲁宁输油管道腐蚀调查分析与对策.腐蚀与防护,23(3):128~130.
    [172] 周明,孙树栋编著(1999).遗传算法原理及应用.北京:国防工业出版社
    [173] 周荣敏,雷延峰(2002).管网最优化理论与技术:遗传算法与神经网络.郑州:黄河水利出版社
    [174] 朱自强,吴子牛等(1998).应用计算流体力学.北京:北京航空航天大学出版社
    [175] 邹德高,孔宪京等(2002).地震时饱和砂土地基中管线上浮机理及抗震措施试验研究,岩土工程学报,24(3):323-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700