用户名: 密码: 验证码:
乙酰胆碱酯酶在人牙周膜细胞中的表达和尼古丁与-银环蛇毒素对其表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙周炎以细菌诱发为始动因子,需在宿主、环境、遗传等因素共同作用下导致发病。大量研究已经证明,吸烟能极大地增加牙周破坏的风险,是牙周炎的危险因素。然而,到目前为止,吸烟对牙周组织的破坏机制、对牙周炎发生发展过程的影响仍不明了。尼古丁是烟草的主要成分,有学者推测,尼古丁可能在牙周炎的发生发展中起重要作用。
     非神经乙酰胆碱能系统包含:乙酰胆碱,乙酰胆碱酯酶,胆碱乙酰基转移酶,烟碱型乙酰胆碱受体和毒蕈碱型乙酰胆碱受体及乙酰胆碱转运体。研究认为,尼古丁作为烟草的主要化学物质之一,是非神经乙酰胆碱能系统中烟碱型乙酰胆碱受体的特异性配体。尼古丁与细胞膜上的烟碱型乙酰胆碱受体特异性结合后,经细胞内外信号转导,产生效应。也就是说,作为烟碱型乙酰胆碱受体特异性配体的尼古丁,可以代替乙酰胆碱,侵入局部非神经乙酰胆碱能系统的网络,发挥生物学效应。已有研究报道在人牙龈上皮细胞中存在非神经乙酰胆碱能系统。我们前期研究证实,人牙周膜成纤维细胞(human periodontal ligament fibroblasts,人PDLF)中存在烟碱型乙酰胆碱受体,且尼古丁可上调该受体表达。然而,人PDLF中是否存在完整的非神经乙酰胆碱能系统,尼古丁是否通过该系统发挥作用,目前尚不清楚。本实验所用药物为尼古丁以及-银环蛇毒素( -BTX)。其中, -BTX是烟碱型乙酰胆碱受体7亚型( 7nAChR)的特异性拮抗剂,能够特异性结合人体内7nAChR。
     本研究采用细胞培养、免疫荧光、蛋白印迹等方法观察人PDLF中是否存在非神经乙酰胆碱能系统的另一重要成员乙酰胆碱酯酶,以及尼古丁对该酶的影响,旨在从另一方面探讨尼古丁对非神经乙酰胆碱能系统的作用,有助于阐明吸烟相关性牙周炎发生发展的作用机制。
     第一部分实验人牙周膜成纤维细胞的体外培养及鉴定
     1主要方法
     取因正畸治疗需要拔除的12-14岁健康人前磨牙,无菌条件下刮取根中1/3牙周膜组织,采用组织块法进行原代培养,待原代培养成功后,常规传代,免疫组化方法进行抗波形丝蛋白、抗角蛋白染色,显微镜下观察。
     2主要结果
     倒置显微镜下观察细胞形态和生长情况。细胞铺满培养瓶底,密度均匀,呈星形或长梭形,细胞胞浆均匀,细胞质丰满,细胞核为圆形,细胞排列呈旋涡状或放射状。免疫组化结果显示培养细胞抗波形丝蛋白染色阳性,抗角蛋白染色为阴性。
     3主要结论
     本实验所培养细胞为来源于中胚层的人PDLF。
     第二部分实验免疫荧光检测人牙周膜成纤维细胞中是否表达乙酰胆碱酯酶
     1主要方法
     选取第5代人PDLF接种于24孔板,加液(低糖DMEM,5%小牛血清),于37℃,5﹪CO2条件下在孵箱内培养24小时,选取人表皮上皮细胞作为阳性对照。免疫荧光法检测细胞中乙酰胆碱酯酶的表达情况。
     2主要结果
     作为对照组的人表皮上皮细胞中,图片绿色区域为阳性表达,主要分布在胞浆内。而人PDLF中细胞胞浆内也有阳性表达。
     3主要结论
     免疫荧光检测结果表明人PDLF存在乙酰胆碱酯酶的表达,表达部位在细胞胞浆。提示在人PDLF中存在乙酰胆碱酯酶。结合前期和同期的研究,人PDLF中存在7nAChR和胆碱乙酰基转移酶的表达,证实在人牙周膜组织中可能存在非神经乙酰胆碱能系统,尼古丁作为7nAChR的激动剂,可能通过作用于该系统,对牙周组织产生影响。
     第三部分实验蛋白印迹检测尼古丁及α-银环蛇毒素对人牙周膜成纤维细胞中乙酰胆碱酯酶表达的影响
     1主要方法
     选第5代人PDLF和人表皮上皮细胞接种于75cm2培养瓶中,分5组:尼古丁组(N组,尼古丁10-12mol∕L),尼古丁+ -BTX组(N+组,10-12mol∕L尼古丁+10-9mol∕L -BTX), -BTX组(组,10-9mol∕L -BTX),空白对照组(B组)和阳性对照组(P组)。各组给予相应浓度的药物,培养24小时后,提取细胞总蛋白,进行蛋白定量、转膜、SDS聚丙烯酞胺凝胶电泳,封闭,孵育,最后进行显色。
     2主要结果
     各组均在82kDa位置呈现条带。根据软件分析,各组乙酰胆碱酯酶表达由强至弱依次是N组、P组、N+组、B组、组。
     3主要结论
     正常人PDLF中存在乙酰胆碱酯酶,一定浓度的尼古丁可上调该酶蛋白的表达, -BTX可拮抗其表达。结合前期和同期的实验结果,尼古丁的介入,改变了人PDLF中非神经乙酰胆碱能系统各成员的表达,打破了非神经乙酰胆碱能系统的平衡。由于该系统在疾病发生发展中起到一定作用,提示尼古丁很可能通过作用于该系统来影响牙周炎的发生发展。
Periodontitis is a common oral disease. Bacteria is the initiating factor of periodontitis, but it doesn’t work alone. And periodontitis is caused by host and other factors. Numerous studies have shown that tobacco can greatly increase the risk of periodontal destruction. Therefore, smoking is a risk factor of periodontitis. However, the mechanism of damage of smoking on periodontal tissue in the development and progression of periodontitis is still not clear. Nicotine is the main component of tobacco. Some scholars have speculated that nicotine may play an important role in the development and progression of periodontitis.
     A non-neuronal cholinergic system includes: acetylcholine, acetylcholinesterase, choline acetyltransferase, nicotinic acetylcholine receptors, muscarinic acetylcholine receptor and acetylcholine transporter. It is said that nicotine is not only a main chemical substances of tobacco but also the specific ligand of nicotinic acetylcholine receptor which is included in non-neural cholinergic system. Therefore, the specific binding of nicotine and the nicotinic acetylcholine receptor may have some effect through signal transduction. In other words, nicotine, which is the specific ligands of nicotinic acetylcholine receptor, can invasive local non-neuronal cholinergic system and play biological effect in the network instead of acetylcholine. Studies have shown that there is a non-neuronal cholinergic system existing in human oral gingival epithelial cells. In addition, our preliminary studies have shown that there is the expression of nicotinic acetylcholine receptors in human periodontal ligament fibroblasts and nicotine can upregulate the expression of this receptor. However, whether there is the same system in human periodontal ligament fibroblasts and nicotine play a role through this system is not clear.
     Nicontie and -bungarotoxin are used in this study. -bungarotoxin is one of antagons of 7 nicotinic acetylcholine receptor.
     Therefore, cell culture, immunofluorescence and western blot were used in this study. The aim is to observe that whether there is acetylcholinesterase or not in human periodontal ligament fibroblasts and the impact of nicotine as well as its antagonist to the enzyme. And the investigation to the effect of nicotine to non-neuronal cholinergic system will help clarify the mechanism of nicotine- related periodontitis.
     PartⅠ: The culture and identification of human periodontal ligament fibroblasts in vitro
     1 Main methods
     Take for the premolar normal from patients 12-14 years which are extracted because of orthodontic treatment. In sterile conditions scrape periodontal ligament tissue for primary culture and Subculture. Immunohistochemical method was used for vimentin staining and cytokeratin staining.
     2 Main results The human periodontal ligament fibroblasts were tested Vimentin positive and cytokeratin negative.
     3 Main conclusions
     The cultured cells derived from the mesoderm. They are human periodontal ligament fibroblasts.
     PartⅡ: Investigation about the expression of acetylcholinesterase in human periodontal ligament fibroblasts through immunofluorescence
     1 Main methods
     The 5th generation human periodontal ligament cells cultured in vitro were inoculated in 24-well plate ( 37℃, 5% CO2).And make the human epithelial cells be control cells.24 hours later, the expression of AChE in these cells were detected by immunofluorescence.
     2 Main results
     The blue region of the picture of human periodontal ligament fibroblasts is positive and it is mainly in the cytoplasm. It is the same as the one in control cells.
     3 Main conclusions
     Results of immunofluorescence showed that there is positive expression of AChE in human periodontal ligament fibroblasts and the protein mainly exists in the cytoplasm. According to preliminary and earlier research, 7nAChR and CHAT also exists in human periodontal ligament fibroblasts. There may be a non-neuronal cholinergic system in Periodontal tissue. The affect of nicotine which is the agonistof 7nAChR the system may have an impact on periodontal tissues.
     PartⅢ: Investigation about the affect of nicotine andα-bungarotoxin to the expression of acetylcholinesterase in human periodontal ligament fibroblasts through Western blot
     1 Main methods
     The 5th generation of human periodontal ligament fibroblasts were divided into 4 groups and human epithelial cells is the control group. They are N group (nicotine 10-12mol∕L),N+ group (nicotine 10-12mol∕L,10-9mol∕L -BTX), group (10-9mol∕L -BTX),black control group, positive control group.
     2 Main results
     Each group are all presented in the 82kDa band. According to the result of analysis, The expression of AChE from the strong to the weak group is followed by N group,P group,N + group, black control group, group.
     3 Main conclusions
     AChE exists in human periodontal ligament fibroblasts. A certain concentration of nicotine increases the expression of the protein, while the nicotine receptor antagonist -bungarotoxin could antagonize the expression.According to early and earlier experimental results nicotine changes the expression of NNAs members in human periodontal ligament fibroblasts. It breaks the balance of NNAs. Because of their functions and role in development of diseases nicotine is likely to influence the development of periodontitis by acting on the NNAs.
引文
[1] Bergstrom J. Tobacco smoking and chronic destructive periodontal disease.[J]. Odontology,2004,92(1):1-8.
    [2] Machuca G, Rosales I, Lacalle J R, et al. Effect of cigarette smoking on periodontal status of healthy young adults.[J]. J Periodontol,2000,71(1): 73-78.
    [3] Mavropoulos A, Aars H, Brodin P. Hyperaemic response to cigarette smoking in healthy gingiva.[J]. J Clin Periodontol,2003,30(3):214-221.
    [4] Johnson G K, Hill M. Cigarette smoking and the periodontal patient.[J]. J Periodontol,2004,75(2):196-209.
    [5] Hoffmann D, Adams J D. Carcinogenic tobacco-specific N-nitrosamines in snuff and in the saliva of snuff dippers.[J]. Cancer Res,1981,41(11 Pt 1):4305-4308.
    [6] Cuff M J, Mcquade M J, Scheidt M J, et al. The presence of nicotine on root surfaces of periodontally diseased teeth in smokers.[J]. J Periodontol,1989,60(10):564-569.
    [7] Chang Y C, Huang F M, Tai K W, et al. Mechanisms of cytotoxicity of nicotine in human periodontal ligament fibroblast cultures in vitro.[J]. J Periodontal Res,2002,37(4):279-285.
    [8] Shimazaki Y, Saito T, Kiyohara Y, et al. The influence of current and former smoking on gingival bleeding: the Hisayama study.[J]. J Periodontol,2006,77(8):1430-1435.
    [9] Morozumi T, Kubota T, Sato T, et al. Smoking cessation increases gingival blood flow and gingival crevicular fluid.[J]. J Clin Periodontol,2004,31(4):267-272.
    [10] Nogueira-Filho G R, Froes N E, Casati M Z, et al. Nicotine effects on alveolar bone changes induced by occlusal trauma: a histometric study in rats.[J]. J Periodontol,2004,75(3):348-352.
    [11] Benatti B B, Cesar-Neto J B, Goncalves P F, et al. Smoking affects the self-healing capacity of periodontal tissues. A histological study in the rat.[J]. Eur J Oral Sci,2005,113(5):400-403.
    [12] Peacock M E, Sutherland D E, Schuster G S, et al. The effect of nicotine on reproduction and attachment of human gingival fibroblasts in vitro.[J]. J Periodontol,1993,64(7):658-665.
    [13] Tipton D A, Dabbous M K. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro.[J]. J Periodontol,1995,66(12):1056-1064.
    [14] Alpar B, Leyhausen G, Sapotnick A, et al. Nicotine-induced alterations in human primary periodontal ligament and gingiva fibroblast cultures.[J]. Clin Oral Investig,1998,2(1):40-46.
    [15] James J A, Sayers N M, Drucker D B, et al. Effects of tobacco products on the attachment and growth of periodontal ligament fibroblasts.[J]. J Periodontol,1999,70(5):518-525.
    [16] Giannopoulou C, Geinoz A, Cimasoni G. Effects of nicotine on periodontal ligament fibroblasts in vitro.[J]. J Clin Periodontol,1999,26(1):49-55.
    [17] Checchi L, Ciapetti G, Monaco G, et al. The effects of nicotine and age on replication and viability of human gingival fibroblasts in vitro.[J]. J Clin Periodontol,1999,26(10):636-642.
    [18] Chang Y C, Lii C K, Tai K W, et al. Adverse effects of arecoline and nicotine on human periodontal ligament fibroblasts in vitro.[J]. J ClinPeriodontol,2001,28(3):277-282.
    [19] Mariggio M A, Guida L, Laforgia A, et al. Nicotine effects on polymorphonuclear cell apoptosis and lipopolysaccharide-induced monocyte functions. A possible role in periodontal disease?[J]. J Periodontal Res,2001,36(1):32-39.
    [20] Hanes P J, Schuster G S, Lubas S. Binding, uptake, and release of nicotine by human gingival fibroblasts.[J]. J Periodontol,1991,62(2): 147-152.
    [21] Zhou J, Olson B L, Windsor L J. Nicotine increases the collagen-degrading ability of human gingival fibroblasts.[J]. J Periodontal Res,2007,42(3): 28-235.
    [22] Effect of cigarette smoking on human PDL fibroblasts attachment to periodontally involved root surfaces in vitro[Z].
    [23] Katono T, Kawato T, Tanabe N, et al. Nicotine treatment induces expression of matrix metalloproteinases in human osteoblastic Saos-2 cells.[J]. Acta Biochim Biophys Sin (Shanghai),2006,38(12):874-882.
    [24] Loos B G, Roos M T, Schellekens P T, et al. Lymphocyte numbers and function in relation to periodontitis and smoking.[J]. J Periodontol,2004, 75(4):557-564.
    [25] Nouri-Shirazi M, Tinajero R, Guinet E. Nicotine alters the biological activities of developing mouse bone marrow-derived dendritic cells (DCs).[J]. Immunol Lett,2007,109(2):155-164.
    [26] Nguyen V T, Hall L L, Gallacher G, et al. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia.[J]. J Dent Res,2000,79(4):939-949.
    [27] Massoulie J, Pezzementi L, Bon S, et al. Molecular and cellular biology of cholinesterases.[J]. Prog Neurobiol,1993,41(1):31-91.
    [28] Zhang H Y, Brimijoin S, Tang X C. Apoptosis induced by beta-amyloid25-35 in acetylcholinesterase-overexpressing neuroblastoma cells.[J]. Acta Pharmacol Sin,2003,24(9):853-858.
    [29] Dori A, Ifergane G, Saar-Levy T, et al. Readthrough acetylcholinesterase in inflammation-associated neuropathies.[J]. Life Sci,2007,80(24-25):2369- 2374.
    [30] Johnson G, Moore S W. Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro.[J]. Int J Dev Neurosci,2000,18(8):781-790.
    [31]张明,李盾,陈仪本,等.乙酰胆碱酯酶分子生物学研究进展[J].农药, 2006(01).
    [32] Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates.[J]. Annu Rev Neurosci,1982,5:57-106.
    [33] Zhang X J, Yang L, Zhao Q, et al. Induction of acetylcholinesterase expression during apoptosis in various cell types.[J]. Cell Death Differ,2002,9(8):790-800.
    [34] Darvesh S, Hopkins D A. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus.[J]. J Comp Neurol,2003, 463(1):25-43.
    [35] Mis K, Mars T, Jevsek M, et al. Expression and distribution of acetylcholinesterase among the cellular components of the neuromuscular junction formed in human myotube in vitro.[J]. Chem Biol Interact,2005, 157-158:29-35.
    [36] Massoulie J, Sussman J, Bon S, et al. Structure and functions of acetylcholinesterase and butyrylcholinesterase.[J]. Prog Brain Res,1993,98: 139-146.
    [37] Rumenjak V. Distribution of human erythrocyte acetylcholinesteraseaccording to age, sex and pregnancy.[J]. Acta Med Croatica,1998,52 (3):187-189.
    [38] Park S E, Kim N D, Yoo Y H. Acetylcholinesterase plays a pivotal role in apoptosome formation.[J]. Cancer Res,2004,64(8):2652-2655.
    [39] Inkson C A, Brabbs A C, Grewal T S, et al. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation.[J]. Bone,2004,35(4):819-827.
    [40] Jin Q H, He H Y, Shi Y F, et al. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells.[J]. Acta Pharmacol Sin,2004,25(8):1013-1021.
    [41] Sharma G, Vijayaraghavan S. Nicotinic receptor signaling in nonexcitable cells.[J]. J Neurobiol,2002,53(4):524-534.
    [42] Kawashima K, Fujii T. Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance.[J]. J Pharmacol Sci,2008,106(2):167-173.
    [43] Wang X J, Liu Y F, Wang Q Y, et al. Functional expression of alpha7 nicotinic acetylcholine receptors in human periodontal ligament fibroblasts and rat periodontal tissues.[J]. Cell Tissue Res,2010.
    [44] Su W, Wu J, Ye W Y, et al. A monoclonal antibody against synaptic AChE: a useful tool for detecting apoptotic cells.[J]. Chem Biol Interact,2008, 175(1-3):101-107.
    [45] Grisaru D, Sternfeld M, Eldor A, et al. Structural roles of acetylcholinesterase variants in biology and pathology.[J]. Eur J Biochem, 1999,264(3):672-686.
    [46] Sharma K V, Koenigsberger C, Brimijoin S, et al. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase inneurite outgrowth.[J]. J Neurosci Res,2001,63(2):165-175.
    [47] Bigbee J W, Sharma K V. The adhesive role of acetylcholinesterase (AChE): detection of AChE binding proteins in developing rat spinal cord.[J]. Neurochem Res,2004,29(11):2043-2050.
    [48] Pick M, Perry C, Lapidot T, et al. Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis.[J]. Blood,2006,107(8): 3397-3406.
    [49]张千,王取南.乙酰胆碱酯酶生物功能的研究进展及其应用[J].国外医学(卫生学分册), 2008(03).
    [50] Olivera B S, Henley J, Rodriguez-Ithurralde D. Acetylcholinesterase effects on glutamate receptors.[J]. Chem Biol Interact,2005,157-158:410-411.
    [51] Dong H, Xiang Y Y, Farchi N, et al. Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons.[J]. J Neurosci,2004,24(41):8950-8960.
    [52] Schilstrom B, Ivanov V B, Wiker C, et al. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors.[J]. Neuropsychopharmacology,2007, 32(1):43-53.
    [53] Ben-Shaul Y, Benmoyal-Segal L, Ben-Ari S, et al. Adaptive acetylcholinesterase splicing patterns attenuate 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced Parkinsonism in mice.[J]. Eur J Neurosci,2006, 23(11):2915-2922.
    [54] Rees T, Hammond P I, Soreq H, et al. Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex.[J]. Neurobiol Aging,2003,24(6): 777-787.
    [55] Diamant S, Podoly E, Friedler A, et al. Butyrylcholinesterase attenuatesamyloid fibril formation in vitro.[J]. Proc Natl Acad Sci U S A,2006,103 (23):8628-8633.
    [56] Bohnen N I, Kaufer D I, Hendrickson R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson's disease and parkinsonian dementia.[J]. J Neurol Neurosurg Psychiatry,2007, 78(6):641-643.
    [57] Gandia L, Alvarez R M, Hernandez-Guijo J M, et al. [Anticholinesterases in the treatment of Alzheimer's disease][J]. Rev Neurol,2006,42(8): 471-477.
    [58] Wang Y, Ge X, Xu X F, et al. Acetylcholinesterase inhibitor is a potentially useful therapeutic agent for nicotine-induced periodontal disease.[J]. Med Hypotheses,2009,73(4):604-605.
    [59] Wessler I, Kirkpatrick C J, Racke K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans.[J]. Pharmacol Ther,1998,77(1):59-79.
    [60] Grando S A, Kawashima K, Wessler I. Introduction: the non-neuronal cholinergic system in humans.[J]. Life Sci,2003,72(18-19):2009-2012.
    [61] Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system.[J]. Pathol Int,1999,49(11):921-937.
    [62] Unwin N. Acetylcholine receptor channel imaged in the open state.[J]. Nature,1995,373(6509):37-43.
    [63] Conti-Fine B M, Navaneetham D, Lei S, et al. Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity?[J]. Eur J Pharmacol,2000,393(1-3):279-294.
    [64] Galzi J L, Changeux J P. Neuronal nicotinic receptors: molecular organization and regulations.[J]. Neuropharmacology,1995,34(6):563-582.
    [65]葛徐林,汪海.非神经性乙酰胆碱系统的结构和功能特征[J].中国药理学通报, 2009,25(6):712-715.
    [66] Lips K S, Luhrmann A, Tschernig T, et al. Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse.[J]. Life Sci,2007,80(24-25): 2263-2269.
    [67] Macklin K D, Maus A D, Pereira E F, et al. Human vascular endothelial cells express functional nicotinic acetylcholine receptors.[J]. J Pharmacol Exp Ther,1998,287(1):435-439.
    [68] Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy.[J]. J Pharmacol Sci,2008,106(2):186-192.
    [69]温晓明,汪海,刘新民.淋巴细胞上的非神经性乙酰胆碱系统[J].中国生物工程杂志, 2005,25(11):47-51.
    [70] Krnjevic K, Phillis J W. Excitation of Betz cells by acetylcholine.[J]. Experientia,1962,18:170-171.
    [71] Sastry B V, Sadavongvivad C. Cholinergic systems in non-nervous tissues.[J]. Pharmacol Rev,1978,30(1):65-132.
    [72] Grando S A, Horton R M, Mauro T M, et al. Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation.[J]. J Invest Dermatol,1996,107(3):412-418.
    [73] Zia S, Ndoye A, Nguyen V T, et al. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells.[J]. Res Commun Mol Pathol Pharmacol,1997,97(3):243-262.
    [74] Khiroug L, Giniatullin R, Sokolova E, et al. Imaging of intracellular calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells.[J]. Br J Pharmacol,1997,122(7):1323-1332.
    [75] Gerzanich V, Wang F, Kuryatov A, et al. alpha 5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors.[J]. J Pharmacol Exp Ther,1998,286(1):311-320.
    [76] Fu M L. Anti-M2 muscarinic receptor autoantibodies and idiopathic dilated cardiomyopathy.[J]. Int J Cardiol,1996,54(2):127-135.
    [77] Bacman S, Sterin-Borda L, Camusso J J, et al. Circulating antibodies against rat parotid gland M3 muscarinic receptors in primary Sjogren's syndrome.[J]. Clin Exp Immunol,1996,104(3):454-459.
    [78] Bacman S R, Berra A, Sterin-Borda L, et al. Human primary Sjogren's syndrome autoantibodies as mediators of nitric oxide release coupled to lacrimal gland muscarinic acetylcholine receptors.[J]. Curr Eye Res,1998,17(12):1135-1142.
    [79] Sterin-Borda L, Goin J C, Bilder C R, et al. Interaction of human chagasic IgG with human colon muscarinic acetylcholine receptor: molecular and functional evidence.[J]. Gut,2001,49(5):699-705.
    [80] Grando S A. Autoimmunity to keratinocyte acetylcholine receptors in pemphigus.[J]. Dermatology,2000,201(4):290-295.
    [81] Hagforsen E, Einarsson A, Aronsson F, et al. The distribution of choline acetyltransferase- and acetylcholinesterase-like immunoreactivity in the palmar skin of patients with palmoplantar pustulosis.[J]. Br J Dermatol,2000,142(2):234-242.
    [82] Metzen J, Bittinger F, Kirkpatrick C J, et al. Proliferative effect of acetylcholine on rat trachea epithelial cells is mediated by nicotinic receptors and muscarinic receptors of the M1-subtype.[J]. Life Sci,2003,72 (18-19):2075-2080.
    [83] Pullan R D, Rhodes J, Ganesh S, et al. Transdermal nicotine for active ulcerative colitis.[J]. N Engl J Med,1994,330(12):811-815.
    [84] Wolf R. Nicotine for pyoderma gangrenosum.[J]. Arch Dermatol,1998, 134(9):1071-1072.
    [85] Kuwahara R T, Skinner R B, Rosenberg E W. Nicotine gum for oral lichen planus.[J]. J Dermatol,2000,27(11):755.
    [86] Gajewski W. [Disappearance of psoriatic skin rashes in the course of atropine therapy][J]. Pol Tyg Lek,1970,25(47):1815-1816.
    [87] Jacobi J, Jang J J, Sundram U, et al. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice.[J]. Am J Pathol,2002,161 (1):97-104.
    [88] Tobey N A, Schreiner V J, Readling R D, et al. The acute effects of smokeless tobacco on transport and barrier function of buccal mucosa.[J]. J Dent Res,1988,67(11):1414-1421.
    [89] Breivik T, Gundersen Y, Gjermo P, et al. Nicotinic acetylcholine receptor activation mediates nicotine-induced enhancement of experimental periodontitis.[J]. J Periodontal Res,2009,44(3):297-304.
    [90]张明珠,雷雅燕,刘晓,等.原代人牙周膜成纤维细胞的培养及培养方法的改进[J].昆明医学院学报, 2004(01).
    [91]葛鑫,王勇,刘颍凤,等.尼古丁对胆碱乙酰转移酶在人牙周膜成纤维细胞中表达的影响.[Z]. 2010:20,200-204.
    [92] Gamonal J, Bascones A, Acevedo A, et al. Apoptosis in chronic adultperiodontitis analyzed by in situ DNA breaks, electron microscopy, and immunohistochemistry.[J]. J Periodontol,2001,72(4):517-525.
    [93] Kim K H, Joo K J, Park H J, et al. Nicotine induces apoptosis in TM3 mouse Leydig cells.[J]. Fertil Steril,2005,83 Suppl 1:1093-1099.
    [94] Zeidler R, Albermann K, Lang S. Nicotine and apoptosis.[J]. Apoptosis, 2007,12(11):1927-1943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700