用户名: 密码: 验证码:
新型木基复合材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林业“三剩物”(截伐剩余物、营林剩余物、加工剩余物)资源丰富,“高效利用技术研发”被《国家中长期科学和技术发展规划纲要(2006-2020)》列为优先主题。笔者以杨木枝桠材等的粉末为基材,以电解紫铜粉为增强体,通过自主研发的高压模塑成形工艺制备杨木/紫铜粉末新型木基复合材料;借助响应面设计软件(Design Expert).三维立体数码显微镜(3D SSDDM).扫描电子显微镜(SEM)等实验设计与分析手段,优化成形工艺,分析、表征试件的性能与结构。力求在人造板、造纸、生物质能源等应用领域之外开辟新的清洁高效利用途径。论文的主要研究内容、研究方法及得到的相应研究结果如下:
     (1)通过研究杨木、松木、毛竹等的加工剩余物粉末的堆密度、颗粒形貌、粒度分布、压缩性和成形性等,筛选制备木基复合材料的基材。结果表明:杨木粉末振实系数最高(达到1.498)、成形性最佳(达到0.89MPa)、利于无胶模塑成形的纤维素、木质素等主要化学成分含量最高(达到79.6%)。因此,将杨木粉末定为木基复合材料制备的基材。
     (2)融合金属粉末温压成形与木质材料无胶热压成形原理与技术,采用封闭式刚性模对杨木粉末实行高压模塑成形;结合单因素试验和响应面实验设计与分析法,以杨木粉高压模塑成形材料的静曲强度、吸水率、内结合强度等为评价指标,对木质基复合材料的高压无胶模塑成形工艺参数进行优化。获得的最佳高压模塑成形工艺条件为:成形温度160℃、成形压力70Mpa、保温时间30min。
     (3)根据杨木粉末工艺特性研究成果设计杨木粉末滑轴承高压无胶模塑成形模,并对成形阴模和上下模冲进行了强度校核。结果表明,所设计的模具满足成形工艺要求,且试件尺寸稳定性较好
     (4)不同混合比例的杨木/紫铜粉末复合材料的性能与结构分析、表征结果表明:
     ①紫铜粉末的添加对增强木基复合材料的强度有利,但当紫铜粉添加量大于50wt%时,木基复合材料的静曲强度、内结合强度、压溃强度等力学指标的增幅十分有限,甚至出现个别力学性能指标(如表观硬度)呈下降趋势。因而认为当紫铜粉末的添加量达到50wt%时,木基复合材料的综合力学性能最佳
     ②试件SEM断口形貌表明,高压无胶模塑成形木基复合材料结合界面有胶粘物。正因这种胶粘物润湿并使杨木粉末颗粒间、杨木粉颗粒与铜粉间的界面变得模糊,认为发生了热塑融合,从而使复合材料的材质密实而强韧;铜粉的添加能阻碍裂纹的生长,在木基复合材料中起到了弥散强化作用;但铜粉的添加量过大,会诱发木基复合材料的脆弱连接,对复合材料的综合性能不利。
Three remains and shoddy and little fuelwood of forestry has a rich resources,"High effect utilization technique study" was considered to be the preferential topic by National Guideline on Medium-and Long-Term Program for Science and Technology Development.
     The wood matrix composites preparation forming high-pressure mold forming process, which is consisted of poplar powder as base raw material and electrolytic copper powder as intensifying material. With three-dimensional digital microscopy (3D SSDDM), response surface design software (Design Expert), scanning electron microscopy (SEM) and other experimental design and analysis methods, screening raw materials optimizing the wood matrix composites forming process, and characterizing the structure of wood matrix composites. Aiming at exploring the new efficient utilization of three remains and shoddy and little fuelwood besides the old application field such as Wood-based Panel, Paper Industry and woody bio-energy. Through the study, the author gets conclusions as followings.
     (1) Selecting the raw materials of the wood matrix composites by studying the bulk density,granule morphology,particle size distribution compression and formability of poplar powder,pine powder and bamboo powder.The results show that poplar powder has the hightest shake coefficient,the best processing property,the most beneficial component content for self-bonding mold forming.Therefore,The poplar powder is choose for the base raw material of wood matrix composites.
     (2) Combining wood hot-pressing forming and the theory and technology of warm pressure forming. using closed rigid to specimens on high-pressure mold forming; To optimize the process for poplar powder high-pressure mold forming technique,a series of One-factor tests was firstly used respectively to test the forming pressure, forming temperature, and holding time effect.and then on the basis of previous results and with the response surface methodology, optimazing forming process by evaluating the property index, which include static bending strength,internal bond strength,water absorption,etc..the optimal of poplar powder high-pressure mold forming process was show to be:forming pressure of70MPa, forming temperature of160℃and holding time of30min.
     (3) According to the characteristics of copper powder and the size variability of poplar powder high-pressure mold forming material,designs A set of high pressure molding forming mold which used for preparing self-lubricating Bearing. Base on the working requirement check the die strength,the results show that, the die meet the requirement of high-pressure mold forming process.
     (4) with the help of3D SSDDM, SEM and other modern instrument and means, analysis the difference mix proportion of wood matrix composites' performance and organizational morphology, considering that:
     ①The copper powder enhance strength of the wood matrix composites effectively,but when the addition is more than50wt%, the mechanical indexs have a limited increasing extent, even appeared to decline.So,the appropriate the copper powder addition is50wt%.
     ②The SEM analysis shows that the wood matrix composites have adhesive things by high-pressure mold forming process,which can produce wetting effect on poplar powder particles and copper powder particles, and then eliminate micro-gaps,making the composites densification and plasticizing.The copper powder can hinder the growth of crack,producing a effct dispersion strengthening in wood matrix composites,but the over-adding of copper powder introducing too much fragile connection, which goes against the comprehensive performance of materials.
引文
[1]罗朝晖,朱家琪,黄泽恩.木材/金属复合材料的研究[J].木材工业,2000,14(6):25-27.
    [2]王俊玲.电磁兼容人造板复合材料的制备和性能的研究[D].北京:北京工业大学,2008.
    [3]刘贤淼.木基电磁屏蔽功能复合材料(叠层型)的工艺与性能[D].北京:中国林业科学研究院,2005:119-121.
    [4]华毓坤,傅峰.导电胶合板的研究[J].林业科学,1995,31(3):254-259.
    [5]Lambuth Alan L.美国专利4,906,484[P].1990.
    [6]Lambuth Alan L.Electrically Conductive Particleboard Proceedings 23rd.International Particleboard/Composite Materials Symposium[J]. Washington State University,1989,117-128.
    [7]陆仁书.纤维板制造学.北京[M].北京:中国林业出版社,1981.
    [8]王思群.人造板热压工艺的比较研究[J].建筑人造板,1992(3):25-29.
    [9]保雁昆.中密度纤维板热压工艺的研究[D],哈尔滨:东北林业大学,2006.
    [10]F.F.P科尔曼.木材学与木材工艺学原理[M].北京:中国林业出版社1984.
    [11]向仕龙,李赐生.木材加工与应用技术进展[M].北京:科学出版社,2010.
    [12]曾名锋.造板热压新工艺新设备[J].江西:建筑人造板,1998(3):21-23.
    [13]石祎,李亚莉,谭荣国.高频加热在人造板热压中的应用[J].林业机械与木工设备,2004,7(32):42-43.
    [14]吴智慧.浅谈高频加热在木材胶合中的应用[J].林业科技开发,1998(01):11-12.
    [15]何泽龙.喷蒸热压新工艺技术及其在国内外人造板工业中的应用开发[J].林产工业,2005,32(1):10-12.
    [16]Wang Jieying,Liu Zhengtian,Cui Wenbin.Comparison Between Steam-Injection Pressing and Conventional Hot Pressing in Producing Poplar Particleboards[J]. Journal of Beijing Forestry University,1997,6(1):72-78.
    [17]郑霞,徐剑莹,李新功.人造板喷蒸热压工艺研究进展[J].林业机械与木工设备,2010,38(9):12-15
    [18]川井秀一,Mattias Wallen,Dwight Eusebio,佐々木光:[日]木材工业,Vol.49,No.1,42(1994)
    [19]徐咏兰,中密度纤维板制造[M].北京:中国林业出版社,1995.
    [20]许秀雯,中密度纤维板工程[M].哈尔滨:黑龙江科学技术出版社.1995.
    [21]李彩琴.中密度纤维板自动热压工艺的探讨[J].木材加工机械2001(4):21-22.
    [22]费德林.中(高)密度纤维板热压曲线的变化及影响因素的探讨[J].林产工业,2010,37(5):39-41.
    [23]李试.干法中密度纤维板生产综述[J].林业科技与开发,1993(4):15-16.
    [24]刘群.浅谈干法热压工艺参数对中密度纤维板质量的影响[J].林业科技情报,1998(1):68-69.
    [25]韩少杰.中密度纤维板生产工艺纵横谈[J].中国人造板,2007(7):22-30.
    [26]卢清华,邱峰.我国纤维板生产发展方向之浅见[J].林业科技,1991,(05):38-39.
    [27]李庆章,顾继友.湿法中密度纤维板热压与热处理工艺研究[J].东北林业大学学报,1989,(05):61-65.
    [28]朴载允,李良.半干法生产纤维板的工艺及设备的探讨[J].吉林林业科技,1980(01):2-7.
    [29]约瑟夫.思维德尔斯基.木质纤维生产方法的比较[J].林业实用技术,1961(9):11-12.
    [30]王恺.木材工业实用大全胶粘剂卷[M].北京:中国林业出版社,1996.
    [31]朱丽滨.低甲醛释放脲醛树脂固化反应历程研究[D].东北林业大学博士学位论文,2005.
    [32]倪荣超,顾继友.弱酸性条件起始合成脲醛树脂的工艺研究[J].中国胶 粘剂,2006,15(4):36-40.
    [33]樋口光夫.东L厶7'乙尹匕卜系树脂接着剂[J].日本木材学会木材接着研究会,2001(11):15-16.
    [34]任博文.三种非木质材料制备无胶碎料板的加工工艺[D],陕西:西北农林科技大学,2010.
    [35]金春德.无胶人造板制造工艺的研究[D].哈尔滨:东北林业大学2002.
    [36]M.P. Woleott,F.A.Kamke,D.A.Dillard.Fundamentals of flakeboard manufaeture:Viseoelastic behavior of the wood composite, Wood and Fiber Seience,1990,22(4):345-346.
    [37]袁纳新,区颖刚,李凯夫.人造板在压缩载荷下的粘弹性研究及其意义[J].林产工业,2003,30(5):6-8.
    [38]Franz F.P.Kollmann等著.木材学与木材工艺学原理一实体木材[M].中国林业出版社,1991.
    [39]Chlistopher A.Lenth, Frederiek A.Karnke.Investigations of flakeboard mat consolidation:Part2.Modeling mat consolidation using theories of Cellular materials[J].Wood Fiber Scil.,1996,28(3):309-319.
    [40]Cllunping Dai.Viscoelasticity of wood composite mats during consolidation[J]. Wood Fiber Scil.,2001,33(3):353-363.
    [41]X.M.Wang,B.Riedl,A.W.Christiansen,R.L.Geimer.The effeets of temperature and humidity onphenol-formaldehyde resinbonding[J]. Wood Sci.,Technol.,1995,(29):253-266.
    [42]王培元,郭继红.刨花在压缩力下变形状态的研究Ⅰ.大片刨花压缩流变性能的研究[J].林业科学,1992,25(4):323-328.
    [43]王培元,郭文莉,郭继红.刨花在压缩力下变形状态的研究.Ⅱ.杨木刨花压缩力学行为对刨花板质量影响的分析研究[J].林业科学,1992,28(5):415-422
    [44]许伟,王培元.刨花板垂直平面压缩流变性能研究Ⅰ[J].林业科学,1990,26(1):60-66.
    [45]许伟,王培元.刨花板垂直平面压缩流变性能研究Ⅱ[J].林业科学,1990,26(2):156-161.
    [46]杨瑾瑾,傅万四,十文吉.人造板热压过程中板坯内部温度、气压、含 水率研究现状与分析[J].木材加工机械,2008(3):34-37.
    [47]雷亚芳.刨花板热压过程中传热特性的研究[J].北京,北京林业大学.
    [48]谢力生,喻云水等.常规热压无胶干法纤维板热压传热研究[J].林产工业,2003,30(1):26-28
    [49]夏元洲.刨花板热压机理(之二)[J].建筑人造板,1991(4):4-9.
    [50]李坚.木质材料的界面特性与无胶胶合技术[M].哈尔滨:东北林业大学出版社,1989.
    [51]Suchsland O. Effect of cooking condition fiber bonding in dry-formed binderlss hardboard[J]. Forest Prod. J.,1987,37(11-12):25-28.
    [52]KelleyS.S.1983.Bond formation by wood surface reactions:Part111:Parameters affeeting the bond Strength of solid wood Panels.Forest Products journal,32(2):21-28.
    [53]曹忠荣,阎吴鹏,郭文莉.干法无胶木纤维纤维板粘合机理的研究[J].木材工业,1996(5):3-6
    [54]何翠芳.棉秆蒸爆处理制备无胶纤维板工艺及胶合机理的研究[D].南京,南京林业大学,2008.
    [55]李元元.金属粉末温压成形原理与技术[M].广州:华南理工大学出版社,2008.1-3.
    [56]叶途明,易健宏,彭元东等.粉末冶金温压工艺的技术特点及其新发展[J].材料工程,2007(5):61-65.
    [57]李元元,肖志瑜,罗术华等.粉末冶金流动温压成形技术及其思考[J].粉末冶金材料科学与工程,2006,11(4):189-193.
    [58]VELTL G, OPPERT A, PETZOLDT F. Warm flow compaction fasters more complex PM parts [J]. Metal Powder Report,2001,56(2):26-28.
    [59]DONALDSON I W, LUK S H, POSZMIK G, et al. Processing of hybrid alloys to high densities [A]. Advances in Powder Metallurgy & Particulate Materials-2002 [C]. Princeton, NJ:MPIF,2002.170-185.
    [60]Kano M, Momota M, Okabe T, et al. Specific heat capacity of new porous carbon materials:woodceramics [J].Thermochimica Acta, 1997,292:175-177.
    [61]林德敏.碎料模压成型技术[J].建筑人造板,1989(3):40-46.
    [62]杨小翠,黄静,吴庆定.芦苇基木陶瓷的制备与性能表征[J].福建林业 科技,2011,38(1):61-65.
    [63]吴庆定.发明专利:一种木质植物基电磁屏蔽装饰材料的制备方法[P](专利号:200710102709.2)
    [64]吴庆定.木材科学与技术的创新[J].家具与室内装饰,2004(12):14-17
    [65]吴仪.发明专利:一种绿色环保人造木材的生产方法[P](专利201010166601.1)
    [66]Tariqnr Rabbani Blmiyan,Nobnynki Hirai. Study of crystalline behav-ior of heat-treated wood cellulose during treatments in water[J]. Journal of Wood Science,2005,51 (1):42-47
    [67]Wang J.Y., and Cooper P.A. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood[J].Holz als Roh-und Werkstoff,2005,63 (6):417-422
    [68]吴庆定.木质粉末高压无胶模塑成形原理与技术研究[D].长沙:中南林业科技大学,2010.
    [69]吴庆定.木质粉末温压成形原理与技术[M].长沙:湖南大学出版社,2012.
    [70]GU Xiao-hua,XI Peng,LIU Zhao-hui,etal.Study on Polyurethane Solid-Solid Phase Change Materials[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46(s1):220-222.
    [71]刘玉松.竹纤维粉体模压成形工艺特征及有限元研究[D].华南理工大学硕士学位论文,2010.
    [72]H. H. Hausner. New Types of Metal Powders. Gordon & Breach.1964.
    [73]唐忠荣,李克忠.木质材料性能检测[M].北京:中国林业出版社,2006.
    [74]许俊.中密度纤维板(MDF)的密度及其在线控制[C].湖南:中南林学院,2002.
    [75]何翠芳,周晓燕,朱亮.蒸爆法棉秆无胶纤维板热压工艺初探[J].林产工业,2009,36(1):15-17.
    [76]周晓燕,成书生,何翠芳.杨木/棉秆复合无胶纤维板制备工艺初探[J].林业科技开发,2008,22(1):87-89.
    [77]黄静,陈珏俐,吴庆定.杨木粉无胶模塑成形工艺参数优化[J].东北林业大学学报,2012,40(2):81-84.
    [78任露泉.试验设计及优化[M].北京:科学出版社,2009.
    [79]M.奥托.化学计量学[M].北京:科学出版社,2004.
    [80]X.Guan, H.Yao.Optimization of Viscozyme Lassisted extraction ofoatbran protein using response surface methodology[J].Food Chemistry,2008,106:345-351.
    [81]张泽志,韩春亮,李成未.响应面法在试验设计与优化中的应用[J].河南教育学院学报,2011,20(4),34-37
    [82]印红羽,张华诚.粉末冶金模具设计手册[M].机械工业出版社,2002.
    [83]熊春林,汤中华,李松林.粉体材料成形设备与模具设计[M].北京:化学工业出版社,2007.
    [84]杨洪亮.粉末冶金模凸凹模尺寸设计新方法[J].模具工业,1995(6):45-47.
    [85]余智勇,李亚军.金属粉末件钢模压制成形模具设计计算方法[J].锻压技术,2000(2):54-58.
    [86]熊惟皓,周理.中国模具工程大典[M].电子工业出版社,2007.
    [87]张金凤.模具材料与热处理[M].机械工业出版社,2010.
    [88]刘鸿文.材料力学[M].北京:高等教育出版社,2004.
    [89]成大先.机械设计手册(第一册)[M].北京:化学工业出版社,2007.
    [90]王戈.扫描电镜技术在木材学及人造板工艺研究中的应用[J].建筑人造板,1998(2):17-19.
    [91]曹忠荣.用电子显设镜研究干法无胶硬质纤维板的结构[J].林业科学,1997,33(1).
    [92]张迺良,沈友德.压缩木轴承在轧钢机上的使用[J].钢铁,1964(12).
    [93]金志鸿,唐育民,海鹅洲.MCS_2_1船舶层压胶木与铁梨木尾轴承性能试验[J].武汉水运工程学院学报,1981(4):14-25.
    [94]王家序译,美国MIL-B-1790IB船舶军用标准.重庆大学机械传动国家重点实验室科技报告.1995.57-59.
    [95]张江平.乘用汽车内饰材料的发展趋势及选材方法[J].武汉理工大学学报,2009,31(4):606-609.
    [96]皮锦红,王章忠.木材/金属复合材料的研究现状[J].南京工程学院学报,2006(2):46-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700