用户名: 密码: 验证码:
野外γ能谱、X荧光和地面高精度磁测在航磁异常查证中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空磁力测量由于受到自身技术的一些局限,比如总的测量精度不高,测量比例尺较小,会受到地磁场的斜磁化的影响导致异常中心与实际不符等,圈定的航磁异常规模和范围都很大,很难利用航空磁力测量获得的航磁异常直接找矿。因此对航磁异常进行进一步的地面查证是必要且重要的。通过地面查证可详细了解异常区内的地质情况,调查异常来源,进一步缩小找矿范围,圈定矿化异常,指导找矿方向。针对当前地面查证方法多,采用单一方法查证居多,多种方法组合查证的相对较少,将地面高精度磁测、核物探γ能谱技术和X荧光分析技术组合应用于航磁异常地面查证中的研究就更少的情况,本次以中国国土资源航空物探遥感中心项目D高精度航空物探调查?的子课题D西天山航磁异常查证野外X荧光应用示范?为依托,对野外γ能谱、X荧光分析技术和地面高精度磁测三种方法组合应用于航磁异常地面查证进行了研究。
     本次在应用工区采用同一布线标准定点进行了野外X荧光面积测量、γ能谱面积测量和地面高精度磁法剖面测量,野外X射线荧光分析仪分析的是原位土壤和岩石(矿物)的成矿元素和伴生元素的含量,γ能谱测量分析的是原位土壤和岩石的放射性元素(U、Th、K)的含量,地面高精度磁测定点测量地球磁场强度,通过三种方法的测量数据可以获取工区内岩石或矿物不同的属性,本次利用数理统计方法分析了工区内不同岩性中元素(成矿元素和放射性元素)的均匀分布情况,不同岩性中平均地球磁场强度的差异,分析了岩性与地球磁场强度的相关性,根据地球磁场强度区分岩性。绘制各元素(Cu、Pb、Zn、As、U、Th、K)的综合异常图,根据确定的异常下限,统计各种元素异常的规模、形状、强度和多元素组合异常情况,之后统计各种异常对应的岩性。以地质为基础,根据元素的分布与岩性的统计规律,异常与岩性的关系,分析和解释异常形成规律,总结出工区内放射性元素异常在不同岩性中的分布规律,对Pb、Zn、As组合异常(Zn-1、As-1、Pb-1)进行解释,对Cu、Ni组合异常进行分析,分析铜矿的有利成矿远景区。绘制地面高精度磁测的地球磁场强度剖面图,与相应剖面的Fe、Ti剖面图对比,说明地球磁场强度主要与岩石中Fe、Ti元素有关,综合解释磁异常。使用野外X荧光分析技术、γ能谱技术和地面高精度磁测组合应用在新疆西天山蒙马拉工区的异常地面查证中,有以下几点成果:
     (1)圈定8000多平方米Pb、Zn、As组合近视椭圆形异常(Zn-1、As-1、Pb-1),推断整个Pb、Zn、As组合异常区的中心并不在已知矿体的花岗闪长斑岩中,而是在已知铅锌矿的北方的硅质灰岩中,在已知铅锌矿体的北部的硅质灰岩中有更富的铅锌矿;
     (2)通过对Cu、Ni条带状组合异常进行分析,推断在已知铅锌矿附近发现铜矿的可能性较小,Cu与Pb、Zn并未伴生,而是发生了分离,在已知铅锌矿东西两侧的安山岩,才是有利的铜矿远景区,圈定的铜异常都在东西两侧的安山岩或者硅质灰岩与安山岩接触的地方,或者斜长花岗斑岩与安山岩接触的地段。
     (3)通过对放射性元素异常统计和不同岩性放射性元素分布情况的统计,从统计规律的角度,分析了放射性异常的成因,通过岩性的放射性元素的平均含量和变异系数推断该岩性中发现异常的可能性大小是可行的。
     (4)通过对地面高精度磁测测量的地球总磁场强度在不同岩性中的平均含量的分析,岩性按地球磁场强度从大到小排序为硅质灰岩-斜长花岗斑岩-第四系洪冲积物和花岗闪长斑岩-安山岩,相邻岩性相差10-20nT,因此可根据地球总磁场强度来区分岩性;
     (5)剖面3、剖面5和剖面9上地面高精度磁测获得地球磁场总强度和X荧光分析仪测量获得Fe、Ti元素剖面图对比分析,ΔT和Fe、Ti在异常区段同步变化,说明磁异常主要由Fe、Ti元素含量异常引起,并对磁异常进行分析解释,推测在Fe-3斜长花岗斑岩与安山岩分界处是有利的铜铁矿远景区。通过野外X射线荧光测量、地面γ能谱测量和地面高精度磁测三种方法组合在新疆西天山蒙马拉工区的应用实践表明,三种方法组合应用于航磁异常地面查证中具有查证速度快,查证效果好,是可行有效的组合查证方法。
Aeromagnetic survey due to some of its own technical limitations, such as general measurement accuracy is not high, and the measurement of small scale, it will be affected by the magnetic field of the inclined magnetization effect lead to abnormal center and not actual, the aeromagnetic anomalies delineated scale and scope are very big, and it is difficult to directly by the magnetic.prospecting. So aeromagnetic anomalies of the ground for further verification is necessary and important. Through ground verification can verify the detailed understanding of abnormal geologic condition, survey abnormal source, further narrow the scope of the ground of ore, mineralization anomalies delineated and guide the prospecting direction. In view of the current ground check method usually a single method, combination of several methods to verify the verification opposite less, the high precision measurement, nuclear magnetic geophysical technology and gamma ray spectroscopy field X-ray fluorescence analysis technology under combined application of magnetic anomaly of the study is to verify the ground more less in China, Relying on the project "high-precision aerogeophysical survey? of China Aero Geophysical Survey & Remote Sensing Center for Land and Resources (AGRS)corpus "West Tian shan magnetic anomaly verification field X-ray fluorescence application demonstration", in the backcountry gamma energy spectrum, X-ray fluorescence analysis technology and magnetic measurement precision ground three methods under combined application of magnetic anomaly to verify the ground.
     The application work area in the same observation network standards on the dot field X-ray fluorescence area measurement, gamma energy spectrum area measurement and ground high precision profile measurement. Field X-ray fluorescence analyzer analysis is in situ soil and rock (mineral) the ore-forming elements and associated elements. The content of gamma energy spectrum measurement analysis is in situ soil and rock of radioactive elements (U, Th, K) content. High accuracy measuring point magnetic determine the earth's magnetic field intensity. Through the three methods of measuring data can get work area rock or minerals in different attributes, the use of mathematical statistics method to analyze the work area within different lithology of elements (ore-forming elements and radioactive elements), uniform distribution of different lithology of average earth's magnetic field, analyzes the differences of the intensity of lithology and the earth's magnetic field intensity, according to the correlation of the earth's magnetic field strength distinguish the lithology. Draw the elements (Cu, Pb, Zn, As, U, Th, K) composite anomaly maps, according to certain abnormal lower limit, the statistics all sorts of elements of the abnormal shape, size, intensity and many combinations of elements, the abnormal situation after all kinds of anomalies corresponding statistics lithology. Based on geological, according to the distribution of elements with the statistical rule of lithology, abnormal and lithology, analyzes and explains the relationship between the abnormal formation law, summarizes the work of radioactive elements in different lithology abnormal the distribution law of Pb, Zn, As combination abnormal (Zn-1, As-1, Pb-1) to explain, Cu, Ni combination of abnormal analysis, analysis of the advantages of copper mineralization vision area. Paint the ground magnetic measurement precision of the earth's magnetic field strength, and the corresponding sections profile of the Fe, Ti section comparing, explains the earth's magnetic field intensity and rock Fe, main Ti elements, the comprehensive interpretation of the magnetic anomaly. Using field X-ray fluorescence analysis technology, the gamma energy spectrum technology and high precision ground combined application of magnetic measurement in West Tian Shan area with the abnormal ground verification, have the following results:
     (1) More than 8000 square meters, delineating the Pb, Zn, As combination myopia oval abnormal Zn-1, As-1, Pb-1. Zn, that the whole Pb combination As the center of the abnormal is not in the known lead-zinc mine porphyry granite, but in the north of the known lead-zinc mine silicon limestone, in the northern part of the body of known deposits silicon limestone is more rich deposits of.
     (2) By Cu, Ni strip of article combination is analyzed, in that known lead-zinc mine near body found less likely copper mine. Cu and Pb, smaller Zn did not associated, but happened on the known thing lead-zinc deposit separation on both sides of the andesite, is advantageous copper vision zone, tagged copper anomalies in the opposite andesites or silicon limestone and andesites contact place, or diagonal long porphyry granite and andesites contact area.
     (3) Through the radioactive element anomalies of different lithology and statistical distribution of radioactive elements of the statistics. Statistical law from the view, this paper analyzes the causes of the radioactive anomalies, through the lithology of radioactive elements and variation coefficient of the average content that the lithology of the possibility of abnormal size is feasible.
     (4) To the ground by high precision measurement of the earth's magnetic measurement total magnetic field intensity in different lithology of analyzing the content of the average, lithology according to the earth's magnetic field strength from large to small sort for silicon limestone-the length of porphyry granite-the fourth alluvial flash flood and granite long porphyry-andesites are adjacent lithology, 10 to 20 nT, so it can be based on the total magnetic field intensity to distinguish the lithology.
     (5) Profile 3, profile 5 and profile 9 on the ground magnetic measurement precision and get the earth's magnetic field strength and total X fluorescence analyzer measurement Fe, Ti element profile for contrast and analysis, theΔT and Fe, Ti in the abnormal section, magnetic anomaly change that synchronous mainly by Fe, Ti element content, and the abnormal cause analysis of magnetic anomaly interpretation, presumably, Fe-3 in the length porphyry granite and andesites boundary is advantageous in copper iron ore prospect areas.
     Through the field X-ray fluorescence survey, ground gamma energy spectrum measurement and ground high precision measuring three methods of magnetic combination in Tian Shan area with the application shows that three methods under combined application of magnetic anomaly in the ground check with verify speed, verify the effect to be good, is feasible and effective to verify the combination of methods.
引文
[1]范正国,黄旭钊,熊盛青等.磁测资料应用技术要求[M].北京.地质出版社. 2010.
    [2]熊胜青.发展中国航空物探技术有关问题的思考[J].中国地质. 2009,36(6):1366-1374.
    [3]管志宁.中国磁法勘探的研究与发展[J].地球物理学报. 1997,40(增刊):299-307.
    [4]于长春,熊胜青等.航磁剖面异常高度改正方法研究[M].D九五?全国地质科技重要成果论文集.北京.地质出版社. 2000.
    [5]梁德超,郑广如,侯连第.高精度航磁资料在桂滇黔地区金矿普查中的应用效果[J].物探与化探.1995,19(2):128-134.
    [6]余学中,梁月明,从丽娟.高精度航空物探资料在二连浩特?东乌旗地区找矿中的应用[J].物探与化探. 2010,34(3):269-274.
    [7]汪兴旺.青藏高原航磁双磁异常带与负磁异常区地质意义研究[D].成都:成都理工大学.2008.
    [8]于长春,范正国,王乃东等.高分辨率航磁方法及在大冶铁矿区的应用[M].地球物理学进展.2007,,22(3):979-983.
    [9]管志宁,侯俊胜,姚长利. .航磁梯度资料在金矿地质填图和成矿预测中的应用[J].现代地质,1996,10:239-249.
    [10]郑广如,乔春贵,刘英会.高精度航磁资料圈定隐伏岩体的效果[J].物探与化探. 2003,27(1):18-22.
    [11]杨永刚,李伟清.关于江东测区航磁异常查证路线地质调查的总结与分析[J].西部探矿工程.2009,(3):119-121.
    [12]葛良全,赖万昌,林延畅.现场X射线荧光检测技术研究[J].四川地质学报.2006, 26(2): 117~120.
    [13]任国富,周建斌,庹先国等. EDXRF-1024便携式高精度X荧光分析仪[J].核技术.2006,(9): 695-700.
    [14]杨明太. X射线荧光光谱仪的现状[J].核电子学与探测技术. 2006,(6).
    [15]吴越. EDXRF技术在多金属矿勘查中的应用研究[D].成都:成都理工大学. 2009.
    [16] Rousseau R M. Fundamental Algorithm Between Concentration and Intensity in Analysis[J].X-Ray spectrum.1984,13(3):115-125.
    [17] Amptek Inc. Operating Manual XR-100CR X-ray Detector system and PX2CR Power Supply/Shaper[M]. Revision 13, 2003.
    [18] ShiraiwaT,Fujino N.Theoretical correction Procedures for X-ray fluorescence analysis[J].X-Ray Spectrom,1974,3(2):64-73.
    [19]刘兴德,孙传敏,何政伟等.新疆西天山典型岩石含矿性研究[J].成都理工大学学报,2002,29(1):74-77.
    [20]花永涛,赖万昌,杨强. X射线荧光技术在新疆某航磁异常地面勘察的应用[J] .核电子学与探测技术. 2006,(5):660-662.
    [21]章晔、葛良全等.核地球物理学的X射线技术在我国固体矿产资源中的研究与应用[J].地球物理学报. 1989,32(4):
    [22]朱明亮.能量色散X荧光分析仪测定生铁样品.理化检验-化学分册. 2003.4
    [23]郑兴国,陈方强,葛良全等.钻孔岩芯多元素原位X荧光分析技术及应用[J] .金属矿山,2011, 40(04):104-107.
    [24]赖万昌.新型高灵敏度XRF分析仪的研制与应用[J].核技术.2003,11.
    [25]赖万昌等.新一代高灵敏度手提式X荧光仪的研制[J].物探与化探. 2002,26(4).
    [26]谢忠信等. X射线光谱分析[M].北京:科学技术出版社,1984.
    [27]申燕,邓霜岭,林建忠等.贵州桐梓煤田地面γ能谱法找煤试验研究[J].新疆地质. 2006,24(2):215-217.
    [28]康贤,苟润祥,李耕.地面伽马能谱测量寻找盐湖型钾盐矿的应用研究[J].铀矿地质. 2005,21(1):45-51.
    [29]付锦.用γ能谱测量确定铀尾矿氡析出率的可行性[J].有矿地质. 2003,19(3):167-173.
    [30]阳孝法,林畅松,杨海军等.自然伽马能谱在塔中地区晚奥陶世碳酸岩层序地层分析中的应用[J].石油地球物理勘探. 2010,45(3): 384-391.
    [31]张博,吕雄,曹长城等.自然伽马资料在塔里木盆地乌什凹陷目的层段体系域划分及地层对比中的应用[J].天然气地球科学. 2008,19(1):89-93.
    [32]曾庆栋,沈远超,刘铁兵等.伽马能谱测量在鲁西地区金矿预测中的应用[J].黄金地质. 1999,5(2):67-70.
    [33]魏彪,刘登忠,贾文懿.地面γ能谱测量在区域地质调查中的应用[J].成都理工大学学报. 1996,23(2):104-108.
    [34]王南萍,黄英,肖磊等.伽马能谱测量在陆地伽马空气吸收剂量率评价中的应用[J].2004,28(6):512-514.
    [35]刘菁华,田钢,王王祝文等.良渚古城墙的地面γ能谱测量含量特征分析[J]. 2010,33(4):262-267.
    [36]王玉金,胥爱军,侯志坚.粮食中放射性核素的γ?能谱分析[J].郑州粮食学院学报. 1993,(1):70-73.
    [37]黄茜,刘菁华,王祝文.自然伽马能谱测井资料在确定粘土矿物含量中的应用[J].吉林大学学报(地球科学版). 2007,37:143-150.
    [38]林海苓,王华,李湘葆.核事故地面辐射场γ能谱及角分布[J].核电子学与探测技术. 2002,22(4):354-356.
    [39]王鹏.能量色散荧光分析仪的研制[D].成都:四川大学. 2003.
    [40]庹先国,任国富,郭海等. X荧光现场取样技术在大红山铜矿的应用[J].金属矿山. 2003,328(10):43-45.
    [41]徐善法,陈建平,安国英等. X荧光测量在高寒荒漠区异常查证中的应用一例[J].物探与化探. 2003,27(5):350-353.
    [42]蒋薇. X荧光光谱法测定除尘灰成分的实验研究[J].山东冶金. 2009,31(5):146-147.
    [43]诸立新等.安徽沼虾重元素X荧光分析及其对水环境污染的指示意义[J]. 2004,13(3):228-231.
    [44]彭秀红,倪师军,张成江等.城市工业用煤X荧光分析及重元素污染研究[J].生态环境,2007,16(3):883-886.
    [45]何航,葛亮全,程峰等.新一代X荧光仪在河流质监测中的应用研究[J].环境科学与技术,2010,33(8):100-102.
    [46]刘平生,胡朝辉,刘世杰等.质子激发X荧光法测定西太平洋海域雨水的微量元素组成[J].核技术. 1995,18(9):551-555.
    [47]曲赞,阎桂林.高精度磁测陷落柱试验[J].煤田地质与勘探. 1993,21(2).
    [48]陈敏,邵伟等.地面高精度磁测在煤田勘探中的应用[J].陕西地质. 2009,27(1):62-67.
    [49]梁德超,邓军,杨立强.地面高精度磁测在胶东某金矿普查区的应用[J].地质与勘探. 2000,36(3):67-70.
    [50]杨礼敬,马佩文,王强国.地面高精度磁测在筏子坝铜矿勘查中的应用效果[J].甘肃地质学报. 2003,12(2): 86-92.
    [51]王文龙,张凤林.内蒙花敖包特银铅锌矿床高精度磁测找矿模式[J].工程地球物理学报. 2010,7(2):207-213.
    [52]周荣文,李再喜.高精度磁测在勘查热液硼矿床中的应用[J].湖南地质. 1992,11(1):71-74.
    [53]李忠平.地面高精度磁测在新疆契列可某铁矿区找矿中的应用[J].长春工程学院学报[J]. 2003,4(4):44-47.
    [54]胡维竹,杨茂齐.地面高精度磁测在印尼滨海型磁铁矿应用[J].云南地质. 2010,29(2):197-200.
    [55]岳永强,李才明,李军等.高精度磁测对水下磁性物体的搜索定位[J].物探化探计算技术. 2010,32(5):519-522.
    [56]袁照令,李大明.利用高精度磁测探查水中的钢铁构件[J].地质与勘探. 2000,36(3):64-66.
    [57]董平波.高精度磁测在勘察古墓上的应用[J].工程勘察. 1991,(2):68-71.
    [58]袁照令,李大明,曲赞.高精度磁测在伊川盆地油气勘探中的应用[J].石油物探. 1999,38(2):112-117.
    [59]丁凤仪,郭新顺,李庆春等.陕北高精度磁测找油探讨[J]. 1993,15(4):183-187.
    [60]周绵远,张工会,郭新顺.高精度磁测直接找油方法技术[J]. 1992,14(2):74-81.
    [61]章晔,侯胜利,程业勋等.桂西地区核地球物理学?卡法、γ能谱法、X射线荧光法现场勘查金矿研究[J].地质与勘探. 1993,29(11):45-50.
    [62]刘菁华,王祝文,田钢.地面伽马能谱测量与磁测联合对浅覆盖区地质填图单元的快速划分[J].地质与勘探. 2004,40(5): 67-72.
    [63]赵小明,杜佩轩,沈远超等.γ能谱法和X-荧光法在新疆阔尔真阔腊金矿预测中的应用[J].陕西地质. 2004,22(2):62-69.
    [64]杨岳衡,刘铁兵,沈远超等.X-荧光法和伽玛能谱法在胶东郭城金矿预测中的应用[J].地质与勘探. 2001,37(4):49-52.
    [65]曹立国,周蓉生.核地球物理勘探方法[M].北京:原子能出版社. 1991.
    [66]吴永平,周蓉生,方方等.便携式现场X荧光仪的几个关键问题探讨[J].核电子学与核技术.2006,26(6):769-772.
    [67]戴振麟.能量色散X射线荧光分析基本参数法[D].成都:成都理工大学.2008.
    [68]章晔,华荣州,石柏慎,放射性方法勘查[M].原子能出版社,1990.
    [69]格伦F.诺尔.辐射探测与测量.原子能出版社.1984.
    [70]葛良全,周四春,赖万昌.原位X辐射取样技术[M].成都:四川科学技术出版社,1997
    [71]章晔等. X射线荧光探矿技术[M].北京:地质出版社,1984
    [72]曹立国,丁益民,黄志琦.能量色散X射线荧光方法[M].成都:成都科技大学出版社,1998.
    [73] R.Al-Merey,J.Karajou,H.Issa.X-ray fluorescence analysis of geological samples:exploring the effect of sample thickness on the accuracy of results[J]. Applied Radiation and Isotopes.62(2005)501-508.
    [74] Alder I.X-ray Emission Spetrography in Geology[Z].Elsevier Publishing Co.N.Y,1966.258.
    [75] GEL Q, ZHANG Y, CHEN Y S.Study of surface geometrical structure effect of in- situ XRF analysis[J].Applied Radiation and Isotopes,1998,49(12):1713~1720.
    [76] E.P.伯廷(著),李瑞诚,鲍永夫,吴效林(译).X射线分析原理及应用[M].北京:国防工业出版社,1983.
    [77]复旦大学,北京大学,清华大学合编.原子和物理实验方法[M].原子能出版社,1985.
    [78]周蓉生,瓦冈诺夫,核方法原理及应用[M].北京:地质出版社,1994.
    [79]丁富荣,班勇,夏宗璜,辐射物理[M].北京大学出版社,2004.
    [80]程业勋.我国核地球物理的发展与展望[J].物探与化探.2002,26(4):
    [81]王军宁.新疆西天山金矿成矿条件分析及找矿远景预测[J].铀矿地质.1999,15(3):168-171.
    [82] Wang Yimin Lian Guoli,Teng Yunye. Determination of Multiple Elements in Manganese Nodules on Board Using XRSJ. Marine Mining.1991,10(3):259.
    [83] Ferraccioli,F.,M.Gambetta,and E.Bozzo,1998,Microlevelling procedures applied to regional aeromagnetic data: An example from the Transantarctic Mountains:Geophysical Prospecting,46,177-196.
    [84] Liukkonen,J.,1996,Levelling methods for aerogeophysical data: 10 August 2005. http//www.gsf.fi/~liukkonen/public/publications.html.
    [85] Luyendyk,A.P.J.,1997,Processing of airborne magnetic data: Journal Australian Geology and Geophysics,17,no.2,31-38.
    [86] Minty,B.R.S.,1991,Simple micro-levelling for aeromagnetic data:Exploration Geophysics,22,591-592.
    [87] Reeves,C.V.,1993,Limitations imposed by geomagnetic variations on high quality aeromagnetic surveys:Exploration Geophysics.24,115-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700