用户名: 密码: 验证码:
GFRP层合板厚板VIMP制备工艺与力学性能尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程复合材料构件正在逐渐由小型化向大型化转变。近年来典型巨型玻璃纤维增强聚合物基复合材料(GFRP)工程构件——风力发电机叶片的研发和生产发展迅速,所用层合板部件的厚度和尺寸不断增大。本文在相关课题的支撑下对大尺寸GFRP厚板构件的真空灌注模塑成型(VIMP)工艺和性能表征方面的特殊性展开研究,包括大尺寸GFRP厚板构件VIMP工艺树脂灌注过程、GFRP厚板VIMP工艺固化过程温度分布和固化度分布、VIMP工艺成型GFRP层合板和含孔层合板的静态力学性能厚度尺寸效应等。
     首先,对大尺寸GFRP厚板构件的VIMP工艺树脂灌注过程展开研究。VIMP工艺灌注过程主要的控制参数是温度和流道布设。本文选择Huntsman1564/3486和惠利LT5078A/5078B-2两种具有代表性的VIMP工艺用环氧树脂体系,分析结果表明二者均属于添加活性稀释剂改性的低粘度双酚A环氧/混胺反应体系,固化反应级数分别为0.905和0.88。基于等温粘度-时间数据建立两种树脂体系的Dual-Arrhenius流变模型和工程粘度模型,用于描述树脂体系流变行为,并联立两种模型对树脂体系VIMP工艺窗口进行了预报,确定最佳灌注温度为35℃。随后,研究了GFRP大型工程构件常用的三种玻璃纤维增强织物:[0] UD织物、[0/45/-45]三轴向织物和[0/45/90/-45]四轴向织物的渗流特性和VIMP工艺用导流介质对流动行为的影响,根据结果确定了流道布设原则。对典型大尺寸厚板工程构件——40m长某型风机叶片叶根段和大梁的VIMP灌注工艺实践进行了指导,构件浸渍情况良好。
     其次,对GFRP厚板的VIMP工艺树脂固化过程温度分布和固化度分布展开研究。采用外推法确定了环氧树脂体系的固化特征温度,考察了最佳固化温度下厚板厚度方向温度分布。结果表明厚度的增加导致厚度方向温度差异和峰值温度增大,为避免过高峰值温度,厚板固化应分为预固化和固化两段进行。为研究温度差异对固化度分布的影响,本文提出了时间离散分步计算法,将一般基于等温条件建立的固化度模型应用范围扩展到非等温条件。建立了本文研究用环氧树脂树脂的两种等温条件下的固化度模型:Kamal模型和根据本文实验数据进行了修正的Olivier模型。采用时间离散分步计算法,计算了动态升温条件下的固化度-时间关系,计算值和实验值符合良好;固化起始阶段Kamal模型预测精度更高,固化反应后期尤其是最终固化度到达时间的预测,修正的Olivier模型精度更高。对典型厚板构件——85mm厚某型风机叶片叶根段小型试件厚度方向的固化度分布进行了计算。结果表明厚板预固化阶段依靠自身放热已达到较高固化度,温度差异导致的固化度差异可通过最佳固化温度下短时固化的方式消除,固化时间可根据计算结果确定。
     再次,从纤维含量、拉伸性能、短梁剪切性能、弯曲性能四个方面,对VIMP工艺成型多轴向织物增强GFRP层合板的厚度尺寸效应进行了实验研究和总结。结果显示纤维体积分数在厚度方向上均匀分布;当厚度大于10mm时,纤维体积分数不随织物铺层数目的增加而变化,[0]、[0/45/-45]和[0/45/90/-45]织物增强层合板的纤维体积分数分别稳定在57%、57%和54.5%。力学性能实验结果显示模量与试样尺寸基本无关,强度随试样厚度和尺寸的增大而下降,可应用Weibull概率模型描述强度尺寸效应,模型与实验值符合良好。[0]、[0/45/-45]和[0/45/90/-45]织物增强层合板拉伸强度尺寸效应Weibull模量分别为39.2、37.6和25.3;短梁剪切强度尺寸效应Weibull模量分别为39.7、38.3和27.6;弯曲强度尺寸效应Weibull模量分别为35.4、28.0和21.3。本文实验获得的强度尺寸效应Weibull模型可为大尺寸GFRP复合材料构件的工程设计提供有效的参考。
     最后,对VIMP工艺成型多轴向织物增强GFRP含孔层合板准静态拉伸强度厚度尺寸效应进行了研究。采用有限元方法分析了铺层数和厚度的增加对[0]和[0/45/-45]织物增强含孔层合板拉伸应力场的影响,结果显示其对拉伸应力场基本形态影响不大;[0]织物增强含孔层合板铺层数增加对孔周最大拉应力值和孔周应力集中因子的影响很小;而[0/45/-45]织物增强含孔层合板孔周最大拉应力值和孔周应力集中因子则随铺层数的增加而上升,上升趋势符合Boltzmann公式。实验研究了含孔层合板的拉伸强度厚度尺寸效应,结果显示孔径/板宽比分别为30mm/60mm和36mm/60mm时,[0]织物增强含孔层合板的Weibull模量分别为33.9和31.6,[0/45/-45]织物增强含孔层合板分别为26.4和20.8,均明显低于完好层合板Weibull模量值。厚度变化对含孔层合板强度比的影响并不明显。
The engineering composite components are developing from miniaturization to maximization recently. For the past few years, the development and production of the typical Glass Fibre Reinforced Polymer (GFRP) engineering composite components–wind turbine blades were booming, which cause the engineering GFRP laminates to be much larger and thicker. In this paper, the particularities of the large size GFRP thick laminates were focused on systematically, including the Vacuum Infusion Moulding Process (VIMP) technique used for the laminates components manufacture, the temperature distribution and the degree of cure distribution in laminates curing process, the size effects in mechanical properties test of laminates and open-hole laminates specimens.
     Firstly, researches have been made about the resin infusion process of VIMP technique. The mainly controlling parameters of the infusion process are resin infusion temperature and design of flow channel layout. The Huntsman 1564/3486 and the huili LT5078A/5078B-2 epoxy resin systems were chosen as the laminates matrix. Analysis results show that both of them are the modified low viscosity bisphenol A epoxy/ multi-amine reaction systems, the reaction orders are 0.905 and 0.88. The Dual- Arrhenius rheological model and engineering viscosity model were established. These two kinds of models were combined to predict the VIMP processing windows of resin systems. Then the optimum resin infusion temperature was obtained to be 35℃. The permeability of the [0], [0/45/-45] and [0/45/90/-45] multi-axial fabric reinforcement, and the effects of the distribution medium on the resin flow behavior in VIMP had been studied. According to the results, the design principles of the resin flow channel layout were determined and applied to guide the VIMP infusion process of the root and the spar cap of a typical 40m length wind turbine blades.
     Secondly, the distribution of the temperature and the degree of cure in thick laminates VIMP curing process were studied. The curing characteristic temperatures for the epoxy resin system was gotten by differential scanning calorimeter (DSC) technique at different heating rates. The distribution of the temperature during thick laminates curing process was inspected. The results showed that the temperature gradient at different thickness positions was increasing with the laminate thickness. To avoid the high peak temperature, the thick laminate curing process should be divided into two stages, the pre-curing stage and the curing stage. In order to study the distribution of the degree of cure, the Method of Accumulation by Time Dispersing Steps was proposed to calculate the degree of cure under non-isothermal conditions with the isothermal models-the Kamal kinetic model and the modified Olivier model. The relationship between degree of cure and time under non-isothermal conditions was calculated and verified by the experimental data. It shows that Kamal kinetic model is more accurate in the earlier stage of the curing course, while the modified Olivier model is more accurate in the later stage, especially at the final degree of cure. In the curing process of a typical engineering thick laminates components-the root of a wind turbine blade whose thickness is 85mm, the distribution of the degree of cure was calculated and analyzed. The results showed that the thick laminates could achieve high degree of cure in the pre-cure stage by self-heating, but there were differences of real time degree of cure in thickness direction. The high equivalent degree of cure could be achieved in the cure stage, the time of which could be determined by the calculation results.
     Thirdly, the size effects were studied and summarized systematically from four aspects: the fibre volume fraction, the tensile test, the short- beam shear test and the flexural test of the multi-axial fabrics reinforced laminates manufactured by VIMP. The fibre volume fraction of the thick laminates uniformly distributes in the thickness direction, and do not change with the thickness when the thickness is higher than 10mm. The fibre volume fractions of [0], [0/45/-45] and [0/45/90/-45] fabric reinforced laminates are 57%, 57% and 54.5% respectively. The mechanical properties experiments show that the modulus doesn’t change with the size of the specimen, while the strength is decreasing with the size grows. Compared with the experimental data, the result shows that the Weibull model is fit for describing the strength size effects. The tensile strength Weibull moduli of [0], [0/45/-45] and [0/45/90/-45] fabrics reinforced laminates are 39.2, 37.6 and 25.3 respectively, while the short-beam shear strength Weibull moduli of them are 39.7, 38.3 and 27.6 respectively, and the flexural strength Weibull moduli of them are 35.4, 28.0 and 21.3 respectively. The Weibull moduli obtained from the experimental data could be useful for design of large size engineering composite components.
     Fourthly, the size effects of the quasi-static tensile strength of the open-hole laminates specimen were studied by Finite Element Method (FEM) and experiment. The tensile stress fields of [0] and [0/45/-45] fabrics reinforced laminates open-hole specimens with different thicknesses were calculated with the FEM method and the results show that the growth of the number of layers and the thickness has little influence on the stress distribution. The maximum tensile stress SX and the stress concentrate factor K around the hole of the [0] fabric reinforced laminates are of little change with the growth of the number of layers, while the maximum SX and K of the [0/45/-45] fabric reinforced laminates is increasing with the growth of the number of layers and the Boltzmann formula is fit for describing the increasing speed. The experimental results show that when the hole diameter/ width is 30mm/60mm, the tensile strength Weibull modulus of [0] fabric reinforced laminates open-hole specimen is 33.9, of [0/45/-45] fabric reinforced laminates is 31.6; and when the hole diameter/ width is 36mm/60mm, the Weibull moduli are 26.4 and 20.8. The tensile strength Weibull moduli of the open-hole laminates are obviously less than that of the imperforate laminates correspondingly. It’s also found that the ratio of the open-hole laminates strength versus imperforate laminates strength is of little change with the growth of the thickness through the experimental data.
引文
[1]吴人洁主编.复合材料[M].天津:天津大学出版社, 2000.
    [2]霍斯金(澳),贝克(澳)著,沈真译.复合材料原理及应用[M].北京:科学出版社, 1992.
    [3] Hoa V S, Gauvin R. Composite structures and materials[M]. London: Elsevier applied science, 1992.
    [4]周曦亚.复合材料[M].北京:化学工业出版社, 2005.
    [5]赵玉庭,姚希曾.复合材料聚合物基体[M].武汉:武汉工业大学出版社, 1992.
    [6]陈详宝.高性能树脂基体[M].北京:化学工业出版社, 1999.
    [7]赵渠森.先进复合材料及其应用[J].航空制造技术. 2002, (10): 22-27.
    [8]钟方国,赵鸿汉.风力发电发展现状及复合材料在风力发电上的应用[J].纤维复合材料. 2006, (3): 48-54.
    [9]李泽田,尤德宽.风力发电-复合材料的一个重要应用领域[J].航天技术与民品. 1997, (2): 35-36.
    [10] Srcnscn P. Wind models for simulation of power fluctuations from wind farms[J]. Journal of Wind Engineering and Industrial Acrodynamics. 2002, 90: 1381-1402.
    [11]刘万琨,张志英,李银凤.风能与风力发电技术[M].北京:化学工业出版社, 2007.
    [12]陈宗来,陈余岳.大型风力机复合材料叶片及进展[J].玻璃钢复合材料. 2005, (3): 53-56.
    [13]王显峰,富宏亚,韩振宇等.复杂形体面片缠绕成型方法的分析与实现[J].宇航材料工艺. 2006, (6): 39-41.
    [14]刘良森,谢霞,邱冠雄等.多向纤维缠绕机缠绕线型及其控制系统的设计[J].玻璃钢/复合材料. 2006, (3): 36-38.
    [15]李勇,肖军.复合材料纤维铺放技术及其应用[J].纤维复合材料. 2002, (3): 39-41.
    [16]艾涛,王汝敏.低成本、高性能复合材料的成型技术[J].纤维复合材料. 2004, (2): 42-44.
    [17]张彦飞,刘亚青,杜瑞奎等.复合材料液体模塑成型技术(LCM)的研究进展[J].塑料. 2005, 34(2): 31-35.
    [18] Beckwith S W, Hyand C R. Resin transfer molding:a decade of technology advances[J]. SAMPE Journal. 1998, 34(6): 7-19.
    [19]仲伟虹,梁志勇,张佐光等. RTM工艺及其在我国航空工业的应用前景[J].材料工程. 1995(1): 9-11.
    [20] Kendall K N, Rudd C D, Owen M J, et al. Characterization of the resin transfer molding process[J]. Composites Manufacturing. 1992, 3(4): 235-249.
    [21] Brouwer W D, Van Herpt E, Labordus M. Vacuum injection moulding for large structural applications[J]. Composites Part A. 2003, 34: 551-558.
    [22]赵渠森,赵攀峰.真空辅助成型工艺研究[J].纤维复合材料. 2002(1): 42-46.
    [23] Correia N C, Robitaille F, Long A C, et al. Analysis of the vacuum infusion moulding process: I. Analytical formulation[J]. Composites: PartA. 2005: 1645-1656.
    [24] Modi D, Correia N, Johnson M, et al. Active control of the vacuum infusion process[J]. Composites Part A. 2007, 38(5): 1271-1287.
    [25]杨金水.真空导入模塑工艺树脂流动行为研究[D].长沙:国防科学技术大学, 2007.
    [26]李小兵,孙占红,曹正华.真空辅助树脂灌注配套基体树脂的制备及性能[J].热固性树脂. 2006, 21(5): 39-44.
    [27]沈坤元等译.世界上最大的复合材料夹层结构物[J].玻璃钢. 2001(2): 36.
    [28] Sun X D, Li S J, Lee L J. Molding filling analysis in vacuum-assisted resin transfer molding[J]. Polymer Composites. 1998, 19(6): 807-817.
    [29]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社, 2003.
    [30]江体乾.工业流变学[M].北京:化学工业出版社, 1995.
    [31] Roller M B. Rheology of curing thermosets: A review[J]. Polymer Engineering and Science. 1986, 26(6): 432-440.
    [32] Halley P J, Mackay M E. Chemorheology of thermoset: an overview[J]. Polymer Engineering and Science. 1996, 36(5): 593-608.
    [33] Yousefi A, G.Lafleur P, Gauvin R. Kinetic studies of thermoset cure reactions: A review[J]. Polymer Composites. 1997, 18(2): 157-168.
    [34]郭战胜,杜善义,张博明等.先进复合材料用环氧树脂的固化反应和化学流变[J].复合材料学报. 2004, 21(4): 146-151.
    [35]石凤,段跃新,梁志勇等.测量方法对环氧树脂体系化学流变特性的影响[C].第十届全国青年材料科学技术研讨会论文集:长沙, 2005.
    [36]周文,张佐光,顾轶卓等.热固性树脂体系流变特性随储存条件变化规律[J].复合材料学报. 2007, 24(4): 40-45.
    [37]尹昌平,肖加余,曾竟成等.苯并噁嗪树脂流变特性及工艺窗口预报研究[J].材料工程. 2008(6): 5-8.
    [38]邱求元,肖加余,江大志等. POSS改性AFG.90环氧树脂体系流变特性[J].国防科技大学学报. 2008, 30(6): 29-33.
    [39]刘卓峰,肖加余,曾竟成等低粘度环氧树脂VIMP工艺性能研究[J].国防科技大学学报. 2008, 30(5): 20-24.
    [40]梁志勇,段跃新,林云等. EPON862环氧树脂体系的化学流变特性研究[J].复合材料学报. 2001, 18(1): 16-19.
    [41]路遥,段跃新,梁志勇等.钡酚醛树脂体系化学流变特性研究[J].复合材料学报. 2002, 19(5): 33-37.
    [42] Stephan K, Lucas K. Viscosity of dense fluids[M]. New York: Plenum Pub Corp, 1979.
    [43]万俊华,刘顺隆,杨曜根等.流体分子理论及性质[M].哈尔滨:哈尔滨工程大学出版社, 1994.
    [44]胡英,刘国杰,徐英年等.应用统计力学:流体物性的研究基础[M].北京:化学工业出版社, 1990.
    [45] Mijovic J, Lee C H. A comparison of chemorheological models for thermoset cure[J]. Journal of Applied Polymer Science. 1989, 38(12): 2155-2170.
    [46] Perry M J, Wang T J, Ma Y. Resin transfer moulding of epoxy/graphite composites[C]. International SAMPE Technical Conference: 24th International SAMPE Metals and Metals Processing Conference, Canada: 1992.
    [47] Bidstrup S A, Macosko C W. Chemorheology relations for epoxy-amine crosslinking[J]. Journal of Polymer Science: Part B. 1990, 28(5): 691-709.
    [48] Maazouz A, Texier C, Taha M. Chemo-rheological study of a dicyanate ester for the simulation of the resin-transfer molding process[J]. Composite Science and Technology. 1998, 58(5): 627-632.
    [49] Hsieh T H, Wang T L, Ho K S, et al. Chemorheological analysis of an epoxy- novolac molding compound[J]. Polymer Engineering and Science. 2000, 40(2): 418-429.
    [50] Malkin A Y, Kulichikhin S G, et al. Rheokinetics of Curing of Epoxy Resins Near the Glass Transition[J]. Polymer Engineering and Science. 1997, 37(8): 1322-1330.
    [51] Kiuna N, Lawrence C J, Fontana Q P V, et al. A model for resin viscosity during cure in the resin transfer moulding process[J]. Composites:Part A. 2002, 33(11): 1497-1503.
    [52] Tajima A, Donald G. Chemorheology of an Amine-Cure Epoxy Resin[J]. Polymer Engineering and Science. 1986, 26(6): 427-431.
    [53] Karkanas P I, Partridge I K. Cure modeling and monitoring of epoxy/amine resin systems. Part II: network formation and chemoviscosity modelling[J]. Journal of Applied Polymer Science. 2000, 77(10): 2178-2188.
    [54]石凤.工程热固性树脂流变特性研究[D].北京,北京航空航天大学, 2007.
    [55]石凤,段跃新,曾秀妮等.双酚A型环氧树脂/催化型固化剂体系的粘度模型[J].复合材料学报. 2005, 22(6): 72-79.
    [56]石凤,段跃新,梁志勇等. 5228环氧树脂体系化学流变特性研究[J].玻璃钢/复合材料. 2006(4): 26-30.
    [57]石凤,段跃新,梁志勇等. RTM专用双马来酰亚胺体系化学流变特性[J].复合材料学报. 2006, 23(1): 56-62.
    [58]石东,石凤,段跃新等. RTM工艺用酚醛树脂体系化学流变行为研究[J].宇航材料工艺. 2005, 35(2): 52-56.
    [59]代晓青,肖加余,曾竟成等.反应性树脂体系化学增粘和物理减粘机制的分离[J].国防科学技术大学学报. 2009, 31(5): 135-140.
    [60]代晓青.纤维预成型体中环氧树脂-固化剂反应体系流动浸渍行为研究[D].长沙:国防科学技术大学, 2010.
    [61] Kamal M R, Sourour S. kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering and Science. 1973, 13(1): 59-64.
    [62] Sourour S. Thermal and kinetic characterization of thermosetting resins during cure[D]. Montreal: McGill University, 1978.
    [63] Prime R B. Thermal characterization of polymeric materials[M]. New York: Academic Press, 1981.
    [64] Sbirrazzuoli N, Vyazovkin S. Learning about Epoxy Cure Mechanisms from Isoconversional Analysis of DSC Data[J]. Thermochimica Acta. 2002, 388: 289-298.
    [65] Hagnauer G L. Quality Assurance of Epoxy Resin Prepregs Using Liquid Chromatography[J]. Polymer Composites. 1980, 1: 81-87.
    [66] Podzimek S, Sykora V, Horálek J, et al. Epoxy Resins based on Bisphenol S. II. HPLC Analysis[J]. Journal of Applied Polymer Science. 1995, 58(9): 1491-1494.
    [67] Dopico Garcia M S,Gonzalez Rodriguez M V,Diez Redondo F Z,et al. Kinetic of Epoxy Resin Formation by High-performance Liquid Chromatography[J]. Journal of Applied Polymer Science. 2003, 89(2): 497-504.
    [68] DiGiulio C, Gautier M, Jasse B. Fourier Transform Infrared Spectroscopic Characterization of Aromatic Bismaleimide Resin Cure States[J]. Journal of Applied Polymer Science. 1984, 29(5): 1771-1779.
    [69]罗小雯,李善君,于雅娣等. FTIR法研究乙酸酚醛酯固化邻甲酚环氧树脂的固化反应动力学[J].高等学校化学学报. 1997, 18(10): 1719-1723.
    [70] Wang Q, Storm B K, Houmoller L P. Study of the Isothermal Curing of an Epoxy Prepreg by Near-Infrared Spectroscopy[J]. Journal of Applied Polymer Science. 2003, 87(14): 2295-2305.
    [71] Zong L, Kempel L C, Hawley M C. Dielectric studies of three epoxy resin systems during microwave cure[J]. Polymer. 2005, 46(8): 2638-2645.
    [72]刘振海.热分析导论[M].北京:化学工业出版社, 1991.
    [73]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [74] Bershtein V A, Egorov V M, Kemp T J. Translation, Differential Scanning Calorimetry of Polymers[M]. New York: Fillis Horward Ltd, 1994.
    [75] Fava R A. Differential Scanning Calorimetry of Epoxy Resins[J]. Polymer. 1968, 9: 137-151.
    [76] Kenny J M, Trivisano A. Isothermal and Dynamic Reaction Kinetics of High Performance Epoxy Matrices[J]. Polymer Engineering and Science. 1991, 31(19): 1426-1433.
    [77] Lee J Y, Choi H K, Shim M J, et al. Kinetic Studies of an Epoxy Cure Reaction by Isothermal DSC Analysis[J]. Thermochimica Acta. 2000, 343(1-2): 111-117.
    [78] Rosu D, Cascaval C N, Mustata F, et al. Cure Kinetics of Epoxy Resins Studied by Non-isothermal DSC Data[J]. Thermochimica Acta. 2002, 383(1-2): 119-127.
    [79] Schawe J E K. A description of chemical and diffusion control in isothermal kinetics of cure kinetics[J]. Thermochimica Acta. 2002, 388(1-2): 299-312.
    [80] Ooi S K, Cook W D, Simon G P, et al. DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents[J]. Polymer. 2000, 41(10): 3639-3649.
    [81] Maazouz A, Texier C, Taha M, et al. Chemo-rheological study of dicyanate ester for the simulation of the resin-transfer molding process[J]. Composites Science and Technology. 1998, 58(5): 627-632.
    [82] Shanku R, Vaughan J G, Roux J A. Rheological Characteristics and Cure Kinetics of EPON 862/W Epoxy Used in Pultrusion[J]. Advances in Polymer Technology. 1997, 16(4): 297-311.
    [83] Lee J Y, Shim M J, Kim S W. Autocatalytic cure kinetics of natural zeolite filled epoxy composites[J]. Materials Chemistry and Physics. 1997, 48(1): 36-40.
    [84] Lee C L, Ho J C, Wei K H. Resin transfer molding (RTM) process of a high performance epoxy resin. I: kinetic studies of cure reaction[J]. Polymer Engineering and Science. 2000, 40(4): 929-934.
    [85] Chern C S, Poehlein G W. A kinetic model for curing reactions of epoxides with amines.[J]. Polymer Engineering and Science. 1987, 27(11): 788-795.
    [86] Khanna U, Chanda M. Kinetics of anhydride curing of isophthalic diglycidyl ester using differential scanning calorimetry[J]. Journal of Applied Polymer Science. 1993, 49(2): 319-329.
    [87] Gonzalez-Romero V M, Casillas N. Isothermal and temperature programmed kinetic studies of thermosets[J]. Polymer Engineering and Science. 1989, 29(5): 295-301.
    [88] Olivier P, Cottu J P, Martinez J J, et al. Optimization of cure cycle parameters for a carbon--epoxy laminate[C]. 2nd International Conference on Deformation and Fracture of Composites, Manchester: 1993.
    [89] Olivier P, Cottu J P. Optimisation of the co-curing of two different compositeswith the aim of minimising residual curing stress levels[J]. Composites Science and Technology. 1998, 58(5): 645-651.
    [90] Stevenson J K. Free radical polymerization models for simulating reactive processing[J]. Polymer Engineering and Science. 1986, 26(11): 746-759.
    [91] Sourour S, Kamal M R. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics[J]. Termochimica Acta. 1976, 14(1-2): 41-59.
    [92] Ng H,Manas-Zloczower I. A nonisothermal differential scanning calorimetry study of the curing kinetics of an unsaturated polyester system[J]. Polymer Engineering and Science. 1989, 29(16): 1097-1102.
    [93] Tungare A V. Analysis of the curing behavior of bismaleimide resins[J]. Journal of Applied Polymer Science. 1992, 46(7): 1125-1135.
    [94]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报. 2008, 14(18): 1-5.
    [95]肖加余,曾竟成,彭超义.碳纤维复合材料作为主承力结构在航空航天上的应用[C].第十三届全国复合材料学术会议论文集: 2004.
    [96]陈绍杰.复合材料技术与大型飞机[J].航空学报. 2008, 29(3): 605-610.
    [97]孙侠生,胡红东.国外民用飞机结构强度技术的发展思路研究[J].航空科学技术. 2004(6): 23-26.
    [98]陈亚莉.复合材料成型工艺在A400M军用运输机上的应用[J].航空制造技术. 2008(10): 32-35.
    [99] Joselin Herberta G M, Iniyan S, Sreevalsan E, et al. A review of wind energy technologies[J]. Renewable and Sustainable Energy Reviews. 2007, 11(6): 1117 -1145.
    [100] Ulgen K, Genc A, Hepbasli A, et al. Assessment of wind characteristics for energy generation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2004, 26(13): 1227-1237.
    [101]罗益锋,谷峻.世界风能及其叶片材料发展概况与趋势[J].高科技纤维与应用. 2003, 28(5): 1-7.
    [102]施鹏飞. 2007年国内外风电发展情况[J].可再生能源. 2008, 26(3): 7-10, 12.
    [103]施鹏飞. 2008年国内外风电持续快速发展[J].可再生能源. 2009, 27(2): 6-10.
    [104]施鹏飞.全球风力发电现况及发展趋势[J].电网与清洁能源. 2008, 24(7): 3-5.
    [105]施鹏飞. 2005年中国风电场装机容量统计[G]. 2006.
    [106]陈绍杰.复合材料与风机叶片[J].高科技纤维与应用. 2007, 32(3): 8-12.
    [107]赵稼祥.复合材料在风力发电上的应用[J].高科技纤维与应用. 2003, 28(4): 1-4.
    [108]邱冠雄,刘良森,姜亚明.纺织复合材料与风力发电[J].纺织导报. 2006(5): 56-61, 64.
    [109]王洪燕,张守斌,潘福奎.多轴向经编织物的性能及应用[J].现代纺织技术. 2008, 16(4): 58-60.
    [110]魏光群,蒋高明,缪旭红.多轴向经编针织物的应用现状与发展展望[J].纺织导报. 2008(3): 70-72.
    [111]李丽娟,蒋高明,缪旭红.多轴向经编针织物在风力发电中的应用[J].纺织导报. 2009(5): 68-70, 72.
    [112]马悦,李炜,梁子青.经编多轴向织物的压缩性能研究[J].材料工程. 2007(11): 28-32.
    [113]张晓明.风力发电复合材料叶片的现状与未来[J].纤维复合材料. 2006, 23(2): 60-63.
    [114]戴春晖,刘钧,曾竟成等.复合材料风电叶片的发展现状及若干问题的对策[J].玻璃钢/复合材料. 2008(1): 53-56.
    [115] Sevostianov I B, Verijenko V E, Von Klemperer C J, et al. Mathematical model of stress formation during vacuum resin infusion process[J]. Composites Part B: Engineering. 1999, 30(5): 513-521.
    [116] Qi B, Raju J, Kruckenberg T, et al. A resin film infusion process for manufacture of advanced composite structures[J]. Composite Structures. 1999, 47(1-4): 471-476.
    [117]邱婧婧,段跃新,梁志勇. RTM工艺参数对树脂充模过程影响的模拟与实验研究[J].复合材料学报, 2004, 21(6): 70-74..
    [118]古托夫斯基.先进复合材料制造技术[M].北京:化学工业出版设, 2004.
    [119] Shanku R, Vaughan J G, Roux J A. Rheological characteristics and cure kinetics of EPON 862/W epoxy used in pultrusion[J]. Advances in Polymer Technology. 1997, 16(4): 297-311.
    [120] Han K R, Jiang S L, Zhang C, et al. Flow modeling and simulation of SCRIMP for composites manufacturing[J]. Composites Part A. 2000, 31(1): 79-86.
    [121] Young W B, Han K, Fong L H, et al. Flow simulation in molds with preplaced fiber mats[J]. Polymer Composites. 1991, 12(6): 391-403.
    [122]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社, 1999.
    [123]周光炯,严宗毅.流体力学[M].北京:高等教育出版社, 2000.
    [124]梁志勇.复合材料液体成型工艺技术基础研究[D].北京:北京航空航天大学, 2000.
    [125]肖加余,刘钧.用增强RFI/RTM-VIMP方法制备轨道交通车辆大尺寸复合材料部件[R].长沙:国防科技大学航天与材料工程学院, 2008.
    [126]陈祥宝,包建文,娄葵阳.树脂基复合材料制造技术[M].北京:化学工业出版社, 2000.
    [127] Guo Z S, Du S Y, Zhang B M, et al. Cure Kinetics of Carbon Fiber/ BismaleimidePrepreg[J]. Chinese Journal of Chemical Physics. 2004, 17(2): 219-224.
    [128] Turi E A. Thermal characterization of polymeric materials (Vol.2)[M]. New York: Academic Press, 1998.
    [129]谢怀勤,刘文博等. SMC模压过程非稳态温度场数值模拟[J].哈尔滨工业大学学报. 2003, 35(2): 249-252.
    [130]张纪奎,关志东,郦正能.热固性复合材料固化过程中温度场的三维有限元分析[J].复合材料学报. 2006, 23(2): 175-179.
    [131]郭战胜,杜善义,张博明等.厚截面树脂基复合材料的温度场研究I:模拟[J].复合材料学报. 2004, 21(5): 122-127.
    [132] Guo Z S, Du S Y, Zhang B M. Temperature field of thick thermoset composite laminates during cure process[J]. Composites Science and Technology. 2005, 65(3-4): 517-523.
    [133] Whitney J M. Elastic modulus of unidirectional composites with anisotropic filaments[J]. Journal of Composites Materials. 1967, 1(1): 188.
    [134] Edu R, Francois T. Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts[J]. Composites Part A: Applied Science and Manufacturing. 2005, 36(6): 806-826.
    [135] GB1447-2005:纤维增强塑料树脂拉伸性能试验方法[S].
    [136] ISO527-4-1997: Plastics -Determination of tensile properties -Test conditions for isotropic and orthotropic fibre-reinforced plastic composites[S].
    [137] GB1449-2005:纤维增强塑料树脂弯曲性能试验方法[S].
    [138] ISO14125-1998: Fibre-reinforced plastic composites -Determination of flexural [S].
    [139] Hertzberg R W. Deformation and fracture mechanics of engineering materials[M]. New York: Wiley, 1976.
    [140] Bazant Z P,Chen E P. Scaling of structural failure[J]. Applied Mechanics Reviews. 1997, 50(10): 593-627.
    [141] Zweben C. Is there a size efect in composites[J]. Composites. 1994, 25(6): 451-454.
    [142] Wisnom M R. Size effects in the testing of fibre-composite materials[J]. Composites Science and Technology. 1999, 59(13): 1937-1957.
    [143] Sutherland L S, Shenoi R A, Lewis S M. Size and scale effects in composites: I. Literature review[J]. Composites Science and Technology. 1999, 59(2): 209-220.
    [144] Argon A S. Statistical aspects of fracture vol. 5: Composite Materials, Fracture and Fatigue[M]. New York: Academic Press, 1974.
    [145] Okabe T, Takeda N. Size effect on tensile strength of unidirectional CFRP composites- experiment and simulation[J]. Composites Science and Technology. 2002, 62(15): 2053-2064.
    [146] Gurvich M R, Pipes R B. Strength size effect of laminated composites[J]. Composites science and technology. 1995, 55(1): 93-105.
    [147] Hitchon J W, Phillips D C. The dependence of the strength of carbon fibres on length[J]. Fibre Science and Technology. 1979, 12(3): 217-233.
    [148] Beyerlein I J, Phoenix S L. Statistics for the strength and size effects of microcomposites with four carbon fibers in epoxy resin[J]. Composites Science and Technology. 1996, 56(1): 75-92.
    [149] Odom E M, Adams D F. Specimen size effect during tensile testing of an unreinforced polymer[J]. Journal of Materials Science. 1992, 27(7): 1767-1771.
    [150] Rezaifard A H, Bader M G, Smith P A. Investigation of transverse properties of a unidirectional carbon/epoxy laminate: Part-1 Matrix properties[J]. Composites Science and Technology. 1994, 52(2): 275-285.
    [151] Zhou G, Davies G. Characterization of thick glass woven roving/polyester laminates: 1. Tension compression and Shear[J]. Composites. 1995, 26(8): 579-586.
    [152] Zhou G, Davies G. Characterization of thick glass woven roving/polyester laminates: 2. Flexure and statistical considerations[J]. Composites. 1995, 26(8): 587-596.
    [153] Berbinau P J, Wolff E G. Analytical model for prediction of microbuckling initiation in composite laminates[C]. Proceedings of the 11th International Conference on Composties Materials (ICCM 11), Australia: 1997.
    [154] O'Brien T K. Characterisation of delamination onset and growth in a composite laminate[S]. Damage in Composite Materials ASTM STP 775: 1982.
    [155] Wisnom M R. The effect of specimen size on bending strength of unidirectional carbon fibre-epoxy[J]. Composite Structures. 1991, 18(1): 47-63.
    [156] Wisnom M R. Relationship between strength variability and size effect in unidirectional carbon fibre-epoxy[J]. Composites. 1991, 22(1): 47-52.
    [157] Kitano A, Yoshioka K, Noguchi K M J. Edge finishing effects on transverse cracking of cross-ply CFRP laminates[C]. Proceedings of the 9th International Conference on Composties Materials (ICCM 9), Madrid: 1993.
    [158] Lang E J, Chou T W. The effect of strain gage size on measurement errors in textile composite materials[J]. Composites Science and Technology, 1998, 58(3-4): 539-548.
    [159] Bosia F, Gmuer T, Botsis J. Deformation Characteristics of composite laminates part2: an experimental/numerical study on equivalent single-layer theories[J]. Composites Science and Technology. 2002, 62(1): 55-66.
    [160]蒋咏秋,陆逢升,顾志建.复合材料力学[M].西安:西安交通大学出版社, 1990.
    [161]王兴业等.复合材料力学分析与设计[M].长沙:国防科学技术大学出版社,1999.
    [162]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社, 1991.
    [163]陈荣庚.复合材料层合板高附剪切变形理论及其精化单元法研究[D].大连:大连理工大学, 1999.
    [164]傅晓华,陈浩然,王震鸣.复合材料多层厚板精化高阶理论及其有限元法[J].复合材料学报. 1992, 9(2): 39-46.
    [165]李周,刘又成.复合材料性能计算机辅助分析与设计的研究及实现[J].材料工程. 1993(8): 11-14.
    [166]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析[J].力学进展. 1998: 28(2), 173-188.
    [167]邵小军.复合材料中厚板的强度屈曲及机械连接分析[D].西安:西北工业大学, 2005.
    [168] Bogdanovich A E, Deepak B P. Three-dimensional analysis of thick composite plates with multiple layers[J]. Composites Part B. 1997, 28(4): 345-357.
    [169] Yildiz H, Sarikanat M. Finite-element analysis of thick Composite beams and plates[J]. Composites Science and Technology. 2001, 61(12): 1723-1727.
    [170]许树伯.层次分析法原理[M].天津:天津出版社, 1988.
    [171]钱敏,刘坚真,自卫东等.气质联用仪在食品工业中的应用[J].中国调味品. 2009, 34(9): 101-104.
    [172]王莲芬.层次分析法引论[M].北京:中国人民大学出版社, 1989.
    [173]李海静,吴胜明,方均建等.气质联用法测定人血清游离脂肪酸[J].质谱学报. 2009, 30(2): 83-87.
    [174] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analysis Chemistry. 1957, 29(11): 1702-1706.
    [175]吴晓青,李嘉禄,康庄等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J].固体火箭技术. 2007, 30(3): 264-268.
    [176] Assche G V, Hemelrijck A V, Rahier H, et al. Modulated differential scanning calorimetry:non-isothermal cure, vitrification and devitrification of thermosetting systems[J]. Thermochimica Acta. 1995, 268: 121-142.
    [177]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社, 2002.
    [178] Clayton A. Epoxy Resins:Chemistry and Technology[M]. New York: Marcel Dekker inc, 1988.
    [179]刘卓峰,肖加余,曾竟成等.低粘度环氧树脂VIMP工艺性能研究[J].国防科学技术大学学报. 2008, 30(5): 20-24.
    [180]陈萍,李宏运,陈祥宝.铺层方式对增强材料渗透率的影响[J].复合材料学报. 2001, 18(1): 30-33.
    [181] Kris H, Daniela D, Hugo S, et al. New set-up for measurement of permeability properties of fibrous reinforcements for RTM[J]. Composites Part A. 2002, 33(7): 959-969.
    [182] Heardman E, Lekakou C, Bader M G. In-plane Permeability of Sheared Fabrics[J]. Composite Part A. 2001, 32(7): 933-940.
    [183]高国强. RTM成型工艺渗透性和应用技术研究[D].武汉:武汉理工大学, 2001.
    [184]邓育文.复合材料液体模塑成型工艺增强材料渗透性研究[D].武汉:武汉理工大学, 2005.
    [185]杨金水.真空导入模塑工艺树脂流动行为研究[D].长沙:国防科学技术大学, 2007.
    [186]倪爱清,王继辉,朱以文.复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J].复合材料学报. 2007, 24(6): 50-56.
    [187] Ngo N D. Computational developments for simulation-based design: Multi- disciplinary flow/thermal/cure/stress modeling, analysis and validation for processing of composites[D]. Minnesota: University of Minnesota, 2001.
    [188] Mijovi? J, Kim J, Slaby J. Cure kinetics of epoxy formulations of the type used in advanced composites[J]. Journal of Applied Polymer Science. 1984, 29(4): 1449-1462.
    [189] Jenninger W, Schawe J E K, Alig I. Calorimetric studies of isothermal curing of phase separating epoxy networks[J]. Polymer. 2000, 41(4): 1577-1588.
    [190] Bejoy F, Geert V P, Fabrice P, et al. Cure kinetics and morphology of blends of epoxy resin with poly (ether ether ketone) containing pendant tertiary butyl groups[J]. Polymer. 2003, 44(13): 3687-3699.
    [191] Karkanas P I, Partridge I K. Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling [J]. Journal of Applied Polymer Science. 2000, 77(7): 1419-1431.
    [192]邢素丽.装备构件复合材料快速修复用新型环氧固化剂体系研究[D].长沙:国防科学技术大学, 2005.
    [193]尹昌平.共注射RTM制备承载/隔热/防热一体化复合材料[D].长沙:国防科学技术大学, 2009.
    [194] Crane L W. Analysis of Curing Kinetics in Polymer Composites[J]. Journal of Polymer Science. 1973, 11(8): 533-540.
    [195]代晓青,肖加余,曾竟成等.等温DSC法研究RFI用环氧树脂固化动力学[J].复合材料学报. 2008, 25(4): 18-23.
    [196]徐萃薇.计算方法引论[M].北京:高等教育出版社, 1985.
    [197] GB/T 2577-2005:玻璃纤维增强塑料树脂含量试验方法[S].
    [198] ISO 1172-1996: Textile-glass-reinforced plastics-Prepregs, moulding compoundsand laminates-Determination of the textile-glass and mineral-filler- Calcination method[S].
    [199] ISO-527-4-1997 Plastics- Determination of tensile properties- Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites[S].
    [200] Wisnom M R, Jones M I, Cui W. Failure of tapered composites under static and fatigue tension loading[J]. AIAA Journal. 1995, 33(5): 911-918.
    [201] ASTM D2344: Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates[S].
    [202] Bullock R B. Strength ratios of composite materials in flexure and in tension[J]. Journal of Composites Materials. 1974, 8: 200-206.
    [203] Bader M G, Priest A M. Statistical aspects of fibre and bundle strength in hybrid composites[C]. 4th International Conference on Composite Materials, Tokyo: 1982.
    [204] Wisnom M R, Atkinson J W. Reduction in tensile and flexural strength of unidirectional glass fibre-epoxy with increasing specimen size[J]. Composite Structures. 1997, 38(1-4): 405-411.
    [205] Wisnom M R, Khan B, Hallett S R. Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites[J]. Composites Structures. 2008, 84(1): 21-27.
    [206] Whitney J M, Daniel I M, Pipes R B. Experimental Mechanics of Fiber Reinforced Composite Materials[M]. Prentice-hall, 1982.
    [207] Wisnom M R, Hallett S R. The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates[J]. Composites: Part A. 2009, 40(4): 335-342.
    [208]王瑞,陈海霞,郭兴峰,王广峰.层合板复合材料的层间剪切强度评价方法及其改进研究[J].玻璃钢/复合材料. 2004(3): 8-11.
    [209] Sun C T, Zhou S G. Failure of quasi-isotropic composite laminates with free edges[J]. Journal of Reinforced Plastic Composites. 1988: 515-557.
    [210] Phillips H J, Shenoi R A, Lewis S M. Effect of specimen size on the strength scaling of GFRP laminates[J]. Materials Letters. 1994, 21(3-4): 229-238.
    [211] Drapier S, Gardin C, Grandidier J C, et al. Structure effect and microbuckling[J]. Composites Science and Technology. 1996, 56(7): 861-867.
    [212] Hallett S R, Green B G, Jiang W G, et al. An experimental and numerical investigation into the damage mechanisms in notched composites[J]. Composites: Part A. 2009, 40(5): 613–624.
    [213] Green B G, Wisnom M R, Hallett S R. An experimental investigation into the tensile strength scaling of notched composites[J]. Composites: Part A. 2007, 38(3): 867–878.
    [214] Staab G H. Laminar composites[M]. Boston: Butterworth- Heinemann Press,1999.
    [215] Awerbuch J. Notched strength of composite laminates: Predictions and experiments - A review [J]. Journal of Reinforced Plastic and Composites. 1985, 4(1): 3-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700