用户名: 密码: 验证码:
基于等高线特征分析的LiDAR建筑物与道路提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新兴的LiDAR系统可以直接获取地球表面或其上目标三维数据,其“点云”数据形式具有不规则和离散特点,用户需要采取专业的数据处理方法才能获得所需的3-D信息,不同的用途导致各式各样的数据处理方法。
     利用LiDAR '‘点云”数据提取建筑物和道路是目前学界研究的热点,滤波-分割算法(Filtering-Segment, F-S)是通常的提取算法。F-S法分两步进行,第一步是滤波,先采用形态学滤波法或表面估计滤波法,提取数字地面模型(Digital Terrain Model, DTM),然后将LiDAR“点云”数据直接获取的数字表面模型(Digital Surface Model, DSM)与DTM做差,通过预设的高差阈值,将DSM点群分为地面点群和非地面点群;第二步是分割,包括建筑物分割和道路分割。建筑物分割是对非地面点群进行分割,利用建筑物的几何特性或是融合其他信息,如多光谱信息,将植被点群去掉,提取出建筑物;道路分割则是对地面点群进行分割,通常是借助LiDAR所获得的强度信息,将非道路点群,主要是绿地等点群去除,提取出道路。
     目前的F-S算法的弱点主要有三个方面:适用范围、正确率以及实用性。F-S算法大多只适用于平坦的城区,在地形起伏的山区效果不太理想;无论是建筑物分割,还是道路分割,F-S算法的处理结果都会有一些非建筑物或是非道路信息的存在,降低了分割的正确率;实用性主要是针对道路分割,现有的道路分割是以强度信息作为辅助数据,但并非所有的LiDAR系统都可以获得强度信息,当没有强度信息时,算法的实用性就受到限制。
     由此提出基于等高线滤波的分割法(Filtering Based on Contour-Segment, Fc-S)。Fc-S算法首先采用等高线滤波法(Filtering Based on Contour, Fc法)进行滤波,即根据DSM等高线的特征,如闭合性、首尾点距离等,采用阈值法自动提取出属于自然地面的等高线(段),获得初始地面点群;内插地面点群生成初始DTM后,使用迭代逼近法生成最终的(精确的)DTM。利用DSM与DTM之差将LiDAR数据分为地面点群和非地面点群后,采用边缘信息、梯度阈值以及面积阈值等方法从非地面点群中去除植被点群,提取出建筑物点群,并采用迭代逼近的方法对建筑物进行精化;利用目标区光谱信息,从地面点群中提取出道路信息,并进一步利用道路的几何特性去除停车场等与道路光谱信息相近的非道路信息。
     为进一步提高提取建筑物的效率,利用等高线形状分析技术(Contour Shape Analysis, CSA)改进Fc-S算法。CSA算法根据DSM中建筑物等高线的几何形状特征,采用形状分析法直接提取建筑物等高线;然后规则化处理以获取建筑物轮廓线。
     通过美国弗吉尼亚州的Wytheville的实测LiDAR“点云”数据的试验,证明Fc-S法和CSA法都可以适用于地形起伏的山区,且提取的建筑物和道路的正确率较高,新算法的实用性较强。试验对比滤波的代表算法Masaharu表面估计滤波法,证明Fc滤波算法在山区的效率更高;试验对比尤红建、李涛等人的建筑物分割算法,证明Fc-S算法在山区的建筑物分割精度更高;与Fc-S法相比,CSA算法的效率又有进一步的提高,建筑物轮廓信息也更丰富。利用Fc-S法或CSA法提取建筑物存在的不足之处在于,一些小的建筑物没有被提取出来,可能与所取的阈值有关,需要进一步的研究。
In developing LIDAR system, three-dimensional data from earth surface or object can be obtained directly. The LiDAR data, which is shown as point-cloud, has two organizing forms:irregular and dispersed. The three-dimensional (3D) information is obtained by end user with professional methods of data processing. Different purposes require different ways of data processing.
     Extracting buildings and roads from LiDAR point cloud is a hot research topic at present. Generally, the Filtering-Segment (F-S) algorithm is a usual extracting algorithm. The F-S algorithm has two steps. First, the LiDAR data is smoothed by a morphological-based filter or a surface estimation filter to generate the Digital Terrain Model (DTM). The difference between the DTM and the Digital Surface Model (DSM) derived from the LiDAR data may then be classified into ground data and non-ground data by an initial height threshold. Second, the buildings are segmented from the non-ground point clouds by geometric characteristics or fusing other information such as multispectral information, in which vegetation points may be removed for the better extraction of buildings. The roads are segmented from the ground point clouds by usually removing the vegetation canopies via the intensity information of LiDAR.
     At present, there are three weak points in the F-S method, i.e., application scope, accuracy rate and practicality. The F-S method is mostly suitable for the flat area, but not for the mountainous area. In addition, there still is some non-building or non-road data after building or road segmentation using the F-S method, which reduces segmentation accuracy rate. In the existing road-segment algorithms, intensity information is used as accessorial information. But not all Lidar systems can obtain the intensity information. Therefore, when without intensity information, the practicality is strained.
     This paper presents a new segment method which is called the Filtering Algorithm Based on Contour-Segment (Fc-S). First, the Fc-S algorithm is implemented mainly by filtering based on the characteristics of DSM contour, that is, on the basis of the characteristics of DSM contour, such as the closure feature or the distance between the start and end points of the contour line, the contour line which belongs to natural ground is extracted by threshold method automatically, then the initialized ground point cloud is acquired and interpolated to obtain initialized DTM. The refined DTM is generated by an iterative approximation method, i.e., Filtering Based on Contour (Fc). After the point cloud has been classified into the ground-and non-ground point sets, the height threshold, the edge information, the gradient and area threshold value are adopted to remove the vegetation points from the non-ground point cloud, and thus the building point cloud is extracted. The refined building points are obtained by such iterative approximation method. As the object area's spectrum information can be acquired by digital camera, the roads may be extracted from the spectrum information. The parking lot and other areas that have a spectrum similar to that of the road could be removed by the geometric characteristics of road.
     To improve the efficiency of building extraction by the Fc-S algorithm, the Contour Shape Analysis (CSA) is used. Based on the geometric configuration feature of building, the building contours are extracted by the CSA method, and then the building outlines are derived with regular processing.
     The method of Fc-S and CSA are tested with Lidar point cloud from Wytheville County, Virginia of America. The results show that the both methods are suitable for mountainous areas, and a higher accuracy can be achived for building and road extraction. Therefore these methods have better practicability. In the mountainous area, Fc algorithm has more efficiency than the Masaharu's algorithm, Fc-S algorithm for building extraction has more accuracy rate than You Hongjian's and LiTao's algorithm, CSA algorithm has more efficiency and details of building outlines than Fc-S algorithm. However, some small buildings are rejected, which may be related to the chosen threshold. This is an insufficient of Fc-S algorithm and CSA algorithm, which needs farther research.
引文
[1]Rottensteiner F,Trinder J,Clode S,Kubik k. Building Dectection Using LIDAR Data and Multispectral Images[C]. In Digital Image Computing: Techniques and Applications Macquarie University, Sydney, Australia. 2003:p.673-682
    [2]李英成,文沃根,王伟.快速获取地面三维数据的L IDAR技术系统[J].测绘科学,2002.27:p.35-38.
    [3]刘国祥等.InSARDEM的质量评价[J].遥感信息,2000.4:p.7-10.
    [4]何儒云,王耀南,毛建旭.合成孔径雷达干涉测量(InSAR)关键技术研究[J].测绘工程,2007.16:p.53-60.
    [5]Zebker H A,Goldsten R M. Topographic Mapp ing from Interferometric Synthetic Aperture Radar observat ions[J]. Journal of Geophysical Research, 1896.91:p.4993-4999.
    [6]Massonnet D,Briole P,Amaud A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry[J]. Nature,1995.375:p.567-570.
    [7]刘国祥.InSAR应用实例及其局限性分析[J].四川测绘,2005.28:p.139-143.
    [8]周忠谟等.GPS卫星测量原理与应用[M],北京:测绘出版社,1992.
    [9]刘基余等.全球定位系统原理及其应用[M],北京:测绘出版社,1993.
    [10]刘经南,张晓红.激光扫描测高技术的发展与现状[J].武汉大学学报(信息科学版),2003.23:p.132-137.
    [11]隋立春.基于数字图像处理的方法对激光雷达数据进行分析[J].测绘学报,2007 p.244.
    [12]尤红建,苏林.基于机载激光扫描数据提取建筑物的研究现状[J].测绘科学,2005.30:p.114-116.
    [13]Flood M. LIDAR Activities and Research Priorities the Commercial Sector.[C]. In Internatioanal Archives of Photogrammetry and Remote Sensing. Annapolis, Maryland:International Society for Photogrammetry and Remote Sensing. 2001:p.3-7
    [14]李树楷,刘彤,尤红建.机载三维成像系统[J].地球信息科学,2001 p.23-27.
    [15]尤红建,刘彤,刘少创,李树楷.利用3维成像仪快速生成遥感地学编码图像[J].测绘学报,2000.29:p.324-328.
    [16]罗志清等.机载LiDAR技术[J].国土资源信息化,2006:p.20-25
    [17]袁修孝.GPS辅助空中三角测量原理及应用[M],北京:2001.
    [18]Wagner W,et al. From Single-pulse to Full-waveform Airborne Laser Scanner:Potential and Practical Challenges[C]. In International Archives of Photogrammetry and Remote Sensing. Istanbul,Turkey:International Society for Photogrammetry and Remote Sensing.2004:p.201-206
    [19]梁欣廉,张继贤,李海涛.激光雷达数据特点[J].遥感信息,2005.3:p.71-76.
    [20]王之卓.摄影测量原理[M],北京:测绘出版社,1979.
    [21]Ackermann F. Structural changes in Photogrammetry[C]. In Proceedings of 43rd Photogrammetric Week. Stuttgart:Institute of Photogrammetry. 1991:p.9-23.
    [22]杨海全,余洁,秦昆等.基于知识的LIDAR数据地物提取研究[J].测绘通报,2006.12:p.9-11.
    [23]http://www.sbsm.gov.cn/article/gzdt/200809/20080900041151.shtml
    [24]管海燕.高分辨率卫星影像与LiDAR数据的自动建筑物提取[J].测绘科技情报,2008.3:p.2-13.
    [25]Gamba P,Houshmand B. Digital Surface Models and Building Extraction:A Comparison of IFSAR and LIDAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2000.38(4):p.1959-1968.
    [26]朱长青,王耀革,马秋禾,史文中.基于形态分割的高分辨率遥感影像道路提取[J].测绘学报,2004.33(4):p.347-351.
    [27]唐国维,李永军,鹿玲杰.启发式边界跟踪道路图象分割方法[J].大庆石油学院学报,1995,19(3):p.83-86.
    [28]马永刚,张占睦.一种基于知识的航空影像中道路半自动提取方法[J].测绘学院学报,2000.17(1):p.34-37.
    [29]刘吉平 刘军生.IKONOS lm城市图像中道路信息提取方法研究[J]2003,20(9):p.106-108.
    [30]涨荣,王勇,杨榕.TM图像中道路目标识别方法的研究[J].遥感学报,2005p.220-224.
    [31]李利伟,刘吉平,尹作为.基于数学形态学的高分辨率遥感影像道路提取[J]理论研究,2005 p.9-11.
    [32]Heipke C. Semiantomatic Extraction of Roads from Aerial Images[C]. In International Archives of Photogrammetry and Remote Sensing. Munich: International Society for Photogrammetry and Remote Sensing. 1994:p.353-360.
    [33]胡翔云.航空遥感影像线状地物与房屋的自动提取[D].武汉,武汉大学,2001.
    [34]Gruen A,Li H H. Semiautomatic Linear Feature Extraction by Dynamic Programming and LSB-Snakes[J]. Photogramertic Engineering & Remote Sensing,1999.63:p.985-995.
    [35]史文中,朱长青,王昱.从遥感影像提取道路特征的方法综述与展望[J].测绘学报,2001.30:p.257-262.
    [36]傅勇,秦志远,龚菁菁.遥感影像上线状目标自动提取研究现状与思考[J].大地测量与地球动力学,2002,22(2):p.112-115.
    [37]林宗坚,刘政荣.从遥感影像提取道路信息的方法评述[J].武汉大学学报。信息科学版,2003.28:p.90-93.
    [38]Auclair F M,Ziou D,Armenakis C et al. Automated Correction and Updating of Road Databases from High-resolution Imagery[J]. Canadian Journal of Remote Sensing,2001.27:p.76-89.
    [39]Bonnefon R,Dherete P,Desachy J. Geographic Information System Updating Using Remote Sensing Image[J]. Pattern Recognition Letters,2002.23:p. 1073-1083.
    [40]郦苏丹,张翠,王正志.SAR图象中道路检测方法研究[J].宇航学报,2002.23:p.17-24.
    [41]肖志强,鲍光淑,黄继先.融合SAR和TM图像更新GIS道路网络数据[J].测
    绘学报,2006.35:p.46-51.
    [42]陈卫荣,王超,张红.基于特征融合的高分辨率SAR图像道路提取[J].遥感技术与应用,2005,20(1):p.137-140.
    [43]肖志强,鲍光淑.SAR图象中道路网络提取算法研究[J].计算机工程与应用,2004 p.94-96.
    [44]B.Wessel,C.Weidemann,O.Hellwich,W.-C.Arndt. Evalution of Automatic Road Extraction Results Form SAR Imagery[J].2002:p.786-791.
    [45]Tupin F,Mangin J F,et al Nicolas J M Detection of Linear Features in SAR Image:Applicaton to Road Network Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing,1998.36:p.434-453.
    [46]Tupin F,Mangin J F,et al Nicolas J M Detection of Linear Features in SAR Images:Application to Road Network Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing,1998.36:p.434-453.
    [47]R. Huber,K. Lang. Road Extraction from High-Resolution Airborne SAR using Operator Fusion. [C]. In International Geoscience and Remote Sensing Symposium.2001:p.2813-2815.
    [48]Rottensteiner F,Trinder J,Clode S. Data Acquisition for 3D City Models from LIDAR:Extracting Buildings and Roads[C]. In Proceedings of the 25th IEEE International Geoscience And Remote Sensing Symposium Seoul (South Korea).2005:p.521-524
    [49]尤红建,刘彤,李树楷.基于机载三维成像仪快速获取数字地面模型[J].测绘工程,2003.12(2):p.14-16.
    [50]Haugerud R A,Harding D J. Some Algorithms for Virtual Deforestation ( (VDF) of LIDAR Topographic Survey Data[C]. In International Society for Photogrammetry and Remote Sensing:International Archives of Photogrammetry and Remote Sensing.2001:p.211-218
    [51]Hu Y,Tao C V. Hierarchical Recovery of Digital Terrain Models from Single and Multiple Return Lidar Data[J]. Photogrammetry Engineering & Remote Sensing,2005.71:p.425-433.
    [52]Kraus K,Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry & Remote Sensing,1998.53:p.193-203.
    [53]Masaharu H,Ohtsubo K. A Filtering Method of Airborne Laser Scanner Data for Complex Terrain[C]. In International Archives of Photogrammetry and Remote Sensing. Herold.2002.p.165-169
    [54]Akel N A,Zilbeistein O,Doytsher M & Y. Automatic DTM Extraction from Dense Raw LIDAR Data in Urban Areas [C]. In Proceeding of FIG working week Paris,France.2003:p.47-56.
    [55]Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN[C]. In International Society for Photogrammetry and Remote Sensing:International Archives of Photogrammetry and Remote Sensing.2000:p.110-117.
    [56]Sohn QDowman I. Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion.[C]. In International Society for Photogrammetry and Remote Sensing. Graz, Austria:International Archives of Photogrammetry and Remote Sensing.2002:p.336-344.
    [57]Brovelli M A,Cannata M,Longoni U M. Managing and processing LIDAR data within GRASS[C]. In Proceeding of the Open source GIS-GRASS users' conference Italy.2002:p.11-13.
    [58]Elmqvist M. Ground estimation of laser radar data using active shape models [C]. In OEEPE workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models. Stockholm, Sweden,:OEEPE Publication 2001(on CD-ROM).
    [59]Kilian J,Haala N,Englich M. Capture and evaluation of airborne laser scanner data[C]. In International Archives of Photogrammetry and Remote Sensing. Vienna:International Society for Photogrammetry and Remote Sensing.1996:p. 383-388
    [60]Lohmann P,Koch A,Schaeffer M. Approaches to the filtering of laser scanner data[C]. In International Society of Photogrammetry and Remote Sensing. Amsterdam:International Archives of Photogrammetry and Remote Sensing. 2000:p.534-547
    [61]邵怡诚,陈良健.空载光达点云于DEM自动生产与精度评估——使用ISPRS测试资料为例[J].航测与遥测学刊,1995.11:p.1-12.
    [62]Lohmann P,Koch A,Schaeffer M. Approaches to the Filtering of Laser Scanner Data[C]. In International Archives of Photogrammetry and Remote Sensing. Amsterdam.2000:p.540-547
    [63]Sithole G. Filtering of Laser Altimetry Data Using A Slope Adaptive Filer[C]. In International Archives of Photogrammetry Remote Sensing. Annapolis,MD: International Society for Photogrammetry and Remote Sensing.2001:p. 203-210
    [64]Zhang K,Chen S C,et al Withman D. A Progressive Morphological Filter for Removing Nonground Measurement form L IDAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003.41:p.872-882.
    [65]Vosslman G. Slope Based Filtering of Laser Alitmetry[C]. In International Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing.2000:p.203-210
    [66]Axelsson P. Processing of Laser Scanner Data:Algorithms and Applications[J]. ISPRS Journal of Photogrammetry & Remote Sensing,1999.54:p.138-147.
    [67]Bretar F,Chesnier M,et al Roux M. Terrain Modeling and Airborne Laser Data Classification Using Multip le Pass[C]. In International Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing.2004:p.314-319
    [68]Pfeifer N,Stadler P,Briese C. Derivation of Digital Terrain Model in the SCOP+ +Environment[C]. In OEEPEWorkshop on Airborne Laserscanning and Interferometric SAR for Digital ElevationModels. Stockholm.2001.(on CD-ROM).
    [69]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉大学,2002.
    [70]Guo Tao.3D City Modeling Using High-resolution Satellite Image and Airborne Laser ScanningData[D]. The University of Tokyo,2003.
    [71]Maas H G. The Potential of Height Texture Measures for the Segmentation ofAirborne Laserscanner Data[C]. In Proceedings of The 4 th International Airborne Remote Sensing Conference and Exhibition. Ottawa Canada. 1999:p.21-24.
    [72]梁欣廉,张继闲,李海涛.一种应用于城市区域的自适应形态学滤波方法[J]遥感学报,2007.11:p.276-281.
    [73]邵怡诚,陈良健.利用数学形态学方法于高程空间区隔地貌与地物之研究[J].航测与遥测学刊,2003.8:p.1-14.
    [74]Petzold B,Reiss P,Stossel W. Laser Scanning-Surveying and Mapping Agencies are Using a New Technique for the Derivation of Digital Terrain Models[J] ISPRS Journal of Photogrammetry & Remote Sensing,1999 p.95-104.
    [75]Morgan M,Tempfli K. Automatic Building Extraction from Airborne Laser Scanning Data[C]. In International Archives of Photogrammetry and Remote Sensing. Amsterdam:International Society for Photogrammetry and Remote Sensing.2000:p.616-623
    [76]Wack R,Wimmer A. Digital Terrain Models from Airborne Laser Scanner Data:A Grid Based Approach [C]. In International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Graz,Austria:International Society for Photogrammetry and Remote Sensing. 2002:p.293-296
    [77]Akel N,Kremeikeb K et.al. Dense DTM Generalization Aided by Roads Extracted from LiDAR Data[C]. In International Archives of Photogrammetry and Remote Sensing. Enschede, Netherlands:International Society for Photogrammetry and Remote Sensing.2005:p.54-59
    [78]熊娜,程新文.LIDAR数据特点及其滤波分类方法[J].中国水运,2008.8:p.151-154.
    [79]Weidner U. An Approach To Building Extraction From Digital Surface Models[C]. In Internatioanal Archives of Photogrammetry and Remote Sensing. Vienna:International Society for Photogrammetry and Remote Sensing.1996:p. 924-929
    [80]Mayer H. Automatic object extraction from aerial imagery:a survey focusing on buildings[J]. Computer Vision and Image Understanding,1999.74:p. 138-149.
    [81]尤红建,苏林,李树楷.基于扫描激光测距数据的建筑物三维重建[J].遥感技术与应用,2005.20:p.381-385.
    [82]Rottensteiner F,Briese C. A New Method for Building Extraction in Urban Areas from High-Resolution L IDAR Data[C]. In International Archives of Photogrammetry and Remote Sensing. Graz, Austria:International Society for Photogrammetry and Remote Sensing.2002,32(3A):295-301.
    [83]刘修国,张靖,高伟,陈启浩.Lidar点云数据中建筑物的快速提取[J].地球科学——中国地质大学学报,2006.31:p.615-618.
    [84]Brunn A,Weidner U. Extracting Buildings From Digital Surface Models[C]. In Internatioanal Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing.1997:27-34.
    [85]Albarthy A,Bethel J. Heuristic Filtering and 3D Feature Extraction from LIDAR Data[C]. In International Archives of Photogrammetry and Remote Sensing. Graz, Austria:International Society for Photogrammetry and Remote Sensing. 2002:p.9-13
    [86]黄先峰.利用机载LiDAR数据重建3D建筑物模型的关键技术研究[D].武汉,武汉大学,2006.
    [87]朱萍萍,杨艳飞,许捍卫.基于LIDAR数据的建筑物提取和三维重建的研究进展[J].现代测绘,2007.30:p.8-10.
    [88]Vosselman G.,Dijkman S.3D Building Model Reconstruction From Point Clouds and Ground Plans[C]. In International Archives of Photogrammetry and Remote Sensing. Annapolis, Maryland:International Society for Photogrammetry and Remote Sensing.2001:p.37-43
    [89]Vosselman G. Building Reconstruction using Planar Faces in Very High Density Height Data.[C]. In International Archives of Photogrammetry and Remote Sensing,:International Society for Photogrammetry and Remote Sensing. 1999:p.87-92
    [90]Masaharu H,Hasegawa H,Kamiya I. Extraction of Building Shapes from Laser Scanner Data Using Region Segmentation Method[C]. In International workshop on vision-based techniques in visualization and animation. Onuma, Japan:International Society for Photogrammetry and Remote Sensing. 1999:p.37-42
    [91]Morgan M,Habib A. Interpolation of LIDAR data and automatic building extraction[C]. In International Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing. 2002.(on CD-ROM).
    [92]Guo Tao,Yoshifumi Yasuoka. Combining High Resolution Satellite Imagery and Airborne Laser Scanning Data for Generating Bareland and DEM in Urban Areas[C]. In International Workshop on Visualization and Animation Of Landscape. Kunming, China.2002:P.26-28.
    [93]G. Sohn. Extraction Of Buildings from High-resolution Satellite Data and Lidar[C]. In Internatioanal Archives of Photogrammetry and Remote Sensing.Istanbul:International Society for Photogrammetry and Remote Sensing.2004:p.1036-1042.
    [94]Sohn G,Dowman I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[J]. International Journal of Photogrammetry and Remote Sensing,2007.62:p.43-63.
    [95]Huber M,Schickler W,Hinz S,Baumgartner A. Fusion of LIDAR Data and Aerial Imagery for Automatic Reconstruction of Building Surfaces[C]. In 2nd Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. Berlin Germany.2003:p.82-86.
    [96]Rottensteiner F,Jansa J. Automatic Extraction of Buildings From LIDAR Data and Aerial Images[C]. In Internatioanal Archives of Photogrammetry and Remote Sensing. Ottawa 2002:p.569-574
    [97]Liang-Chien Chen,Tee-Ann Teo,Jiann-Yeou Rau et al. Building Reconstruction from LIDAR Data and Aerial Imagery[J]. IEEE International Geoscience and Remote Sensing Symposium,2005.4:p.2846-2849.
    [98]尤红建,张世强.组合CCD图像和稀疏激光测距数据的建筑物三维信息提取[J].光学精密工程,2006.14:p.297-302.
    [99]张栋.基于LiDAR数据和航空影像数据的城市房屋三维重建[D].武汉,武汉大学,2005.
    [100]李涛,岑敏仪.结合影像的LIDAR数据三维建筑物提取[J].测绘科学,2007.32:p.75-76.
    [101]W. Rieger,M. Kerschner,T. Reiter,F. Rottensteiner. Roads and Buildings From Laser Scanner Data Within a Forest Enterprise[C]. In International Archives of Photogrammetry and Remote Sensing. California:International Society for Photogrammetry and Remote Sensing.1999:p.185-191
    [102]C. Hatger, Brenner, C. Extraction of Road Geometry Parameters from Laser Scanning and Existing Databases[C]. In International Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing.2003:p.225-230.
    [103]Clode S,Kootsookos P,Rottensteiner F. The Automatic Extraction Of Roads From LIDAR Data[C]. In International Archives of Photogrammetry and Remote Sensing. Istanbul, Turkey International Society for Photogrammetry and Remote Sensing.2004:p.231-246.
    [104]Akela N A,Zilberstein O,Doytsher Y. A Robust Method Used With Orthogonal Polynomials And Road Network For Automatic Terrain Surface Extraction From LIDAR Data in Urban Areas[C]. In International Archives of Photogrammetry and Remote Sensing:International Society for Photogrammetry and Remote Sensing.2004:p.243-248.
    [105]刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005.30:p.189-193.
    [106jwww.icrest.missouri.edu/Projects/NASA/FeatureExtraction-Buildings/ Building%20Extraction.pdf
    [107]Dougherty E, "An Introduction to Morphological Image Processing", SPIE Optical Engineering Press, Center for Imaging Science Rochester Institute of Technology,1992.
    [108]Masaharu H,Koarai M,Hasegawa H. Utilization of airborne laser scanning in Japan[C]. In Proceedings of SPIE. San Jose, USA.2001:p.81-92.
    [109]贾云得.机器视觉[M],北京:北京出版社,2000.
    [110]章毓晋.图像处理与分析[M],北京:清华大学出版社,1999.180-223.
    [111]王刃,徐青,朱新慧等.用分层稳健线性估计法从机载LIDAR数据中获取DEM[J].测绘科学技术学报,2008.25:p.188-191.
    [112]http://baike.baidu.com/view/94058.htm
    [113]王兆祥等.铁道工程测量[M],北京:中国铁道出版社,2005.
    [114]任自珍,岑敏仪,张同刚,周国清.基于等高线表面估计法的LIDAR数据DEM提取[J].测绘科学,2008.33:p.21-22.
    [115]朱志刚,林学訚,石定机等译.数字图像处理[M],电子工业出版社,2001.423-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700