用户名: 密码: 验证码:
AA5182大型Al-Mg合金铸锭熔铸过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者根据生产现场实际铸造情况,以AA5182大型Al-Mg合金铸锭作为研究对象,采用LHC铸造工艺,对比研究了传统直冷铸造(DC)工艺与低液位铸造(LHC)工艺对铸锭产品质量的影响。探讨了如何优化铝液除氢工艺,以及如何克服铸锭热裂、漏铝缺陷的方法。并通过实际生产应用,创造性地提出了通过优化冷却强度和铸造速度之间的匹配性,降低铸锭表面Mg偏析层厚度的方案。在此基础上,提出了达到低液位铸造工艺的条件。
     与常规尺寸的铸锭相比,大型Al-Mg合金熔炼铸造时存在的难点在于,由于铸锭尺寸规格的增加,导致熔炼过程中熔池深度的增加,铝液搅拌过程困难,熔池内化学成分不均匀。铸造时铸锭轧制面和端面冷却强度不均匀,产生铸造缺陷。本文采用先进的熔炼铸造工艺,克服熔铸过程的难点,优化熔铸过程。获得了合格大型铸锭,满足了生产需求。
     通过对铝液中氢含量以及氧化夹杂物含量的控制,结合Al-Mg合金铝液中Mg含量较高的特点,特别是Mg含量高对铝液氢含量的影响,重点研究了铝液净化过程的工艺特点及方法。首先采用透气塞在保温炉内进行除氢,然后采用铝液精炼系统(LARS),通过对精炼气体Ar预热方式的优化,降低由于气泡热胀冷缩而带来的气泡体积膨胀程度,达到提高除氢效果的目的。另外,通过改进精炼箱箱体几何形状的设计,使精炼气体气泡膨胀程度与箱体截面积增大程度相互匹配,防止气泡相互融合到一起。这样能够提高除氢效果,对于AA5182合金铝液,当入口铝液氢含量小于0.300ml/100g的情况下,除氢效率能够达到50%—60%,铝液中的氢含量控制在0.150ml/100g以下。
     针对铝液中含有的氧化夹杂物,本文采用陶瓷过滤(CFF)系统,采取两片过滤片平行放置的方式,在提高铝液通过量的同时,提高过滤效果。通过加大助燃空气的流量,改善过滤片的预热效果。使用50ppi过滤片的条件下,对于AA5182合金铝液中20μm以上的氧化夹杂物,过滤效率达到70%以上,有效满足了大型Al-Mg合金铸锭的质量要求。
     传统DC铸造工艺条件下,对于大型Al-Mg合金铸锭,Mg偏析层厚度达到5mm左右,增加了铸锭铣削量。本文通过优化铸锭冷却强度和铸造速度,使二者相互匹配,同时在结晶器内表面安装石墨内衬,这样能够在铸造过程中达到低液位铸造的条件,降低铸锭表面的Mg偏析层厚度。采用LHC铸造的条件下,铸锭表面Mg偏析层厚度控制在1.5mm左右,比传统DC铸造生产的铸锭表面Mg偏析层厚度降低60%-70%,优化了铸锭产品质量,降低铸锭表面的铣削量和生产成本。
     通过优化LHC铸造工艺条件,包括铝液液位高度、铝液温度、冷却水流量、铸造速度等参数,本文总结了LHC铸造的优点,特别是对于减少相关铸造缺陷,降低Mg偏析层厚度等方面的作用。在此基础上,本文对相关铸造缺陷,包括热裂、漏铝、冷隔等缺陷进行了研究。通过优化冷却方式,并加强晶粒细化效果,将铸造速度控制在工艺要求的范围,能够有效改善铸锭缺陷,提高铸锭产品质量。
     本文对AA5182大型Al-Mg合金铸锭的熔铸过程,包括合金成分的保证、熔炼铝液的温度以及均匀性、铝液除氢工艺、氧化夹杂物的净化工艺、铸锭质量优化、以及铸造时出现的Mg偏析、热裂、漏铝、冷隔等方面的缺陷进行了详细论述。对于Mg含量高达4.0%-5.0%的AA5182大型Al-Mg合金铸锭的熔铸工艺,进行了有针对性的论述,在实际铸造过程中,具有重要的指导意义。
In the present paper,according to the casting practice,the AA5182 Al-Mg alloy large size ingots were investigated by means of the low metal head casting.The influence of the conventional direct chill(DC) casting and the low metal head casting (LHC) to the ingot quality was discussed.The hydrogen degassing process in the liquid aluminum,the hot crack and the bleed out of the ingot have been discussed.By the means of matching the water cooling rate and the casting speed during the casting practice,Mg segregation layer thickness could be reduced.Based on all above,how to achieve the low metal head casting condition is concluded during the investigation.
     The difficulty of the large ingot was clarified by comparing the large ingot with the small size ingot.Because the size is large,the liquid metal bath is much deeper than the normal melting process.Then the stirring of the liquid metal is more difficult than before and the chemistry uniformity of the liquid metal isn't as good as the normal process.During the casting process,the cooling water on the ingot rolling face and the ingot end face are different.This results in the casting defects.The advanced melting and casting process are investigated to solve the problem and optimize the whole process.The large size ingots quality is good and this meets the requirement of the process.
     By the control of hydrogen content and dross content in the liquid aluminum, together with the influence of the high Mg content to the hydrogen level in the liquid aluminum,the hydrogen degassing process has been discussed.First of all,the porous plugs are used in the holding furnace for hydrogen degassing.Then,with the optimization of the Ar preheating in the liquid aluminum refining system(LARS),the bubble expansion for high temperature of the liquid metal is reduced and the degassing process is optimized.In addition,by the design of the degasser vessel shape, the section of the vessel matches with the bubble expansion.So the bubbles wouldn't be merged with each other.The degassing efficiency could be improved,for AA5182 alloy liquid aluminum,when the entrance hydrogen content is lower than 0.300ml/100g,the hydrogen efficiency could be 50%—60%.And the hydrogen level in the liquid aluminum could be lower than 0.150ml/100g,this meets the requirement of the ingot quality.
     For the inclusion in the liquid aluminum,the ceramic foam filter(CFF) system is applied.With two tiles installed in the filter bowl side by side,the liquid aluminum flow rate and the filtration efficiency could be improved.With the help of increasing the combustion air flow rate,the preheat process is optimized.At the same time,with 50ppi filter tile,for the inclusion size of more than 20 microns,the filtration efficiency could be higher than 70%.
     During the conventional DC casting process,Mg segregation layer thickness is about 5mm in the large size of ingot.The Mg segregation layer affects the ingot quality,the scalping thickness should be more than usual.By the optimization of the water cooling rate and the casting speed,so that they are matched with each other.At the same time the graphite liner is installed inside the casting mold,then the low metal head casting condition is achieved,the Mg segregation layer thickness will be reduced to about 1.5mm.The LHC casting ingot Mg segregation layer thickness is 60%-70% less than the DC casting ingot.The ingot quality is improved and the scalping thickness is reduced.
     By the optimization of the LHC casting process parameters,such as the liquid aluminum level,the temperature of the liquid metal,the cooling water flow rate and the casting speed,the profit of the LHC casting process is investigated.Especially the effect of the LHC casting process to decrease the relative defects and decrease the Mg segregation layer thickness is highlighted.The relative ingot defects during the casting process are investigated,such as the hot crack,the bleed over,the cold folding, and so on.By the optimization of the cooling process,the improvement of the grain refining process,and the suitable casting speed,the defects could be reduced or avoided.Then the quality of the ingot could be improved.
     The whole melting and casting process of the large AA5182 alloy ingot, including the chemistry of the alloy,the melting temperature difference,the liquid aluminum degassing process,the filtration,the optimization of the ingot quality,and the defects of the Mg segregation,the hot crack,the bleed over,and the cold fold have been highlighted.The AA5182 ingots with high Mg content of 4.0%-5.0%are investigated.Especially the specialty during the melting and casting process is discussed in detail.So this thesis will be the guidance to the practice of the AA5182 alloy large ingot.
引文
[1]宋维锡.金属学[M],北京,冶金工业出版社,1988:82-83.
    [2]R.Nadella,D.G.Eskin,Q.Du.Macrosegregation in direct-chill casting of aluminium alloys[J].Progress in Materials Science 53(2008) 421-480.
    [3]安阁英.铸件形成理论[M],北京,机械工业出版社,1992:157-161.
    [4]P D Lee,R C Awood,etc.Modeling of porosity formation in direct chill cast aluminum-magnesium alloys[J].Materials Science and Engineering.2002,A328,213-222.
    [5]王蔼茹,孙忠河.铝熔炼炉的新操作方法[J].铝加工,1995,vol.18,No.3:44-45.
    [6]游文.2011易切削铝合金熔炼铸造工艺[J].铝加工,2003,No.1,vol.148:15-20.
    [7]J.Sengupta,Ph.D.thesis,Department of Materials Engineering,University of British Columbia,Vancouver,Canada,2002.
    [8]J.F.Grandfield,P.T.McGlade,Mater.1996,Forum 20:29-51.
    [9]聂小武.ZL104铝合金熔炼过程中Mg元素的质量控制[J].铸造,2006,No.7:68-70.
    [10]黄汉云.铝合金熔炼Mg的变化和影响[J].江苏冶金,2002,vol.30,No.3:12-14.
    [11]Imabagashi Mamoru.Solubility of Hydrogen in Molten Aluminum[J].Journal of Japen Institute of Light Metals.1995,vol.45,No.12:719-723.
    [12]姚秀军,边秀房,尹奎波.铝镁合金熔体中氢含量的测定[J].特种铸造及有色合金,2005,vol.25,No.5:309-311.
    [13]蒋海燕.铝合金熔体净化工艺[J].特种铸造及有色合金.2001,No.2:48-49.
    [14]Clegg A J.Aluminum Degassing Practices[J].Foundry Trade Journal.1992,No.5:69-79.
    [15]Khorasani A N.Effect of Degassing on Aluminum Silicon Alloys[J].AFS Transactions.1995:515-519.
    [16]曹建峰.ALPUR净化装置[J].轻合金加工技术.1996,No.3:10-12.
    [17]Utigard T A.The Properties and Uses of Fluxes in Molten Aluminum Processing[J].JOM 1998,No.11:38-41.
    [18]张发明.使用SNIF净化装置应注意的几个问题[J].轻合金加工技术.1997,No.12:1-3.
    [19]杨长贺.石墨转子的损坏机理与延长其使用寿命的措施[J].轻合金加工技术.1998,No.1:4-7.
    [20]杨长贺.铝熔体净化用石墨转子涂料的研究[J].特种铸造及有色合金.1999,No.2:7-9.
    [21]Martin B Taylor,eng.,M.Sc,Recent experience with the alcan compact degasser in two plants[J],Light Metals 2000,No.3:779-780.
    [22]Crepeau PN Solid Fluxing Practices for Aluminum Melting[J].Modern Casting,1992,No.7:28-30.
    [23]Utigard T A.The properties and uses of Fluxes in Molten Aluminum processing[J].JOM 1998,No.11:38-41.
    [24]Cochran B P.Flux Practices in Aluminum Melting[J].AFS Transtraction.1992,vol.88:737-742.
    [25]董志敏.铝合金熔液净化技术[J].铸造技术,2000,No.6:13-16.
    [26]Raja R Roy Y S Interfacial Tention between Aluminum Alloy and Molten Salt Flux[J].Materials Transactions,JIM,1997,vol.38,No.6:546-552.
    [27]党惊知.铝合金旋转喷吹技术用于动态小熔池的研究[J].华北工学院学报,1998,No.2:133-137.
    [28]陈忠士.旋转喷射精练铝液时粒子射流特性的模拟研究[J].轻合金加工技术,1997, vol.50.6-9.
    [29]蒋海燕,孙宝德,倪红军.铝合金熔体净化工艺[J].特种铸造及有色合金,2001.No.2:48-49.
    [30]董晟泉,周敬恩.Al-4.5Cu合金热裂倾向的研究[J].兵器材料科学与工程,2003,vol.26:44-47.
    [1]李太宝,郭晶,武玉琴.透气塞对保温炉铝液精炼效果的影响[J].特种铸造及有色合金,2007,vol.27,No.3:221-224.
    [2]刘金陵,姚文桥.6t铝合金熔炼-保温炉系统的设计[J].江苏冶金,2003,vol.31.No.3:36-37.
    [3]姜霖.高效节能铝合金熔炼保温复合炉[J].铸造,1996,No.7:39.
    [4]下村博清.高性能铝熔化炉[J].有色金属加工,2001,vol.165,No.3:4-10.
    [5]聂小武.铝合金熔炼工艺的质量控制[J]。铸造,2006,No.3:75-76.
    [6]许国强,赵飞.LD31铝合金熔炼质量控制技术[J],湖南冶金,2000,No.1:37-39.
    [7]汝继刚,赵英涛,张兆惠等.7050铝合金铸造工艺研究[J],新技术新工艺,1994,No.1:29-30.
    [8]王金钛,金吉琰.保证压铸铝合金熔炼质量的几点经验[J],铸造技术,2007,vol.28,No.12:68-69.
    [9]黄汉云.铝合金熔炼镁的变化和影响[J].江苏冶金.2002,vol.30,No.3:12-14.
    [10]轩敏鑫.一种提高铝合金熔炼质量的方法[J].航空精密铸造技术.1995,vol.31,No.5:43-44.
    [11]王海宝,吴光洁,刘松青.铸造铝合金熔体处理研究[J].铸造技术,2001,No.3:42-46.
    [12]迟福全,王立娟,彭先亮.Na元素对铝合金铸造性能的影响[J],轻合金加工技术,2002,vol.30,No.8:14-16.
    [13]王德满.铝合金熔炼时的化学成分控制[J].轻合金加工技术.2005,vol.33,No.2:22-24.
    [14]李天晓,孙宝德,许振明等.夹杂聚集-铝合金净化新思路[J],材料科学与工艺,1999,vol.7,No.3:30-35.
    [15]段守坤,蒋祖龄.铝合金熔液氧化夹杂物炉前快速检测技术[J].特种铸造及有色合金,1994.No.3:42-43.
    [16]刘功浪、林顺岩、游文等.阳极铝合金熔炼铸造工艺研究[J].铝加工,2000,vol.23,No.6:9-12.
    [17]曾萍.改进铸造工艺,防止母线裂纹[J].世界有色金属,2002,No.12:25-27.
    [18]李庆丰,王利波,于宝义等.工艺参数对间接挤压铸造铝铜合金力学性能及热裂倾向的影响[J].铸造,2006,vol.55,No.12:1271-1274.
    [19]李元元,郭国文,张卫文等.合金元素对Al-Cu合金热裂倾向的影响[J].中国有色金属学报,2001,vol.11,No.5:791-795.
    [20]杨道敏,丁浩,董晓宾等.晶界状态对合金热裂倾向的影响[J].铸造,1996,No.6:41-42.
    [21]党惊知,程军,程眉等.铝硅合金凝固过程中的力学行为和热裂倾向性[J].热加工工艺,1993,No.3:16-18.
    [1]赵建康.铸造合金及其熔炼[M],机械工业出版社,1985:121-122.
    [2]周家荣.铝合金熔炼问答[M],北京:冶金工业出版社,1987:128-129.
    [3]马锡良.铝带坯连续铸轧生产[M],长沙:中南工业大学出版社,1992:89-90.
    [4]安阁英.铸件形成理论[M],北京:机械工业出版社,1992:172-173.
    [5]黄良余,张少宗.铝合金精炼工艺要点和理论原则[J],特种铸造及有色合金,1998,No.2:41-42.
    [6]姚秀军,边秀房,尹奎波.铝镁合金熔体中氢含量的测定[J],特种铸造及有色合金,2005,vol.25,No.5:309-311.
    [7]闫红涛,肖刚.铝熔体除氢工艺研究[J],热加工工艺,2007,vol.36,No.1:29-31.
    [8]P D Lee,R C Awood,etc.Modeling of porosity formation in direct chill east aluminum-magnesium alloys[J].Materials Science and Engineering.2002,A328:217-218.
    [9]R Nedella,Materials Science.2008,vol.53:448.
    [10]Livanov VA,Gabidullin RM,Shepilov VS.Direct-chill casting of aluminium alloys[J].Moscow:Metallurgiya:1977.
    [11]Mohammed M'Hamadi,Asbjorn Mo.On modelling the interplay between microporosity formation and hot tearing in aluminium direct-chill casting.Materials Science and Engineering[J].2005,A413-414:105-108.
    [12]C.Pequet,M.Gremaud,M.Rappaz,Metall.Mater.Trans.33A(2002):2095-2106.
    [13]巫瑞智,倪红军,瞿长生等.铝熔体吹气除氢技术[J].铸造技术,2003,vol.24,No.3:166-167.
    [14]Waite P and Thiffault R.The Alcan Compact Degasser:A Trough-Based Aluminum Treatment Process[J].Light Metals,1996,No.2:1001-1005.
    [15]Waite P and Lavoie S.The Alcan Compact Degasser-Operational Experience and Performance[J].Aluminum Cast House Technology,1997,No.6:143-153.
    [16]Rooy E L.Aluminum and Aluminum Alloys[M].Metals Handbook,1992,vol.15:743-770.
    [17]Ransley C E,Talbot D E J.The Solubility in aluminium and Some Aluminum Alloys[J].Trans.1950,AIME 188:1237-1241.
    [18]Weigel J.Determination of Hydrogen Absorbtion and Desportion Processes in Al-Li Alloy[J].Metall Trans.B,1990:855.
    [19]倪红军.铝合金新型净化熔剂的研究[J].铸造技术,2001,No.1:33-36
    [20]Fu Gaosheng,Kang Jixing,Chen Wenzhe and Qian Kuangwu.Interactive mechanism between inclusions and hydrogen in molten aluminum[J].The Chinese Journal of Nonferrous Metals,1999,S1:56-62.
    [21]Liu H,Bouchard M,Zhang L.An Experimental Study of Hydrogen Solubility in Liquid Aluminum[J].Journal of Materials science,1995,No.10:4309-4315.
    [22]Peter W.A technical perspective on molten aluminum processing[J].Light Metals,2002,No.3:841-848.
    [23]张忠华,边秀房,刘相法.铝熔体除氢过程动力学[J].中国有色金属学报,2000,No.4:217-220.
    [24]李太宝,徐卫国.SIVEX及SNIF SHEER铝液净化方法[J].轻合金加工技术,2004,No.6:36-37.
    [25]巫瑞智,孙宝德等.铝熔体除氢[J].材料科学与工艺,2006,No.2:218-221.
    [26]闫红涛,肖刚.铝熔体中的氢的研究[J].铝加工,2006,No.5:9-12.
    [27]沈桂荣,解起东.铝合金熔模铸造[J].特种铸造及有色合金,2000,No.6:48-50.
    [28]孙德勤,吴文祥,曹春艳.提高铝合金铸锭质量的关键技术[J].中国铝业,2007,No.7:41-44.
    [29]Peter D Waite.Improved Metallurgical Understanding of the ALCAN Compact Degasser After Two Years of Industrial Implementation in Aluminum Casting Plants[J].Light Metals,1998,No.5:791-796.
    [30]王海宝,吴光洁,刘松青.铸造铝合金熔体处理研究[J].铸造技术,2001,No.3:42-45.
    [31]张子才.铝熔体旋转喷吹的除气效果及其对成分的影响[J].铸造,2004,No.2:147-149.
    [32]张映新.Al-Ti和Al-Zr中间合金组织遗传性对铝合金铸造组织的影响[J].轻合金加工技术,1998,vol.26,No.11:11-13.
    [33]钱钰厚.氟钛酸钾在铸铝合金中的应用[J],特种铸造及有色合金,1991,No.5:33-35.
    [34]胥志红,张雅玲,王涛.铝合金熔炼加Zr新工艺[J].轻合金加工技术,1999,vol.27,No.8:13-16.
    [35]李元元.合金元素对Al-Cu合金热裂倾向的影响,有色金属学报,2001,vol.11,NO.5:791-795
    [36]Chu MG.In:Schneider W,editor.Light metals 2002.Warrendale[PA]:TMS;2002.No.1:899-907.
    [37]董晟全,周敬恩,严文等.Al-4.5Cu合金热裂倾向的研究[J].兵器材料科学与工程,2003,vol.26,No.1:44-47.
    [38]Rohit K.Paramatmuni,Keh-Minn Chang,Bruce S.Kang,etc.Evaluation of cracking resistance of DC casting high strength aluminum ingots[J].Materials Science and Engineering,2004,vol.379:293-301.
    [1]R Nedella,Materials Science.2008,vol.53:421-480.
    [2]J Sengupta,etc.Quantification of temperature,stress,for 5182 alloy[J].Materials Science and Engineering.2005,A 397:157-177.
    [3]J.Sengupta,Ph.D.thesis,Department of Materials Engineering,University of British Columbia,Vancouver,Canada,2002.
    [4]J.F.Grandfield,P.T.McGlade,Mater.Forum 20(1996) 29-51.
    [5]林柏年.铸造流变学[M],哈尔滨:哈尔滨工业大学出版社,1991:114-128.
    [6]党惊知,程军.铝硅合金凝固过程中的力学行为和热裂倾向性[J],热加工工艺,1993,No.3:16-18.
    [7]杨道敏,丁浩.晶界状态对合金热裂倾向的影响[J].铸造技术,1996,No.6:41-42.
    [8]朱圣焱,荆涛.铸件热裂预测研究进展[J].大型铸锻件.2007,No.4:1-3.
    [9]周春明,徐建辉.遗传因素对铝铜合金热裂倾向性的影响[J].铸造技术,1999,No.2:46-48.
    [10]刘相法.铝合金组织遗传现象及其利用的研究[J].铸造,1994,No.10:18-23.
    [11]曾萍.改进铸造工艺,防止母线裂纹[J].世界有色金属,2007,No.12:25-27.
    [12]周春明,徐建辉,樊铁船.遗传因素对铝铜合金热裂倾向性的影响[J].铸造技术,1999,No.2:46-48.
    [13]苏亚军.6063铝合金铸锭中心裂纹的成因及对策[J],铝加工,2002,vol.25,No.3:14-15.
    [14]K P Mingard,B Canter.Macro-segregation in aluminum alloy sprayformed billets[J].Acta Mater,2000,vol.48:2435-2443.
    [15]K P Mingard,B Canter.Macro-segregation in aluminum alloy sprayformed billets[J].Acta Mater,2000,vol.48:2448-2449.
    [16]L.C.Prasad,R.N.Singh,V.N.Singh etc.J.Phys.Chem.B,1998,vol.102:921.
    [17]L.C.Prasadl,A.Mikula,Surface segregation and surface tension in Al-Sn-Zn liquid alloys[J].Physica B 2006,vol.373:142-149.
    [18]B C H Venneker,L Katgerman.Mode,ling issues in macrosegregation predictions in direct chill castings[J].Journal of Light Metals,2002,No.2:149-159.
    [19]C.Beckermann.Modeling of macrosegregation:past,present and future[J],in:H.D.Brody,R.Abbaschian,A.Mortensen(Eds.),Merton Flemings Symposium 2000,TMS,Warrendale,PA,2000:297-310.
    [20]E A Vieira,M Ferrante.Prediction of theological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test[J].Acta Materialia,2005,No.53:5379-5386.
    [21]Kopp R,Winning G,Kallweit J,etc.Proceedings of the 6th international conference on the semi-solid processing of alloys and composites;2000:687.
    [22]Christopher J.Vreemana,Frank P.Incroperab.The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys[J].International Journal of Heat and Mass Transfer 43,2000:687-704.
    [23]Young Dong Kwon,Zin Hyoung Lee.The effect of grain refining and oxide inclusion on the fluidity of Al-4.5Cu-0.6Mn and A356 alloys[J].Materials Science and Engineering,2003,A360:372-376.
    [24]A.V.Reddy,C.Beckermann,Simulation of the effects of thermosolutal convection,shrinkage induced flow,and solid transport on macrosegregation and equiaxed grain size distribution in a DC continuous cast Al-Cu round ingot[J],in:V.R.Voller,S.P.Marsh,N. El-Kaddah(Eds.),Materials Processing in the Computer Age Ⅱ,1995:89-102.
    [25]Mark E.Seniw,James G.Conley,Morris E.Fine.The effect of microscopic inclusion locations and silicon segregation on fatigue lifetimes of aluminum alloy A356 castings[J].Materials Science and Engineering.2000,A285:43-48.
    [26]李建超.低频电磁铸造铝合金结晶器材料对磁场的影响[J].特种铸造及有色合金,2005,No.3:133-136.
    [27]Haitao Zhang,Hiromi Nagaumi.Coupled modeling of electromagnetic field,fluid flow,heat transfer and solidification during low frequency electromagnetic casting of 7ⅩⅩⅩ aluminum alloys[J].Materials Science and Engineering,2007,A448:189-203.
    [28]Cao Zhiqiang.Microstructures and mechanical characteristics of electromagnetic casting and DC casting 2024 aluminum alloys[J].Materials Science and Engineering,2002,A327:133-137.
    [1]宋仁国,曾梅光.高强铝合金Mg偏析对晶界结合力和断裂应力的影响[J].东北大学学报,1994,No.2:5-9.
    [2]刘伟杰,张宝金.镁偏析对铝合金晶界性能影响的计算机模拟[J].中国有色金属学报, 2000,No.4:476-479.
    [3]沈桂荣,解起东.铝合金熔模铸造[J].特种铸造及有色合金,2000,No.6:48-50.
    [4]王晓伟,张洪延.Al-Mg合金点焊裂纹的Mg偏析现象研究[J].电子显微学报,2005,No.4:305-306.
    [5]孙德勤,吴文祥,曹春艳.提高铝合金铸锭质量的关键技术[J].中国铝业,2007,No.7:41-44.
    [6]宋维锡.金属学[M],北京,冶金工业出版社,1988:120-123.
    [7]K P Mingard,B Cantor.Macro-segregation in aluminum alloy spray formed billets[J].Acta Mater.2000,vol.48:2435-2449.
    [8]游文.2011易切削铝合金熔炼铸造工艺[J],铝加工,2003,No.1,vol.148:15-20.
    [9]安阁英.铸件形成理论[M].北京:机械工业出版社,1992:162-166.
    [10]谢水生,刘静安,黄国杰.铝加工生产技术[M].北京:化学工业出版社,2006:533-534.
    [11]陈存中.有色金属熔炼与铸造[M].北京:冶金工业出版社,2006,No.2:123-124.
    [12]G Palasantzas,D Agterveld,J Hosson.Electron beam induced oxidation of Al-Mg alloy surfaces[J].Applied Surface Science,2002,No.5:266-272.
    [13]Zheng Li,Wang Guifu,Qu Ming,etc.Characteristics of water cooling system in production line of 25t aluminum alloy melting and casting[J].Light Alloy Fabrication Technology,2006,No.7:12-14.
    [14]Cao Zhiqiang,Jia Fei,Zhang Xingguo,etc.Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys[J].Materials Science &Engineering,2002,vol.327:133-137.
    [15]J Koike,M Mabuchi,K Higashi.Partial melting and segregation behavior in a superplastic Si_3N_4/Al-Mg alloy composite[J].Materials Research Society,1995,No.3:133-138.
    [16]C Lea,C Molinari.Magnesium diffusion,surface segregation and oxidation in Al-Mg alloys [J].Journal of Materials Science,1984,No.7:2336-2352.
    [17]C J Vreeman,J D Scholz,M Krane.Direct Chill Casting of Aluminum Alloys:Modeling and experiments on industrial scale ingots[J].Journal of Hear Transfer,2002,No.10,vol.124:947-953.
    [18]A Ghosh.Segregation in cast products[J].Sadhana,2001,No.2:5-24.
    [19]Haitao Zhang,Hiromi Nagaumi,Yubo Zuo.Coupled modeling of electromagnetic field,fluid flow,heat transfer and solidification during low frequency electromagnetic casting of 7ⅩⅩⅩ aluminum alloys[J].Materials Science & Engineering,2007,vol.448:189-203.
    [20]Lu Guimin,Zhao Dazhi,Wang Ping,etc.Low frequency electromagnetic casting of ZL201alloy and its microstructure after reheating[J].Journal of Northeastern University,2006,vol.27,No.8:871-874.
    [21]Li Jianchao,Ma Yonglin,Wang Baofeng,etc.Effects of structure materials of semicontinuous casting crystallizer for aluminum alloy under low frequency electromagnetic field on magnetic field[J].Special Casting & Non-Ferrous Alloys,2005,No.3:133-134.
    [22]E A Marquis,D N Seidman,M Asta,etc.Mg segregation at Al/Al_3Sc heterophase interfaces on an atomic scale:experiments and computations[J].American Physical Society,2003,vol.91:83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700