用户名: 密码: 验证码:
Al-Fe合金熔体处理及凝固特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Fe合金是一种新型的轻质耐热合金。普通熔铸Al-Fe合金中存在粗大针状和针片状Al_3Fe化合物,割裂基体,极大地降低了合金强度,限制了合金应用。细化组织是提高合金性能最直接最有效的手段,但到目前为止,Al-Fe合金的许多凝固学问题还不甚了解,组织细化有很大困难。为了搞清Al-Fe合金的某些凝固学问题,本文对液态结构转变、组织遗传性、熔体过热处理及合金元素对Al_3Fe化合物的作用机理作了研究。
     Al-5Fe合金加热到1200℃以上,DTA曲线上出现一个显著的吸热峰,这是Al_3Fe化合物熔解所导致;从1300℃冷却到1200℃时,DTA曲线上出现一个显著的吸热峰,这是Al_3Fe化合物析出所导致。研究认为,高熔点Al_3Fe化合物是Al-Fe合金的遗传因子。将合金液过热到1300℃进行激冷可以很大程度上抑制Al_3Fe化合物在液相线温度以上的析出,显著细化最终凝固组织,其原因是Al_3Fe化合物充分熔解,消除了合金的遗传性。经1300℃的熔体过热处理,Al-5Fe合金的抗拉强度有了较大幅度的提高,从未处理时的107MPa提高到145MPa,增长幅度达35.5%。Al-5Fe合金的断裂机制也由熔体处理前的解理断裂变为熔体处理后的部分韧窝断裂加部分解理断裂。
     研究发现,在950℃,Fe在Al液中不是直接溶解,而是先与Al化合形成Al_3Fe化合物,而后Al_3Fe化合物再向Al液中溶解。通过这种方式Fe得以不断地溶解到Al液中。熔炼完毕后,Al-5Fe合金液中含有Al_3Fe化合物。
     1200℃以下的熔体过热处理对Al-5Fe合金中的初生Al_3Fe化合物有较好的细化作用,但细化效果随激冷工艺而有所不同。高低温熔体混合处理效果最佳;加铝铁混合粉末激冷,Fe粉溶解完毕后产生细小的Al_3Fe化合物,可以作为结晶核心,因而效果较好;加铝锭激冷可以保留高温熔体的优良结构,而且不会带入粗大的Al_3Fe化合物,因此效果也较好;加Al-5Fe合金中间合金激冷会带入粗大的Al_3Fe化合物,对合金的结晶起到负面作用,因而细化效果最差。1200℃以下的熔体过热处理不能使初生Al_3Fe化合物完全转变为针点状和颗粒状,是因为高熔点的Al_3Fe化合物未能充分熔解。
     Mg、Cr、Co合金化元素对初生Al_3Fe化合物的生长有重要影响。Mg主要分布在基体和初生Al_3Fe化合物边缘。Mg在初生Al_3Fe化合物边缘的富集抑制了Al_3Fe化合物的择优生长,使其长成块状。Mg富集还能导致成分过冷,如果成分过冷足够大,初生Al_3Fe化合物在成分过冷区内会出现内生形核和内生生长。加入Mg后,部分块状初生Al_3Fe化合物类似沉积岩,表面有波纹,其原因是初生Al_3Fe化合物以层状堆垛方式生长。Cr和Co主要固溶在初生Al_3Fe化合物内,通过原子占位抑制初生Al_3Fe化合物的择优生长,使其长成块状。
     Mg和Mn的复合使初生Al_3Fe化合物长成梅花状、块状或穗状。Mn主要分布在初生Al_3Fe化合物内,有利于初生Al_3Fe化合物长成梅花状和块状;Mg主要分布在基体中,在初生Al_3Fe化合物边缘有轻微富集,有利于初生Al_3Fe化合物长成块状和穗状。由于Mg的抑制作用,穗状初生Al_3Fe化合物中存在缩颈和微裂纹。
     Cr和Mg的复合有利于初生Al_3Fe化合物长成块状。Cr主要分布在初生Al_3Fe化合物内。当Cr含量较低时,由于Mg在初生Al_3Fe化合物边缘富集,阻碍了Cr固溶于初生Al_3Fe化合物内部,削弱了Cr的细化作用:当Cr含量较高时,Mg的阻碍作用不太明显。
     在某些特定条件下,针状或针片状初生Al_3Fe化合物可以长成花朵状或星状。花朵状或星状初生Al_3Fe化合物实际上是侧向具有十个分枝的棒柱状Al_3Fe相的横截面。形成花朵状或星状Al_3Fe相的外因是过冷度。只有当冷却速度或过冷度足够大时,才能产生花朵状或星状Al_3Fe相。形成花朵状或星状Al_3Fe相的内因是(100)和(201)晶面的复合孪生生长。
Al-Fe alloy is a new type of lightweight heat resistant alloy. Thick needle-like and needle plate-like Al_3Fe compound in cast Al-Fe alloy are found in the matrix and greatly reduce the strength of the alloy, wich restricts the applications of the alloy. The refinement of the microstructure is the most effective means of improving the alloy properties. However, many solidification problems of Al-Fe alloy are not well understood. Therefore, the refinement of the microstructure is difficult. In order to understand certain solidification problems, the liquid transformation, the heredity of microstructure, melt overheating treatment and the effect of alloying elements on the growth of Al_3Fe compound have been investigated in this thesis.
     A remarkable endothermic peak occurs on DTA curve when Al-5Fe alloy is heated above 1200℃. The reason is because of the fusion of Al_3Fe compound. A remarkable exothermicl peak occurs on DTA curve when Al-5Fe alloy is cooled from 1300℃to 1200℃, which is due to the precipitation of Al_3Fe compound. The result indicates that the dystectic Al_3Fe compound are the genetic genes. Overheating the liquid Al-5Fe alloy to 1300℃and chilling subsequently can greatly retard the precipitation of Al_3Fe compound above the liquidus temperature and markedly refine Al_3Fe compound, which is because the Al_3Fe compound is melted thoroughly and their heredity is eliminated. The melt overheating treatment at 1300℃can enhance the tensile strength of Al-5Fe alloy from 107MPa before treatment to 145MPa after treatment, increased by 35.5%. the fracture mechanism of Al-5Fe alloy changes from cleavage fracture before treatment to part dimple fracture and part cleavage fracture.
     The experimental results show that at 950℃pure Fe element does not directly dissolve in liquid Al, but combines with Al and forms Al_3Fe compound, then Al_3Fe compound dissolve in liquid Al. In this way, Fe continuously dissolves in liquid Al. Al_3Fe compound are present in liquid Al-5Fe alloy at normal smelting temperature.
     Overheating treatment below 1200℃has a good effect on the morphology of primary Al_3Fe compound. However, the refinement effects vary from chilling processes. The refinement effect of high temperature and low temperature melt treatment is the best; the dissolution of Fe in liquid Al produces fine Al_3Fe cpmpounds which serve as crystalline nuclei, so the refinement of chilling in Al&Fe powders mixture is better; chilling in Al ingots fixes the superior structure of high temperature melt and does not introduce the thick Al_3Fe cpmpounds, hence, the refinemet is also better; chilling in Al-5Fe master alloy introduces the thick Al_3Fe cpmpounds and aggravates the crystalline, therefore, the refinement is worst. The morphology of primary Al_3Fe compound can not change into needle spot-like and grain-like after melt overheating treatment below 1200℃because dystectic Al_3Fe compound are not entirely melted.
     The alloying elements of Mg, Cr and Co have an important effect on the growth of primary Al_3Fe compound. The majority of Mg distributes in the matrix and around primary Al_3Fe compound. The enrichment of Mg around primary Al_3Fe compound restrains the preferential growth of Al_3Fe and causes the formation of grain-like primary Al_3Fe compound. The enrichment of Mg also gives rise to the constitutional undercooling. If the undercooling is enough, the endogeny nucleation and endogeny growth of primary Al_3Fe compound occur in the constituent undercooling zone. After addition of Mg, a part of grain-like Al_3Fe compound with ripples on their surfaces look like stratified rocks. The reason may be that the Al_3Fe compound grows in the mode of lamellar stacking. Cr and Co distribute mainly inside Al_3Fe compound. They suppress the preferential growth of Al_3Fe compound by means of atom occupation space. Therefore, the block-like Al_3Fe compound forms.
     The combination of Mg and Mn produces the blossom-like, block-like or fringe-like Al_3Fe compound. Mn is advantageous to the formation of blossom-like and block-like Al_3Fe compound, but Mg to the formation of fringe-like Al_3Fe compound. Necking and tiny cracks are present in fringe-like Al_3Fe compound due to the suppression of Mg.
     The combination of Cr and Mg is advantageous to the formation of block-like Al_3Fe compound. Cr mainly exists inside Al_3Fe compound. When the content of Cr is low, the dissolution of Cr in Al_3Fe compound is hindered by the affluence of Mg around Al_3Fe compound, which impairs the refinement of Cr. However, the hindrance of Mg is not evident when the amount of Cr is high.
     Needle-like or needle plate-like Al_3Fe compound may be the flower-like or star-like at some specific conditions. The nature of flower-like or star-like Al_3Fe compound is the transverse profiles of rod Al_3Fe compound whose sides have ten branches. The external reason of the formation of flower-like or star-like Al_3Fe compound is the undercooling. Only when the cooling rate or undercooling is enough high does flower-like or star-like Al_3Fe compound occur. The another reason, i.e., the intrinsic reason, is the multiple twinning of (100) and (201) of Al_3Fe compound.
引文
[1]Abdre L.Heredity in cast iron.The Iron Age,1927,(6):960-967.
    [2]#12
    [3]#12
    [4]下地光雄著.郭淦钦译.液态金属.北京:科学出版社,1987.
    [5]边秀房,刘相法,马家骥.铸造合金遗传学.济南:山东科学技术出版社,1999.
    [6]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究:(博士学位论文).北京:北京科技大学,1995.
    [7]坚增运.净化和熔体温度处理对铝合金凝固过程、组织和性能的影响:(博士学位论文).西安:西北工业大学,1995.
    [8]张林,边秀房,马家骥.铝硅合金的液相结构转变.铸造,1995,(10):7-12.
    [9]李培杰,桂满昌,贾均.Al-16%Si合金熔体的电阻率及其结构遗传.铸造,1995,(9):15-20.
    [10]李涛,黄卫东,林鑫.半固态处理中球晶形成与演化的直接观察.中国有色金属学报,2000,10(5):635-639.
    [11]李培杰.铝硅合金熔体的物性及结构遗传:(博士学位论文).哈尔滨:哈尔滨工业大学,1995.
    [12]Zhang K,Zhang Y Z,Liu G J et al.Structure evolution of nondendritic AlSi7Mg alloy during reheating.Trans.Nonferrous Met.Soc.China,1999,9(3):553-556.
    [13]王广厚.团簇物理的新进展.物理学进展,1994,14(2):121-171.
    [14]蔡英文,范新会,李建国等.原子簇在熔体晶体生长中的作用.西北工业大学学报,1996,14:323-324.
    [15]李如生.非平衡热力学和耗散结构.北京:清华大学出版社,1986.
    [16]Kita Y,Van Zytveld J B,Movrita Z et al.Covalendy in liquid transition-Metal Si alloys.J.phys.:Condens Matter.1994,(6):811-820.
    [17]#12
    [18]#12
    [19]王伟民,边秀房,秦敬玉.Al-Si16%合金的过热温度与结晶行为.机械工程学报,1999,35(3):16-19.
    [20]边秀房,李辉,张林等.Pb-Sb合金液相线上方的异常区.科学通报,1996,41(13):1237-1240.
    [21]陈光,颜银标,催鹏等.熔体过热对Sb-Bi合金凝固组织的影响.材料科学与工艺,2001,9(2):113-116.
    [22]耿兴国,陈光,傅恒志.熔体过热对定向凝固界面形态稳定性的影响.金属学报,2002,38(3):225-229.
    [23]桂满昌,李庆春,贾均.液态过热对亚共晶Al-Si合金凝固组织与凝固过程的影响.特种铸造及有色合金,1995,(1):5-8.
    [24]桂满昌,贾均,李庆春.Al-Cu合金液态过热处理的研究.材料工程,1995,(2):16-19.
    [25]桂满昌,贾均,李庆春.液态过热对高硅Al-Si合金组织和性能的影响.航空材料学报,1996,16(1):26-31.
    [26]张蓉,沈淑娟,刘林.过热处理对Al-Si过共晶合金耐磨性能的影响.摩擦学学报,2000,20(5):344-347.
    [27]陈忠伟,介万奇.熔体过热对Al-7%Si-0.5%Mg合金的显微组织和力学性能的影响.铸造,2001,50(12):724-727.
    [28]坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理.中国有色金属学报,1995,5(4):133-135.
    [29]关绍康,沈宁福,石广新.熔体预处理对过共晶Al-Si合金组织及性能的影响.郑州工业大学学报,1999,20(2):5-7.
    [30]常方娥,坚增运,严文.熔体温度处理对Al-25%Si合金显微组织的影响.西安工业学院学报,2000,20(1):39-42.
    [31]何树先,孙宝德,王俊等.熔体温度处理工艺对A319合金组织和性能的影响.中国有色金属学报,2001,11(5):834-839.
    [32]叶春生,宋俊杰,张心平等.不同成分铝硅合金熔体混合对初生硅相细化的研究.铸造,2002,51(3):145-147.
    [33]耿浩然,马家骥,王拥军.高强度铸造铝合金的熔体过热处理.中国有色金属学报,1994,4(4):73-77.
    [34]耿浩然,马家骥.Zn-Al系铸造合金熔炼新工艺.铸造,1996,(1):13-17.
    [35]边秀房,张国华,赵生旭.熔体处理对Al-Si合金铁相形貌的影响.特种铸造及有色合金,1992,(4):19-21.
    [36]潘冶,孙国雄.铝合金中铁相形态控制及对性能的影响.特种铸造及有色合金,1993,(5):1-3.
    [37]王建华,易丹青,陈康华等.熔铸工艺对2618合金中Al_9FeNi相形态的影响.中国有色金属学报,2001,11(4):206-210.
    [38]Mondolfo L F 著,王祝堂,张振录,郑璇译.铝合金的组织和性能.北京:冶金工业出版社,1988.
    [39]Yoneyama N,Mizoguchi K,Kumai S et al.Plastic formation of Al_(13)Fe_4 particles in Al-Al_(13)Fe_4 by high-speed compression.Materials Science and Engineering,2003,A350:117-124.
    [40]Adam C M,Hogan L M.the Aluminium-iron eutectic system.J.Austral.Inst.Met.,1972,17:81-90.
    [41]Mcleod A J,Hogan L M,Adam C Met al.Growth mode of the aluminium phase in Al-Si and Al-Al_3Fe eutectics.J.Crystal Growth,1973,19:301-309.
    [42]Adam C M,Hogan L M.Crystallography of the Al-Al_3Fe eutectic.Acta.Metall.,1975,123(3):345-354.
    [43]Jones H,Hughes I R.Coupled eutectic growth in Al-Fe alloys.J.Mater.Sci.,1976,11:1781-1793.
    [44]马冰,李荣德,李英民等.二元铝铁合金凝固过程的差热分析研究.铸造,1999(3):5-8.
    [45]Hollingsworth E H,Frank G R,Willet R E.Identification of a new Al-Fe constituent,FeAl_6.Trans.Met.Soc.AIME.,1962,224:188-189.
    [46]Liang D,Jones H.The effect of growth velocity on growth temperature of the Al-Al_3Fe and Al-Al_6Fe eutectics.Z.Metallkd.,1992,83:224-226.
    [47]Liang D,Korgul P,Jones H.Composition and solidification microstructure selection in the interdendritic matrix between primary Al_3Fe dendrites in hypereutectic Al-Fe alloys.Acta.Mater.,1996,44(7):2999-3004.
    [48]Liang D,Jones H.Morphologies of Primary Al_3Fe in Bridgeman solidification and TIG weld transversing ofhypereutectic Al-Fe alloys.Mater.Sci.Eng.,1993,A173:109-114.
    [49]Liang D,Jie W,Jones H.The effects of growth velocity on primary spacing of Al_3Fe dendrites in hypereutectic Al-Fe alloys.J.Cryst.Growth.,1994,135:561-564.
    [50]Liang D,Jones H.The dependence of growth temperature on growth velocity for primary Al_3Fe in steady state solidification of hypereutectic Al-Fe alloys.Scripta.Metall.Mater.,1991,25:2855-2859.
    [51]Liang D,Jones H.The dependence of growth temperature on alloy concentration for primary Al_3Fe in steady state solidification of Al-Fe alloys.Scirpta.Metall.Mater.,1993,28:7-10.
    [52]Liang D,Gilgien P G,Jones H.Effect of silicon alloying additions on growth temperature and primary spacing of Al_3Fe in Al-8%Fe alloy.Scirpta.Metall.Mater.,1995,32(10):1513-1518.
    [53]Dutta B,Rettenmar M.Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys.Materiasl Science and Engineering,2000,A283:218-224.
    [54]Christian J,Simensen,Ramasamy V.Determination of phase present in cast material of an Al-0.Swt%Fe-0.2wt%Si alloy.Z.Metallkde.,1977,68:428-431.
    [55]Anantha N,Samuel F H,Gruzleski J E.Crystallization behavior of iron-containing intermetallic compound in 319 aluminum alloy.Metall.Mater.Trans.A.,1994,25A(8):1761-1773.
    [56]Couture A.Iron in aluminum casting alloys-a literature survey.AFS Inter.Cast Met.J.,1981,12:9-17.
    [57]Anne L.Precipitation of primary particles in Al-Mn-Fe alloys-experiments and simulation.Z.Metallkde,1990,81(7):484-489.
    [58]黄积荣.铸造合金相图谱.北京:机械工业出版社,1980.
    [59]李述军.铝铁合金凝固特性的实验研究与数值模拟:(硕士学位论文).沈阳:沈阳工业大学,1999.
    [60]李荣德,李述军,于海朋等.定向凝固条件下Al-2.0%Fe共晶合金中Al_3Fe相的生长过程.机械工程学报,2000,36(6):82-85.
    [61]Han Y,Ban C Y,Guo S Jet al.Alignment behavior of primary Al_3Fe phase in Al-Fe alloy under a high magnetic field.Materials Letters,2007,61:983-986.
    [62]Ehrstrom J C,Pineau A.Mechanical properties and microstructure of Al-Fe-X alloys.Materials Science and Engineering,1994,A186:55-64.
    [63]Loucif K,Vigier G,Merle P.Microstructural stability of rapidly quenched Al-Fe-Mo alloys.Mater.Sci.Eng.,1995,Al90:187-192.
    [64]Strfanlay V,Lendvai A,Turmezey T.Microstructure and properties of a RS/PM Al-Fe-Co alloy.Journal of Materials Science,1996,31:3763-3768.
    [65]Li P Y,Yu H J,Chai S C et al.Microstructure and properties of rapidly solidified powder metallurgy Al-Fe-Mo-Si alloys.Scripta Materialia,2003,49:819-824.
    [66]Audebert F,Mendive C,Vidal A.Structure and mechanical behavior of Al-Fe-X and Al-Ni-X rapidly solidified alloys.Materials Science and Engineering,2004,A375-377:1196-1200.
    [67]Yaneva S,Kalkanh A,Petrov K et al.Structure development in rapidly solidified Al-Fe-V-Si ribbions.Materials Science and Engineering,2004,A373:90-98.
    [68]Chen Y C,Fine M E,Weertman J R.Macrostructure evolution and mechanical properties of rapidly solidified Al-Zr-V alloys at high temperature.Acta Metall.Mater.,1990,38(5):771-780.
    [69]Park S I,Han S Z,Chol S K et al.Phase equilibrium of Al_3(Ti,V,Zr) intermetallic system.Sci.Metall.,1996,34(11):1697-1704.
    [70]You B S,Park W W.Age hardening phenomena and microstructure of rapidly solidified Al-Ti-Si and Al-Cr-X alloys.Scripta Materialia,1996,34(2):201-205.
    [71]Skinner D J,Bye R L,Raybould D.In enhanced properties in structure metals by RS.ASM,1986,291-295.
    [72]Skinner D J,Bye R L,Raybould D.Dispersion strengthen Al-Fe-V-Si alloys.Scripta Metallurgica,1986,20:867-872.
    [73]高文宁,张永昌.快速凝固耐热铝合金的现状与发展.材料导报,1994(3):17-21.
    [74]董寅生,沈军.快速凝固耐热铝合金中的弥散相及其热稳定性.宇航材料工艺,2000(2):3-8.
    [75]Subhash C K,Alan L Y,Michael J K.Creep and microstructural stability of dispersion strengthened Al-Fe-V-Si-Er alloy.Materials Science and Engineering,1993,A167:11-21.
    [76]肖于德,黎文献,李松瑞等.稀土元素对AlFeVSi合金性能和组织的影响.中南工业大学学报,1998,29(5):10-14.
    [77]Xiao Y D,Li S R,Li W X et al.Microstructures and mechanical properties of rapidly solidified AlFeCrZrVSi alloy and their thermal stability.Trans.Nonfer.Met.Soc.China,1998,8(3):9-14.
    [78]Kim I S,Kim N J,Nam S W.Temperature dependence of the optimum particle size for the dislocation detachment controlled creep of Al-Fe-V-Si/SiC_p composite.Scripta Metalliugical,1995,32(11):1813-1814.
    [79]Ma Z Y,Pan J,Ning X G et al.Aluminum borate whisker reinforced Al-8.5Fe-1.3V-1.7Si composite.Journal of Materials Science Letters,1994,13:1731-1732.
    [80]马宗义,宁小尧.晶须增强Al-8.5Fe-1.3V-1.7Si复合材料及晶须增强效果评价.金属学报,1994,30(9):420-425.
    [81]Peng L M,Zhu S J,Ma Z Y et al.High temperature creep deformation of Al_(18)B_4O_(33)whisker-reinforced 8009Al composite.Materials Science and Engineering,1999,A256:63-70.
    [82]Sutherland T J,Hoffman P B,Gibeling J C.The influence of SiC particles on fatigue cracks propagation in a rapidly solidified Al-Fe-V-Si alloy.Metallurgical and Materials Transaction,1994,25(11):2453-2460.
    [83]Zambon A,Badan B,Maddalena A.Production microstructural and mechanical characterization of spray formed Al-6wt%Fe alloy and pre-mixed Al-6wt%/SiC_p composite.Materials Science and Engineering,2004,A375-377:645-650.
    [84]Yoshikawa N,Hattori A,Taniguchi S.Growth rates and microstructures of reacted layer between molten Al-Fe alloy and SiO_2.Materials Science and Engineering,2003,A342:51-57.
    [85]Vecoglu M L,Seryanarayana C,Nix W D.Identification of precipitation phases in a mechanically alloyed rapidly solidified Al-Fe-Ce alloy.Metall.Mater.Trans.A,1996,27A(4):37-42.
    [86]Liang G X,LI Z M,Wang E D et al.Hot hydrostatic extrusion and microstructures of mechanically alloyed Al-4.9Fe-4.9Ni alloy.Journal of Materials Processing Technology,1995,55:37-42.
    [87]李志民,梁周宽,李志超等.机械合金化AI-Fe-Ni亚微晶合金的性能及热稳定性.中国有色金属学报,1995,5(4):102-106.
    [88]Huang B,Ishihara K N,Shingu P H.Metastable phase of Al-Fe system by mechanical alloying.Materials Science and Engineering,1997,A231:72-79.
    [89]村田清,高田正毅,中田毅等.遠心鑄造法によゐAl-Fe合金の組織と耐摩耗性铸物,1992,64:537-542.
    [90]付正义.梯度功能材料的研究.复合材料学报,1992,9(1):23-27.
    [91]唐新峰.具有应力缓和功能的梯度材料的特性评价技术.材料科学与工程,1993,11(1):31-33.
    [92]张宝升,陈洪升,林伯年等.离心铸造制备Al-Fe系金属间化合物梯度功能材料的组织及耐磨性的研究.铸造,1994,(1):1-5.
    [93]徐自立,杨光照,魏伯康等.离心铸造Al-10%Fe合金的梯度行为.热加工工艺,1994(6):5-7.
    [94]杨光照,魏伯康,徐自立等.离心铸造铝铁基梯度功能材料的组织形态及控制.特种铸造及有色合金,1997(2):11-14.
    [95]王渠东,金俊泽,尹衍生.覆砂金属型离心铸造Al-Fe合金自生梯度复合材料.铸造,1998(10):16-20.
    [96]李荣德,徐玉桥,马冰等.离心铸造合金凝固过程中的固相迁移运动.中国有色金属学报,2000,10(3):353-357.
    [97]Li RD,Ma B,Xu Y Q.Numerical model of solidification process in binary Al-Fe alloy under centrifugal casting.Transactions of Nonferrous Metals Society of China,2000,10(5):614-618.
    [98]马冰.二元铝铁合金在离心力场作用下的凝固特性研究:(硕士学位论文).沈阳:沈阳工业大学,1999.
    [99]Senkov O N,Froes F H,Stolyarov V V et al.Microstructure of aluminum-iron alloys subjected to severe plastic deformation.Scripta Materialia,1998,38(10):1511-1516.
    [100]Senkov O N,Froes F H,Stolyarov V V et al.Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging.Nanostructured Materials,1998,10(5):691-698.
    [101]Tcherdyntsev V V,Kaloshkin S D,Gunderov D V et al.Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation.Materials Science and Engineering,2004,A375-377:888-893.
    [102]Yoneyama N,Mizoguchi K,Kumai S et al.Plastic deformation of Al_(13)Fe_4 particles in Al-Al_(13)Fe_4by high-speed compression.Materials Science and Engineering,2003,A350:117-124.
    [103]Black P J,Cundall J A.The structure of liquid aluminum-iron.Acta Crst.,1966,20:417-424.
    [104]#12
    [105]秦敬玉,边秀房,王伟民.铝铁合金熔体的微观多相结构.中国科学(E),1998,28(2):97-102.
    [106]秦敬玉,边秀房,王伟民.液态亚共晶铝铁合金结构因子的预峰.科学通报,1998,43(13):1445-1450.
    [107]Qin J Y,Bian X F,Sliusarenko S I et al.Pre-peak in the structure factor of liquid Al-Fe alloy.J.Phys.Condens.Matter.,1998,10:1211-1218.
    [108]Wang L,Cong H R,Bian X F.Medium-range order in liquid Al_5Fe_2 alloy.Materials Science and Engineering,2003,A341:197-201.
    [109]丛红日,边秀房,李辉等.液态Al_(80)Fe_(20)合金的中程有序结构.物理化学学报,2002,18(1):39-44.
    [110]李辉,边秀房,刘相法等.金属间化合物Al_3Fe熔体结构的温度变化特性研究.化学学报,1999.57:775-781.
    [111]Sakata I F,Langenbeck S L.PM aluminum alloy in place of titanium based on elevated temperature aluminum alloy for aerospace applications.Aerospace Engineering,1984(3-4):152-161.
    [112]Nack J,Kim D H.Light materials for transportation systems.JOM.,1994(12):44-47.
    [113]刘相法,边秀房,刘玉先等.铝合金中相形态的遗传性及球化机制的研究.金属学报,1997,33(10):1062-1068.
    [114]张蓉,曹秋芳,庞述先等.Al-Si过共晶合金中初生硅的溶解动力学.中国有色金属学报,2000,10(1):89-91.
    [115]傅恒志,刘林,方晓华等.镍基高温合金中MC碳化物生长规律的研究.西北工业大学学报,1987,(5):279-287.
    [116]虞觉奇,易文质,陈邦迪等.二元合金状态图集.上海:上海科学技术出版社,1987.
    [117]钦佩,张未名,李重河等.过渡金属元素金属间化合物的形成规律.稀有金属,1994,18(4):315-317.
    [118]李辉,边秀房,刘相法等.金属间化合物Al_3Fe熔体结构的温度变化特性研究.化学学报,1999,57:775-781.
    [119]王焕荣,叶以富,王伟民.二元铁合金液态结构与特性的研究进展.铸造,2000,49(4):200-212.
    [120]Black P J,Cundall J A.The structure of aluminum-iron alloys,Acta Crst,1966,20:417-424.
    [121]Waseda Y.The structure of non-crystalline materials,liquid,amorphous solid.McGraw-hill:New York Press,1980.
    [122]Kita Y,Van Zytveld J B,Movrita Z et al.Covalency in liquid transition-metal Si Alloys.J Phys:Condens Matter,1994,(6):811-820.
    [123]曾大新,苏俊义,陈勉己.固态金属在液态金属中的熔化和溶解.铸造技术,2000,(1):33-36.
    [124]Zhang K,Zhang Y Z,Liu G J et al.Structure evolution of non-dendritic AlSi7Mg alloy during reheating.Trans Nonferrous Met Soc China,1999,9(3):553-556.
    [125]关绍康,汤亚力,沈宁福.熔体热历史对快凝铝铁基合金显微组织不均匀性的影响.航空学报,1994,15(11):1395-1397.
    [126]桂满昌,宋广生,贾均等.Al-18%Si过共晶合金熔体结构特征及磷的影响.金属学报,1995,31(4):177-182.
    [127]Kanibolotsky D S,Bieloborodova O A,Kotova N V et al.Enthalpy of mixing in liquid Al-Fe-Si alloys at 1750K.Thermochimica Acta,2003,408:1-7.
    [128]崔忠圻.金属学与热处理.北京:机械工业出版社,2002.
    [129]李月珠.快速凝固技术和材料.北京:国防工业出版社,1993.
    [130]《铸造有色合金手册》编写组.铸造有色合金手册.北京:机械工业出版社,1978.
    [131]陆书荪,顾开道,郑来苏.有色合金及其熔炼.北京:国防工业出版社,1983.
    [132]Gustafsson G,Thorvaldsson T,Dunlop G L.The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloy.Metallurgical Transactions A.1986,17A(1):45-52.
    [133]祝汉良,贾均,边秀房.添加剂及硫元素对ZL108合金中铁相形态的影响.特种铸造及有色合金,1996,(4):5-7.
    [134]胡汉起.金属凝固.北京:冶金工业出版社,1985.
    [135]廖恒成,丁毅,孙国雄.Sr对近共晶Al-Si合金中α枝晶生长行为的影响.金属学报,2002,38(3):245-249.
    [136]Carbonneau Y,Couture A,Van Neste et al.On the observation of a new ternary MgSiCa phase in Mg-Si alloys.Metallurgical and Materials Transactions A,1998,29A(7):1759-1763.
    [137]王家炘,黄积荣,林建生.金属的凝固及其控制.北京:机械工业出版社,1983.
    [138]李荣德,周振平,白彦华等.Mg对铸造Al-10%Fe合金初生富铁相形貌的影响.机械工程学报,2003,39(5):32-35.
    [139]Tiller W A.Recent Research on Cast Iron.New York:Gordon&Breach,1969.
    [140]Louis E,Mora R,Pastor J.Nature of star-shaped clusters of FeAl_3 in aluminum-iron alloys.Metal Science,1980,12:591-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700