用户名: 密码: 验证码:
挤压铸造Al-5.0Cu合金中富铁相形成特点及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强韧的铸造Al-Cu合金广泛应用于航空航天和交通运输等领域。铁是该合金中难以避免但对合金性能危害最大的杂质元素。为了实现Al-Cu合金的高性能,杂质元素铁的含量往往控制非常严格(一般低于0.15%),导致该合金材料的成本大幅上升,同时也限制了回收铝合金的大量使用。因此,采用先进工艺提高Al-Cu合金中杂质Fe的允许含量,成为开发高性能、低成本铝铜合金材料的重要途径之一。
     本文采用挤压铸造与Mn中和变质工艺相结合,利用光学显微镜(OM)、定量金相分析、扫描电子显微镜(SEM)、X射线衍射分析(XRD)、差热扫描分析(DSC)、电子探针(EPMA)、透射电子显微镜(TEM)、液淬、深腐蚀等手段研究了挤压铸造铝铜合金中富铁相的形成特点以及Mn含量、Fe含量、挤压压力和热处理对合金室温和高温力学性能的影响,并取得以下结果:
     当铁含量从0.1%增加到1.5%,铸态Al-5.0Cu-0.6Mn合金中的富铁相由-Fe(Al15(FeMn)3(CuSi)2)和β-Fe (Al7Cu2(FeMn))逐渐变为Al6(FeMn)和Al3(FeMn)。无论是挤压铸造还是重力铸造,铸态合金的伸长率随着Fe含量增大逐渐降低,但合金的抗拉强度在铁含量为0.5%附近存在峰值。这主要是由于少量的汉字状富铁相有利于强度的提高,而对塑性不利。T5热处理后,直接从液相中形成的β-Fe相很稳定,依然呈针状形貌,而汉字状的-Fe、Al6(FeMn)相和针状Al3(FeMn)转变成了一种新的富铁相(CuFe)-(Al7Cu2(FeMn))。无论是挤压铸造还是重力铸造,当铁含量从0.1%增加到1.5%,T5热处理态合金的力学性能逐渐下降。富铁相导致热处理态挤压铸造Al-5.0Cu-0.6Mn合金力学性能下降的原因是富Cu的(CuFe)相大量形成,消耗了基体中的部分Cu和Mn,导致基体中强化相减少和晶粒尺寸增大。挤压压力从0MPa增加到75MPa时,不同铁含量合金的伸长率增加近2倍。挤压铸造合金力学性能明显优于重力铸造合金,尤其是合金的伸长率,这主要与压力导致孔洞减少,(Al)枝晶和第二相细化,针状富铁相减少有关。
     研究了不同Fe含量Al-5.0Cu-0.6Mn合金的高温力学性能。随着拉伸温度的升高,不同Fe含量Al-5.0Cu-0.6Mn合金的抗拉强度、屈服强度都显著地降低,而伸长率都显著地增大。随着Fe含量增大,合金的抗拉强度和屈服强度都显著降低。随着压力的增大,各合金的力学性能都得到了一定程度的提升,尤其是合金的伸长率。然而随着温度的升高,挤压压力对合金强度的提升变得不明显。
     研究了不同Mn/Fe比对Al-5.0Cu-0.5Fe合金组织和力学性能的影响。铸态Al-5.0Cu-0.5Fe合金中的富铁相包括汉字状的AlmFe,-Fe, Al6(FeMn),以及针状的-Fe。对于重力铸造合金,当Mn/Fe比为1.6时,铸态合金获得最佳的综合力学性能,这主要是由于所有针状β-Fe都转变成为了汉字状-Fe,铸造缺陷最少。对于挤压铸造合金,Mn/Fe比仅需0.8,所有针状β-Fe都转变成为了汉字状-Fe。合金经过T5热处理后,汉字状的AlmFe,-Fe和Al6(FeMn)相转变成了一种新的汉字状的富铁相(CuFe)。T5热处理态Al-5.0Cu-0.5Fe合金的最合适Mn/Fe比不仅取决于合金中富铁相的形貌以及铸造缺陷,还与热处理后的(Al)枝晶尺寸以及(Al)基体里面的θ’相和T(Al20Cu2Mn3)相数量有关。
     研究了铝铜合金凝固过程中富铁相的形成特点。当Fe含量在0.1-1.5%范围内变化时,β-Fe、AlmFe、-Fe、Al6(FeMn)、Al3(FeMn)都有可能成为铝铜合金中的主要富铁相,这取决于合金中不同Mn含量、Fe含量和挤压压力。Mn含量的增加将促进-Fe相的形成,同时抑制AlmFe和β-Fe的形成。液淬试验发现,铝铜合金中首先形成的富铁相为AlmFe、Al6(FeMn)和Al3(FeMn)相。AlmFe和Al3(FeMn)容易在低Fe(低于0.5%)和低Mn(低于0.2%)含量的合金中形成,Al6(FeMn)容易在高Mn(大于0.4%)含量的合金中形成,凝固结束后将部分或全部转变为β-Fe或-Fe。在高铁含量(大于0.5%)的Al-5.0Cu-0.6Mn合金中,Al6(FeMn)和Al3(FeMn)相作为合金中主要稳定富铁相存在。挤压压力可以促进汉字状富铁相AlmFe、-Fe和Al6(FeMn)相的形成,抑制或减少针状β-Fe和Al3(FeMn)相的形成,这主要是由于高的冷却速度以及不同富铁相的晶体结构。挤压压力可以促进富铁相的形核,同时降低合金的扩散系数,从而抑制富铁相的长大。挤压压力提高了-Fe和AlmFe的形成温度,同时降低了β-Fe的形成温度。
     研究了铝铜合金固溶处理过程中富铁相特征的演变规律,发现固溶温度、固溶时间和挤压压力都将促进AlmFe、Al6(FeMn)、-Fe和Al3(FeMn)相向β-Fe的转变。新形成的β-Fe易于在-Fe,Al6(FeMn)、AlmFe和Al3(FeMn)与(Al)界面处形核,并沿富铁相长大。
The Al-Cu cast alloys with high strength and toughness are widely used in the aerospaceand transportation industry. The impurity of Fe is inevitable and considered to be the mostdetrimental to mechanical properties. The Fe content is strictly controlled (mostly below0.15%) in order to get high performance properties. This will make the alloys expensive toproduce and limit the use of recycled aluminum alloys. Finding an advanced process toincrease the allowable Fe content of Al-Cu alloys has been became an important way todevelop low cost aluminum alloys with high performance.
     In this study, the Al-Cu alloys are prepared by combining squeeze casting and Mnmodification. Various test techniques, including optical microscopy (OM), image analysis,scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanningcalorimeter (DSC),water quenching, deep etched technology, electron probemicro-analyzer (EPMA) and transmission electron microscopy (TEM) are used to examinethe formation of Fe-rich intermetallics in squeeze cast Al-Cu alloys and the effect of Mn andFe content, applied pressure and heat treatment on microstructures and mechanical propertiesat room and elevated temperature of the alloys. The experimental results are as followed:
     When the Fe content increases from0.1wt%to1.5wt%, the Fe-rich intermetallics ofas-cast Al-5.0Cu-0.6Mn alloys are-Fe (Al15(FeMn)3(CuSi)2) and β-Fe (Al7Cu2(FeMn)) inlow Fe content, while it will change into Al6(FeMn) and Al3(FeMn) in high Fe content. Theelongations of gravity die cast and squeeze cast alloys decreases gradually with increasing theFe content and there is a peak value of ultimate strength and yield strength for the alloy with0.5wt%Fe. The reason is that the small Chinese-script Fe-rich intermetallics in low Fecontent alloys are useful to improve the alloy strength through second phase hardening,although these brittle second intermetallics will cause a reduction in ductility. The elongationof the alloys with different Fe content increases more than2times when the applied pressureincreases from0MPa to75MPa. The improvement of mechanical properties is due to theporosity reduction,(Al) dendrite refinement and the decreasment of intermetallics. Thechemical composition and the needle-like shape of β-Fe (Al7Cu2Fe) solidified from the Alalloy melt have no change after T5heat treatment. However, the Chinese script-Fe,Al6(FeMn) and needle-like Al3(FeMn) transform partially to a new Chinese script (CuFe)-Al7Cu2(FeMn). When the Fe content increases from0.1wt%to1.5wt%, the mechanicalproperties of both the gravity die cast and squeeze cast alloys decrease gradually with increasing of Fe content. The Fe-rich intermetallics leads to the decrease of mechanicalproperties due to the increase amount of (CuFe), decrease of precipitation particles in (Al)matrix and the increase of (Al) dendrite size. The elongation of the alloys with different Fecontent increases more than2times when the applied pressure increases from0MPa to75MPa. The squeeze cast alloys with different Fe contents have superior mechanical propertiescompared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity,the refinement of Fe-rich intermetallics and (Al) dendrite and the decrease of needle-likeFe-rich intermetallics.
     The mechanical properties at elevated temperature of Al-5.0Cu-0.6Mn alloys with differentFe content have been investigated. The ultimate tensile strength and yield strength ofAl-5.0Cu-0.6Mn alloys with different Fe content decrease with incresing the tensiletemperature, while the elongation increases obviously. The ultimate tensile strength and yieldstrength of Al-5.0Cu-0.6Mn alloys with different Fe content decrease with the incresing theFe contetn. The mechanical properties at different temperature increase with increasingapplied pressure, especially the elongation. However, the increasment becomes slightly whenthe temeperature increases.
     The effect of Mn/Fe ratio on the microstructure and mechanical properties has been studied.The Fe-rich intermetallics, which may present in Al-5.0Cu-0.5Fe alloys with different Mn/Feraito, including Chinese script AlmFe,-Fe, Al6(FeMn), and needle-like-Fe. The optimalMn/Fe mass ratios is1.6for the best mechanical properties when the applied pressure is0MPa due to the needle-like β-Fe is completely converted to the Chinese script-Fe and theminimum volume percent of prosity. Only Mn/Fe mass ratio of0.8is needed for the completeconvert of β-Fe phase to-Fe phase when the applied pressure is75MPa. After T5heattreatment, the Chinese script AlmFe,-Fe and Al6(FeMn) transform to a new Chinese script(CuFe). The optimal Mn/Fe ratio for the best mechanical properties of heat-treated alloy isdetermined by the morphology of Fe-rich intermetallics, volume fraction of θ’ and T(Al20Cu2Mn3), size of (Al) dendrite and porosity.
     The formation of Fe-rich intermetallics during solidification of Al-Cu alloys has beenstudied. When the Fe content varies from0.1%to1.5%, β-Fe, AlmFe,-Fe, Al6(FeMn) andAl3(FeMn) are all possible to be the dominant Fe-rich intermetallic phases in the solidifiedmicrostructure of Al-Cu alloys, depending on different Mn, Fe contents and applied pressures.The Mn addition will promote the formation of-Fe and prevent the formation of AlmFe andβ-Fe. The primary Fe-rich intermetallics which formed from the Al alloy melt are AlmFe,Al6(FeMn) and Al3(FeMn) through observing the microstructures of the water quenched specimens. AlmFe and Al3(FeMn) preferably precipitates in low Mn (below0.2%) and Felevels (below0.5%) alloys. Al6(FeMn) preferably forms at high Mn (above0.4%) contentalloys, they will partly or completely change into β-Fe or-Fe, respectively, aftersolidification. In the Al-5.0Cu-0.6Mn alloys with high Fe content (above1.0%), theAl6(FeMn) and Al3(FeMn) are considered to be the dominate stable Fe-rich intermetallics.The applied pressure is favor to the formation of Chinese script Fe-rich intermetallics AlmFe、
     -Fe and Al6(FeMn) and prevents the precipitate of needle-like β-Fe and Al3(FeMn) becausethe high cooling rate and the growth rate of the Fe-rich intermetallics with different crystalstructure. The applied pressure will promote the nucleation rate of Fe-rich intetmetallics anddecrease the diffusion coefficient of elements, which leads to growth inhibition of Fe-richintermetallics. The formation temperature increases for-Fe and AlmFe but decreases forβ-Fe with the increase of applied pressure.
     The evolution of Fe-rich intermetallics characteristics during solution heat treatment (SHT)of Al-Cu alloys has been studied. It is found that the SHT temperature and time, the appliedpressure promote the transformation of AlmFe、Al6(FeMn)、-Fe and Al3(FeMn) to new β-Fe.The new β-Fe preferentiallynucleates various points on the interface between the AlmFe,-Fe,Al6(FeMn), Al3(FeMn) and the (Al) matrix, then grows into the Fe-rich intermetallics.
引文
[1] Bakavos D., Prangnell P.B., Bes B., et al. The effect of silver on microstructuralevolution in two2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8temper[J]. Materials Science and Engineering: A,2008,491(1):215-223
    [2] Zeren M. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mgalloys[J]. Journal of Materials Processing Technology,2005,169(2):292-298
    [3]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属,2006,30(2):197-202
    [4]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术,2005,33(2):1-9
    [5]刘伯操.铸造手册第3卷:铸造非铁合金[M].北京:机械工业出版社,2002:88
    [6] Gesing A, Berry L, Dalton R, et al. Assuring continued recyclability of automotivealuminum alloys: grouping of wrought alloys by color, X-ray absorption and chemicalcomposition-based sorting[J]. TMS2002Annual Meeting: Automotive Alloys andAluminum Sheet and Plate Rolling and Finishing Technology Symposia,2002:3-17.
    [7]郦剑,黄立萍.人类第一架飞机曲轴箱的铝合金时效硬化[J].国外金属热处理,1997,18(1):38-40
    [8] Hornbogen E. Hundred years of precipitation hardening[J]. Journal of Light Metals,2001,1(2):127-132
    [9] Polmear I. Light alloys: from traditional alloys to nanocrystals[M]. London:Butterworth-Heinemann,2005:106-107
    [10]李德成,刘玉贤.高强铸造铝合金A-U5GT及其应用[J].铸造,1998,(11):35-36
    [11] Tiryakio lu M., Campbell J. Ductility, structural quality, and fracture toughness ofAl-Cu-Mg-Ag (A201) alloy castings[J]. Materials Science and Technology,2009,25(6):785-789
    [12] Tiryakio lu M., Staley Jr J.T., Campbell J. The effect of structural integrity on thetensile deformation characteristics of A208-T71alloy castings[J]. Materials Science andEngineering: A,2008,487(1):383-387
    [13]贾泮江,陈邦峰. ZL205A合金高强优质铸件在大飞机上的应用[J].材料工程,2009,2009(1):77-80
    [14] Zhang M., Zhang W., Zhao H., et al. Effect of pressure on microstructures andmechanical properties of Al-Cu-based alloy prepared by squeeze casting[J].Transactions of Nonferrous Metals Society of China,2007,17(3):498-501
    [15]李元元,郭国文.合金元素对Al-Cu合金热裂倾向的影响[J].中国有色金属学报,2001,11(5):791-795
    [16] Ghomashchi M.R., Vikhrov A. Squeeze casting: an overview[J]. Journal of MaterialsProcessing Technology,2000,101(1):1-9
    [17]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京:化学工业出版社,2007:1
    [18] Hajjari E., Divandari M. An investigation on the microstructure and tensile properties ofdirect squeeze cast and gravity die cast2024wrought Al alloy[J]. Materials&Design,2008,29(9):1687-1689
    [19] Souissi S., Amar M.B., Bradai C. Microstructure characterization and tensile propertiesof direct squeeze cast and gravity die cast2017A wrought Al alloy[J]. InternationalJournal of Material Forming,2013,6(2):249-254
    [20] Evans W.J., Yen C.M. Aluminum casting alloy for high strength/high temperatureapplications[P]. USA, US5120372A,1992
    [21]郭国文,陈维平,李元元,等.新型高强韧Al-5.0Cu系合金的挤压铸造[J].特种铸造及有色合金,2003,(z1):205-205
    [22]李彦霞,倪东惠,赵海东,等.不同压力下挤压铸造Al-5.0Cu合金的组织与性能[J].铸造,2006,54(8):765-766
    [23] Dai W., Wu S., Lü S., et al. Effects of rheo-squeeze casting parameters onmicrostructure and mechanical properties of AlCuMnTi alloy[J]. Materials Science andEngineering: A,2012,538:320-326
    [24] Crepeau P.N. Effect of Iron in Al-Si Casting Alloys: A Critical Review[J]. Transactionsof the American Foundrymen's Society,1995,103:361-366
    [25] Mondolfo L.F. Aluminum alloys: structure and properties[M]. London: Butterworths,1976:253-266,576,635
    [26] Cao X., Campbell J. Morphology of β-Al5FeSi phase in Al-Si cast alloys[J]. MaterialsTransactions,2006,47(5):1303-1312
    [27] Phillips H.W.L. Annotated equilibrium diagrams of some aluminium alloy systems[M].London: Institute of Metals,1959:196-203
    [28] Dinnis C.M., Taylor J.A., Dahle A.K. As-cast morphology of iron-intermetallics inAl-Si foundry alloys[J]. Scripta Materialia,2005,53(8):957-958
    [29] Lu L., Dahle A.K. Iron-rich intermetallic phases and their role in casting defectformation in hypoeutectic Al-Si alloys[J]. Metallurgical and Materials Transactions A,2005,36(13):819-835
    [30] Hwang J.Y., Doty H.W., Kaufman M.J. The effects of Mn additions on themicrostructure and mechanical properties of Al-Si-Cu casting alloys[J]. MaterialsScience and Engineering: A,2008,488(1):498-504
    [31] Shabestari S.G. The effect of iron and manganese on the formation of intermetalliccompounds in aluminum–silicon alloys[J]. Materials Science and Engineering: A,2004,383(2):289-298
    [32] Lyakishev N.P. Phase diagrams of binary metallic systems[M]. Moscow:Mashinostroenie,1997:160-163
    [33] Backerud L., Chai G., Tamminen J. Solidification Characteristics of Aluminum Alloys.Vol.2. Foundry Alloys[J]. American Foundrymen's Society,1990,1990:266
    [34] Talamantes-Silva M.A., Rodríguez A., Talamantes-Silva J., et al. Effect of solidificationrate and heat treating on the microstructure and tensile behavior of an aluminum-copperalloy[J]. Metallurgical and Materials Transactions B,2008,39(6):911-919
    [35] Talamantes-Silva M.A., Rodriguez A., Talamantes-Silva J., et al. Characterization of anAl-Cu cast alloy[J]. Materials Characterization,2008,59(10):1435-1439
    [36] Tseng C. Effects of Fe and Mn contents on mechanical properties of A206alloy[D].TaiBei: National Central University,2002
    [37] Tseng C., Lee S., Wu T., et al. Effects of Fe content on microstructure and mechanicalproperties of A206alloy[J]. Materials Transactions Jim,2000,41(6):70813
    [38] Tseng C., Lee S., Tsai S., et al. Effects of manganese on microstructure and mechanicalproperties of A206alloys containing iron[J]. Journal of Materials Research,2002,17(09):2243-2250
    [39] Sigworth G.K. An improved A206alloy for automotive suspension components[J].USCAR, Final Report for AMD305,2002
    [40] Sigworth G., Major F. Factors influencing the mechanical properties of B206alloycastings [J]. Light Metals,2006,4:795
    [41] Liu K., Cao X., Chen X.G. Solidification of Iron-Rich Intermetallic Phases inAl-4.5Cu-0.3Fe Cast Alloy[J]. Metallurgical and Materials Transactions A,2011,42(7):2005-2016
    [42] Kamga H.K., Larouche D., Bournane M., et al. Solidification of aluminum-copper B206alloys with iron and silicon additions[J]. Metallurgical and Materials Transactions A,2010,41(11):2845-2855
    [43] Kamga H.K., Larouche D., Bournane M., et al. Mechanical properties ofaluminium-copper B206alloys with iron and silicon additions[J]. International Journalof Cast Metals Research,2012,25(1):17-25
    [44] Liu K., Cao X., Chen X.G. Formation and phase selection of iron-rich intermetallics inAl-4.6Cu-0.5Fe cast alloys[J]. Metallurgical and Materials Transactions A,2013,44(2):682-695
    [45] Liu K., Cao X., Chen X.G. Precipitation of iron-rich intermetallic phases inAl-4.6Cu-0.5Fe-0.5Mn cast alloy[J]. Journal of Materials Science,2012,47(10):4290-4298
    [46] Liu K., Cao X., Chen X.G. A new iron-rich intermetallic-AlmFe phase inAl-4.6Cu-0.5Fe cast alloy[J]. Metallurgical and Materials Transactions A,2012,43(4):1097-1101
    [47] Couture A. Iron in aluminum casting alloys--a literature survey[J]. American FoundrySociety International Cast Metal Journal,1981,(6):9-17
    [48] Taylor J.A. The effect of iron in Al-Si casting alloys:35th Australian Foundry InstituteNational Conference[C], Adelaide, Australia,2005.
    [49] Moustafa M.A. Effect of iron content on the formation of β-Al5FeSi and porosity inAl-Si eutectic alloys[J]. Journal of Materials Processing Technology,2009,209(1):607-610
    [50] Ceschini L., Boromei I., Morri A., et al. Effect of Fe content and microstructuralfeatures on the tensile and fatigue properties of the Al-Si10-Cu2alloy[J]. Materials&Design,2012,36:522-528
    [51] Wang E.R., Hui X.D., Chen G.L. Eutectic Al-Si-Cu-Fe-Mn alloys with enhancedmechanical properties at room and elevated temperature[J]. Materials&Design,2011,32(8):4333-4340
    [52] Wang E.R., Hui X.D., Wang S.S., et al. Improved mechanical properties in cast Al-Sialloys by combined alloying of Fe and Cu[J]. Materials Science and Engineering: A,2010,527(29):7878884
    [53] Seifeddine S., Johansson S., Svensson I.L. The influence of cooling rate and manganesecontent on the β-Al5FeSi phase formation and mechanical properties of Al-Si basedalloys[J]. Materials Science and Engineering: A,2008,490(1):387-390
    [54] Bonsack W. Discussion on the effect of minor alloying elements on aluminum castingalloys[J]. ASTM Bulletin,1943,124:41-51
    [55] Chadwick H. Hot Shortness of Al5.5%Cu Alloy[J]. Cast Metals,1991,4(1):367-374
    [56] Kamga H.K., Larouche D., Bournane M., et al. Hot tearing of aluminum-copper B206alloys with iron and silicon additions[J]. Materials Science and Engineering: A,2010,527(27):7413-7423
    [57] Dinnis C.M., Taylor J.A., Dahle A.K. Interactions between iron, manganese, and theAl-Si eutectic in hypoeutectic Al-Si alloys[J]. Metallurgical and Materials TransactionsA,2006,37(11):3283-3291
    [58] Huang H.J., Cai Y.H., Cui H., et al. Influence of Mn addition on microstructure andphase formation of spray-deposited Al-25Si-xFe-yMn alloy[J]. Materials Science andEngineering: A,2009,502(1):118-125
    [59] Mahta M., Emamy M., Daman A., et al. Precipitation of Fe rich intermetallics in Cr-andCo-modified A413alloy[J]. International Journal of Cast Metals Research,2005,18(2):73-79
    [60] Gustafsson G., Thorvaldsson T., Dunlop G.L. The influence of Fe and Cr on themicrostructure of cast Al-Si-Mg alloys[J]. Metallurgical Transactions A,1986,17(1):47-52
    [61] Tan Y., Lee S., Lin Y. Effects of Be and Fe additions on the microstructure andmechanical properties of A357.0alloys[J]. Metallurgical and Materials Transactions A,1995,26(5):1197-1205
    [62]印飞,杨江波,王亦新,等.锰和铍对铝硅合金中铁相的影响[J].铸造,2000,11:829-831
    [63] Tan Y., Lee S., Lin Y. Effects of Be and Fe content on plane strain fracture toughness inA357alloys[J]. Metallurgical and Materials Transactions A,1995,26(11):2937-2945
    [64] Suárez-Pe a B., Asensio-Lozano J. Influence of Sr modification and Ti grain refinementon the morphology of Fe-rich precipitates in eutectic Al-Si die cast alloys[J]. ScriptaMaterialia,2006,54(9):1543-1548
    [65] Haro-Rodríguez S., Goytia-Reyes R.E., Dwivedi D.K., et al. On influence of Ti and Sron microstructure, mechanical properties and quality index of cast eutectic Al-Si-Mgalloy[J]. Materials&Design,2011,32(4):1867-1871
    [66]祝汉良,边秀房.添加剂及硫元素对ZL108合金中铁相形态的影响[J].特种铸造及有色合金,1996,(4):7-7
    [67] Ashtari P., Tezuka H., Sato T. Modification of Fe-containing intermetallic compoundsby K addition to Fe-rich AA319aluminum alloys[J]. Scripta Materialia,2005,53(8):937-942
    [68] Sreeja Kumari S.S., Pillai R.M., Rajan T., et al. Effects of individual and combinedadditions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanicalproperties of Al-7Si-0.3Mg-0.8Fe alloy[J]. Materials Science and Engineering: A,2007,460:561-573
    [69] Khudokormov D.N., Galashko A.M., Lekakh S.N. Effect of modification on the form ofiron-rich inclusions in aluminum alloys[J]. Russian Casting Production,1975,5:198
    [70]孙常明.利用稀土改善富铁铝合金组织和性能的研究[D].呼和浩特:内蒙古工业大学,2007
    [71] Samuel F.H., Samuel A.M., Ouellet P., et al. Effect of Mg and Sr additions on theformation of intermetallics in Al-6wt pct Si-3.5wt pct Cu-(0.45) to (0.8) wt pct Fe319-type alloys[J]. Metallurgical and Materials Transactions A,1998,29(12):2871-2884
    [72] Caceres C.H., Taylor J.A. Enhanced ductility in Al-Si-Cu-Mg foundry alloys with highSi content[J]. Metallurgical and Materials Transactions B,2006,37(6):897-903
    [73] Liu K., Cao X., Chen X.G. Effect of Mn, Si, and cooling rate on the formation ofiron-rich intermetallics in206Al-Cu cast alloys[J]. Metallurgical and MaterialsTransactions B,2012,43(5):1231-1240
    [74] Wang J., He S., Sun B., et al. Effects of melt thermal treatment on hypoeutectic Al–Sialloys[J]. Materials Science and Engineering: A,2002,338(1):101-107
    [75] Jie W., Chen Z., Reif W., et al. Superheat treatment of Al-7Si-0.55Mg melt and itsinfluences on the solidification structures and the mechanical properties[J].Metallurgical and Materials Transactions A,2003,34(3):799-806
    [76]王建华,易丹青.熔铸工艺对2618合金中Al9FeNi相形态的影响[J].中国有色金属学报,2001,11(2):208-210
    [77]王建华,易丹青.熔体过热处理对2618铝合金力学性能的影响[J].机械工程材料,2002,26(9):22-24
    [78] Apelian D., Shivkumar S., Sigworth G.K. The influence of molten metal processing onmechanical properties of cast Al-Si-Mg alloys[M]. Drexel: Univsity of Philadelphia Pa,1990:811-824
    [79] Dong J.X., Karnezis P.A., Durrant G., et al. The effect of Sr and Fe additions on themicrostructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy[J].Metallurgical and Materials Transactions A,1999,30(5):1341-1356
    [80] Maeng D.Y., Lee J.H., Won C.W., et al. The effects of processing parameters on themicrostructure and mechanical properties of modified B390alloy in direct squeezecasting[J]. Journal of Materials Processing Technology,2000,105(1):198-203
    [81] Griger A., Stefánia V., Lendvai A., et al. Possible modification of cast structure bycontinuous casting technology in AlFeSi alloys Part III: Intermetallic phases[J].Aluminium,1989,65:10
    [82] Gustafsson G., Thorvaldssons T., Dunlop A.L., et al. The influence of Fe and Cr on themicrostructure of cast Al-Si-Mg alloys[J]. Metallurgical and Materials Transactions A,1986,17A:47-52
    [83] Narayanan L.A., Samuel F.H., Gruzleski J.E. Dissolution of iron intermetallics in Al-Sialloys through nonequilibrium heat treatment[J]. Metallurgical and MaterialsTransactions A,1995,26(8):2161-2174
    [84] Murgas L., Homonnay Z., Nagy S., et al. Investigation of phase transformation in anai-0.58wt pct Fe alloy by M ssbauer spectroscopy[J]. Metallurgical Transactions A,1988,19(2):259-264
    [85] Griger A., Stefániay V., Kovács-Csetényi E., et al. Formation and transformation ofbinary intermetallic phases in high purity Al-Fe alloys[J]. Key Engineering Materials,1991,44:17-30
    [86] Pannaray S., Wisutmethangoon S., Plookphol T., et al. Microstructure evolution duringsolution heat treatment of semisolid cast2024aluminum alloy[J]. Advanced MaterialsResearch,2011,339:715-717
    [87] Alexander D., Greer A.L. Solid-state intermetallic phase tranformations in3XXXaluminium alloys[J]. Acta Materialia,2002,50(10):2571-2583
    [88] Li Y.J., Arnberg L. A eutectoid phase transformation for the primary intermetallicparticle from Alm(Fe, Mn) to Al3(Fe, Mn) in AA5182alloy[J]. Acta Materialia,2004,52(10):2947-2952
    [89] Li Y.J., Arnberg L. Evolution of eutectic intermetallic particles in DC-cast AA3003alloy during heating and homogenization[J]. Materials Science and Engineering: A,2003,347(1):130-135
    [90] Mukhopadhyay A.K. On the nature of the Fe-bearing particles influencing hardanodizing behavior of AA7075extrusion products[J]. Metallurgical and MaterialsTransactions A,1998,29(13):979-987
    [91] Yao J.Y., Taylor J.A. Characterisation of intermetallic particles formed during solutiontreatment of an Al-7Si-0.4Mg-0.12Fe alloy[J]. Journal of Alloys and Compounds,2012,519:60-66
    [92] Elsharkawi E.A., Samuel E., Samuel A.M., et al. Effects of Mg, Fe, Be additions andsolution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al-7Si-Mgalloys[J]. Journal of Materials Science,2010,45(6):1528-1539
    [93] Cerri E., Nenna S. Evaluation of damage after straining in a heat treated thixoformedaluminium alloy[J]. Materials Science and Engineering: A,2003,355(1):160-166
    [94] Liu K., Cao X., Chen X.G. Solid-state transformation of iron-rich intermetallic phasesin Al-Cu206cast alloys during solution heat treatment[J]. Metallurgical and MaterialsTransactions A,2013,44(8):3495-3503
    [95] Flores A., Escobedo J., Mendez J., et al. Kinetic mechanisms of iron segregation fromAl-Si-Cu-Fe-Mn melts[J]. Ligth Metals,1992,7:847-850
    [96] Sukiennik M. A kinetic study on the nucleation and growth of the Al8FeMnSi2intermetallic compound for aluminum scrap purification[J]. Intermetallics,1998,6(3):217-227
    [97] Da S. Electromagnetic separation of primary iron-rich phases from alun1inum-siliconmelt[J]. Transactions of Nonferrous Metal Society of China,2003,13(1):121-125
    [98] Zhang L., Gao J., Damoah L.N.W., et al. Removal of iron from aluminum: a review[J].Mineral Processing and Extractive Metallurgy Review,2012,33(2):99-157
    [99] De Moraes H.L., De Oliveira J.R., Espinosa D.C.R., et al. Removal of iron from moltenrecycled aluminum through intermediate phase filtration[J]. Materials Transactions,2006,47(7):1731-1736
    [100] Nijhof G.H, Van Der Donk H.M. Method for refining an aluminum scrap smelt[P].USA, US5741348A,1998
    [101] Shu D., Li T.X., Sun B.D., et al. Study of electromagnetic separation of nometallicinclusions from aluminum melt[J]. Metallurgical and Materials Transactions A,1999,30(11):2979-2988
    [102] Zhenming X., Tianxiao L., Yaohe Z. Elimination of Fe in Al-Si cast alloy scrap byelectromagnetic filtration[J]. Journal of Materials Science,2003,38(22):4557-4565
    [103] Kim J., Yoon E. Elimination of Fe element in A380aluminum alloy scrap byelectromagnetic force[J]. Journal of Materials Science Letters,2000,19(3):253-255
    [104]高建卫.硼化物对铝熔体中杂质铁的净化作用及机理[D].上海:上海交通大学,2010
    [105]葛维燕.再生铝合金除铁研究[D].上海:上海交通大学,2008
    [106] Khalifa W., Samuel F.H., Gruzleski J.E., et al. Nucleation of Fe-intermetallic phases inthe Al-Si-Fe alloys[J]. Metallurgical and Materials Transactions A,2005,36(4):1017-1032
    [107] Sigworth G.K. Determining grain size and eutectic modification in aluminum alloycastings[J]. Mold Cast,1987,77:23-25
    [108] Cao X., Campbell J. The solidification characteristics of Fe-rich intermetallics inAl-11.5Si-0.4Mg cast alloys[J]. Metallurgical and Materials Transactions A,2004,35(5):1427-1435
    [109] Cao X., Saunders N., Campbell J. Effect of iron and manganese contents onconvection-free precipitation and sedimentation of primary-Al (FeMn) Si phase inliquid Al-11.5Si-0.4Mg alloy[J]. Journal of Materials Science,2004,39(7):2303-2314
    [110] Cao X., Campbell J. The nucleation of Fe-rich phases on oxide films in Al-11.5Si-0.4Mg cast alloys[J]. Metallurgical and Materials Transactions A,2003,34(7):1409-1420
    [111] Miller D.N., Lu L., Dahle A.K. The role of oxides in the formation of primary ironintermetallics in an Al-11.6Si-0.37Mg alloy[J]. Metallurgical and MaterialsTransactions B,2006,37(6):873-878
    [112] Narayanan L.A., Samuel F.H., Gruzleski J.E. Crystallization behavior ofiron-containing intermetallic compounds in319aluminum alloy[J]. Metallurgical andMaterials Transactions A,1994,25(8):1761-1773
    [113] Russ J.C. Practical stereology[M]. New York: Plenum Press,1986:35-51
    [114] Sweet L., Zhu S., Gao S.X., et al. The effect of iron content on the iron-containingintermetallic phases in a Cast6060aluminum alloy[J]. Metallurgical and MaterialsTransactions A,2011,42(7):1737-1749
    [115]边秀房,武玉英,刘相法,等. Al-Si-Fe-Cu-Mg-Ni合金中复合Fe-Si相的研究[J].铸造,2005,54(10):959-962
    [116] Kim H.Y., Park T.Y., Han S.W., et al. Effects of Mn on the crystal structure of-Al(Mn, Fe) Si particles in A356alloys[J]. Journal of Crystal Growth,2006,291(1):207-211
    [117] Skjerpe P. Intermetallic phases formed during DC-casting of an Al-0.25Wt Pct Fe-0.13Wt Pct Si alloy[J]. Metallurgical Transactions A,1987,18(2):189-200
    [118] Allen C.M., O'Reilly K., Cantor B., et al. Intermetallic phase selection in1XXX Alalloys[J]. Progress in Materials Science,1998,43(2):89-170
    [119] Li L., Zhang Y., Esling C., et al. Crystallographic features of the primary Al3Fe phase inas-cast Al-3.31wt%Fe alloy[J]. Journal of Applied Crystallography,2010,43(5):1108-1112
    [120] Warmuzek M., Mrówka G., Sieniawski J. Influence of the heat treatment on theprecipitation of the intermetallic phases in commercial AlMn1FeSi alloy[J]. Journal ofMaterials Processing Technology,2004,157:625-632
    [121] Warmuzek M. Microstructure evolution during peritectic L+Al6(MnFe)→-Al+-AlMnFeSi process in AlFeMnSi alloys[J]. Prace Instytutu Odlewnictwa,2011,51:37-57
    [122] Warmuzek M., Rabczak K., Sieniawski J. The course of the peritectic transformation inthe Al-rich Al-Fe-Mn-Si alloys[J]. Journal of Materials Processing Technology,2005,162:422-428
    [123]杨艳玲.挤压铸造Mg-Nd (-Zr)合金工艺及凝固行为研究[D].上海:上海交通大学,2010
    [124] Zhou M., Hu H., Li N., et al. Microstructure and tensile properties of squeeze castmagnesium alloy AM50[J]. Journal of Materials Engineering and Performance,2005,14(4):539-545
    [125] Liu K., Cao X., Chen X.G. Tensile properties of Al-Cu206cast alloys with various ironcontents[J]. Metallurgical and Materials Transactions A,2014,45(5):2498-2507
    [126] Salas G.F., Noguez M.E., Ramirez J.G., et al. Application of secondary dendrite armspacing-cooling rate equation for cast alloys[J].Transactions of the American FoundrySociety,2000,108:593-597
    [127] Major J.F., Sigworth G.K. Chemistry/property relationships in AA206Alloys[J].Transactions of the American Foundry Society,2006,114:117-128
    [128] Kaufman J.G., Rooy E.L. Aluminum alloy castings: properties, processes, andapplications[M]. Ohio: ASM International,2004
    [129] Ceschini L., Boromei I., Morri A., et al. Microstructure, tensile and fatigue properties ofthe Al-10%Si-2%Cu alloy with different Fe and Mn content cast under controlledconditions[J]. Journal of Materials Processing Technology,2009,209(15):5669-5679
    [130]杨阳. Al-Si多元合金中耐热相演变行为与协同强化机制的研究[D].济南:山东大学,2013
    [131] Maleki A., Niroumand B., Shafyei A. Effects of squeeze casting parameters on density,macrostructure and hardness of LM13alloy[J]. Materials Science and Engineering: A,2006,428(1):137-140
    [132] Maleki A., Shafyei A., Niroumand B. Effects of squeeze casting parameters on themicrostructure of LM13alloy[J]. Journal of Materials Processing Technology,2009,209(8):3790-3797
    [133]李云国. Al-Si-Cu-Ni-Mg系活塞合金高温强化相的研究[D].济南:山东大学,2011
    [134]钱钊.高强耐热Al-Si活塞合金的研究[D].济南:山东大学,2009
    [135] Colwell D.L., Kissling R.J. Die and permanent mold casting aluminum alloy minorelements[J]. Transactions of the American Foundry Society,1961,69:610-615
    [136] Mascre C. Influence of iron and manganese on type A-S13(Alpax) alloys[J]. Fonderie,1955,108:4330-4336
    [137] Allen C.M., O'Reilly K., Cantor B., et al. Intermetallic phase selection in1XXX Alalloys[J]. Progress in Materials Science,1998,43(2):89-170
    [138] Allen C.M., O'Reilly K., Evans P.V., et al. The effect of vanadium and grain refineradditions on the nucleation of secondary phases in1xxx Al alloys[J]. Acta Materialia,1999,47(17):4387-4403
    [139] Flemings M.C. Solidification processing[M]. New York: London and Sydney:McGraw-Hill Book Corporation,1974:73-75
    [140] Singh S.N., Bardes B.P., Flemings M.C. Solution treatment of cast Al-5.5pct Cualloy[J]. Metallurgical and Materials Transactions,1970,1(5):1383-1388
    [141] Dinnis C.M., Taylor J.A., Dahle A.K. Iron-related porosity in Al-Si-Cu foundryalloys[J]. Materials Science and Engineering: A,2006,425(1):288-296
    [142] Dinnis C.M., Taylor J.A., Dahle A.K. Porosity formation and eutectic growth inAl-Si-Cu-Mg alloys containing iron and manganese: materials forum-aluminium alloystheir physical and mechanical properties[J] The Institute of Materials EngineeringAustralasia Ltd,2004,28:1061-1021
    [143]刘晓艳.含Ag的Al-Cu-Mg耐热铝合金微观组织与性能研究[D].长沙:中南大学,2011
    [144] Wierszy owski I., Stankowiak A., Wieczorek S., et al. Kinetics of transformationduring supersaturation and aging of the Al-5.7mass%Cu alloy: Grain size,dilatometric, and differential thermal analysis studies[J]. Journal of Phase Equilibria andDiffusion,2005,26(5):557-560
    [145] Kamga H.K. Influence of alloying elements iron and silicon on mechanical properties ofaluminum-copper type B206alloys[D]. Québec: Chicoutimi: University of Québec,2010
    [146] Homonnay Z., Vértes A., Cziráki á., et al. M ssbauer study of Al6(Fe, Mn) formationin Al-rich Al-Fe-Mn alloys[J]. Journal of Radioanalytical and Nuclear Chemistry,1990,139(1):127-134
    [147]李荣德,马建超,周振平. Mn含量对共晶Al-2%Fe合金组织的影响[J].热加工工艺,2004,(4):15-16
    [148] Li Y.J., Arnberg L. Solidification structures and phase selection of iron-bearing eutecticparticles in a DC-cast AA5182alloy[J]. Acta Materialia,2004,52(9):2673-2681
    [149] Belov N.A., Aksenov A.A., Eskin D.G. Iron in aluminium alloys: impurity and alloyingelement[M]. London: CRC Press,2002:41-43
    [150] Belov N.A., Eskin D.G., Aksenov A.A. Multicomponent Phase Diagrams: Applicationsfor Commercial Aluminum Alloys: Applications for Commercial Aluminum Alloys[M].Elsevier,2005:88-90
    [151] Zolotorevsky V.S., Belov N.A., Glazoff M.V. Casting aluminum alloys[M]. Elsevier,2010:89-92
    [152] Denholm W.T., Esdaile J.D., Siviour N.G., et al. The nature of the FeAl3liquid-(FeMn)Al6reaction in the Al-Fe-Mn system[J]. Metallurgical Transactions A,1987,18(3):393-397
    [153] Liu Z., Mohles V., Engler O., et al. Statistical model of precipitation kinetics forrecycled commercial aluminium alloys[J]. Supplemental Proceeding: MaterialsFabrication, Properties, Characterization, and Modeling,2011,2:449-456
    [154] Hwang J.Y., Doty H.W., Kaufman M.J. Crystallographic studies on the iron-containingintermetallic phases in the319-type aluminium casting alloys[J]. PhilosophicalMagazine,2008,88(4):607-619
    [155]胡汉起.金属凝固原理(第2版)[M].北京:机械工业出版社,1998:80-82
    [156] Westengen H. Formation of intermetallic compounds during DC-casting of acommercial purity Al-Fe-Si[J]. Zeitschrift fur Metallkunde,1982,73(6):360-368
    [157] Dutta B., Rettenmayr M. Effect of cooling rate on the solidification behaviour ofAl-Fe-Si alloys[J]. Materials Science and Engineering: A,2000,283(1):218-224
    [158] Campbell J. Castings[M]. London: Butterworth-Heinemann,2003:150
    [159] Alexander D., Greer A.L. Nucleation of the Al6(Fe, Mn) to-Al(Fe, Mn)Sitransformation in3XXX aluminium alloys. I. roll-bonded diffusion couples[J].Philosophical Magazine,2004,84(28):3051-3070
    [160] Alexander D., Greer A.L. Nucleation of the Al6(Fe, Mn) to-Al(Fe, Mn)Sitransformation in3XXX aluminium alloys. II. transformation in cast aluminiumalloys[J]. Philosophical Magazine,2004,84(28):3071-3083
    [161]张永皞,张志清,刘庆. AA3104铝合金均匀化过程中的(Fe, Mn)Al6相向-Al12(Fe,Mn)3Si相转变研究[J].金属学报,2012,3:16
    [162]张永皞. AA3104铝合金均匀化过程中微观组织演变及其对轧制和退火的影响研究[D].重庆:重庆大学,2012
    [163] García-García G., Espinoza-Cuadra J., Mancha-Molinar H. Copper content and coolingrate effects over second phase particles behavior in industrial aluminum-silicon alloy319[J]. Materials&Design,2007,28(2):428-433
    [164] Li Z., Samuel A.M., Samuel F.H., et al. Effect of alloying elements on the segregationand dissolution of CuAl2phase in Al-Si-Cu319alloys[J]. Journal of Materials Science,2003,38(6):1203-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700