用户名: 密码: 验证码:
铝溶体中原位生成TiB_2与LaB_6的生长机制及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以TiB2和LaB6两种典型硼化物为研究对象,研究其在铝熔体中的反应合成热力学条件及三维形貌演变生长机制,实现对两种粒子的生长控制和结构改性,为研发高效生核剂和金属基复合材料打下基础。借助高倍视频显微镜(HSVM)、电子探针显微分析仪(EPMA)、场发射扫描电镜(FESEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、透射电镜(TEM)和高分辨透射电镜(HRTEM)等分析测试手段,本文主要取得了以下研究结果:
     (1)铝熔体中TiB2取向堆垛生长机制的研究
     本文系统研究了TiB2粒子三维形貌与合成路径的相关性,发现氟盐法制备的Al-Ti-B合金中,TiB:粒子大多为规则的六角板片状形貌;随反应温度的升高,TiB2粒子转变为层叠的宝塔和枝晶状形貌,这是由熔体中[B]和[Ti]直接反应导致的;由A182和[Ti]在铝熔体中反应合成的TiB2粒子为密实型聚集团。
     热力学分析表明,TiB2的{1011}和{1010}晶面生长属于非小平面生长,{0001}晶面生长为小平面生长。因此,相对于{0001}晶面,Ti和B原子更容易堆积在{1011}和{1010}晶面上;晶体结构分析表明,TiB2倾向于形成表面自由能低的六角板片形貌,Ti和B原子优先沿(1011)方向化合堆垛,而(1010>和(0001)方向的生长速度较慢,使TiB2粒子经历了“球形→多面体→六角板片”的形貌演变过程。反应温度升高使初生TiB2纳米晶表面能显著增大,它们之间会以平行连生、二维生核以及定向附生三种方式进行堆垛长大,最终形成层叠的宝塔和枝晶状形貌。
     (2)TiB2的结构改性及相关合金的研制
     向熔体中加入微量C元素后,Al-Ti-B-C中间合金中出现了大量掺C的TiB2粒子。由于表面掺杂形成能较高,C原子优先在TiB2表层堆积,使其表层结构无序化,从而减弱了粒子的取向堆垛倾向,改善了其在中间合金中的分布状态,提高了中间合金的细化能力。
     利用Al3BC制备Al-Ti-B-C中间合金时,可以使TiB2与TiC粒子同时生成,有利于实现C对TiB2的掺杂和改性,改善粒子的分布状态,提高其形核能力。研究发现,Al-Ti-B-C中间合金对工业纯铝、Al-6Mg及A356合金的晶粒细化效果均优于Al-Ti-B;经1%的Al-5Ti-0.8B-0.2C细化后的Al-6Mg合金中,a-Al的平均晶粒尺寸约为25gm,其宏观硬度和显微硬度均得到大幅度提高;经0.2%的Al-3Ti-1B-0.2C细化后,A356合金中α-Al平均晶粒尺寸约为167gm,且60min内无衰退,合金的拉伸和屈服强度分别提高了5.9%和11.7%,延伸率提高了124.4%。
     在A390合金熔体中原位合成了3%的TiB2粒子,研究发现,TiB2粒子主要分布于初晶硅的内部及周围;通过edge-to-edge模型分析发现,TiB2与Si满足良好的位向关系:<112>Si/?<1010>TiB2,{111}Si/{0001}TiB2,使其在初晶硅的析出过程中被液固界面前沿卷入并包裹;与基体合金相比,该复合材料在300℃下的拉伸强度和延伸率分别提高了8.8%和33.3%,室温耐磨性也明显提高。
     (3)铝合金中LaB6的控制合成及其强化行为研究
     本文利用铝熔体反应法原位合成了LaB6颗粒,研究发现Al-3LaB6合金中LaB6粒子呈立方体形貌,弥散地分布在铝基体中;LaB6晶体经历了“球形晶→八角晶→骰子晶→立方晶”的演变过程,其最终形貌取决于自身晶体结构和外部生长环境。
     从晶体结构分析,LaB6趋向于形成立方体的平衡晶体形貌,{111}和{110}外露晶面会逐渐减小,最终形成立方体的顶角和棱边,{100}外露晶面因生长缓慢而保留下来。然而,在合金熔体环境中,由于传热和传质等因素的影响,<111>晶向和<100>晶向的相对生长速度会发生改变,使LaB6转变为多面体(切角或切棱的立方体)。当熔体中反应物浓度较高(6%)时,LaB6晶核表面的凸起会在成分过冷的作用下向溶质富集区快速延伸,从而形成顶角和侧棱上长满须状枝晶的LaB6立方晶(须状LaB6立方晶);随反应物浓度的进一步提高(9%),熔体中出现了十字锥状的LaB6枝晶。
     利用Turnbull-Vonnegut公式计算了LaB6与Al的晶格错配度,研究发现LaB6可以作为α-Al的潜在形核衬底。同时还研究了LaB6对A390合金的强化作用,向A390合金中加入3%的LaB6后,基体合金的硬度和耐磨性明显提高;与多面体和立方体LaB6相比,高比表面积的须状LaB6立方晶因结合面大,对提高A390合金高温拉伸强度和降低其线膨胀系数的贡献更大。
In this work, the reaction thermodynamics, three-dimensional morphology evolution and growth mechanism of TiB2and LaB6in Al melts were studied. Based on the results, the growth control and structural modification of these two borides were carried out. This work is conducive to develop a high-efficiency grain refiner and metal matrix composite. By using the high scope video microscope (HSVM), electron probe micro-analyzer (EPMA), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) etc., the following research results are obtained.
     (1) The orientated stacking mechanism of TiB2in Al melts
     The correlation between particle morphology and reaction path of synthesizing of TiB2was systematically studied. It is found that TiB2particles mainly exhibit a hexagonal platelet-like morphology in the Al-Ti-B alloy prepared by "fluoride salt" method, which evolves into hierarchical tower-like or dendritic morphologies with the increase of reaction temperature, due to the reaction of [B] and [Ti]. However, TiB2particles obtained through the reaction of AlB2and [Ti] tend to agglomerate severely with each other.
     According to the derived thermodynamic data, TiB2is typically faceted on{0001} planes while non-faceted on{1011} and{1010} planes, indicating that it's easier for solute atoms to deposit on{1011} and{1010} planes than on{0001} planes. As a result, TiB2tends to form its equilibrium morphology (hexagonal platelet) with the minimized total surface free energy. As{0001} planes have the highest growth rate and the preferential growth directions are along<0001>, TiB2particles undergo the following morphology evolution process:sphere→polyhedron→hexagonal platelet. With the increase of the reaction temperature, primary TiB2nanocrystals become unstable, and will grow up based on three models:parallel intergrowth, two dimensional nucleation and directional intergrowth.
     (2) The structural modification of TiB2and its applications
     Al-Ti-B-C master alloy with a uniform microstructure was prepared by Al melt reaction method in this study. It is found that TiB2particles in the alloy are energetically favorable with doping trace amount of C. Furthermore, the doping of C on the surface of TiB2is much more preferential. As a result, the orientated stacking tendency of TiB2particles is weakened and their distribution is improved.
     The TiB2and TiC formed simultaneously when the Al-Ti-B-C master alloy was prepared using Al3BC, which promotes the doping as well as the modification of TiB2by C. Al-Ti-B-C mater alloy shows a much better grain refining performance on Al-6Mg and A356alloys than that of Al-Ti-B. By the addition of1.0%Al-5Ti-0.8B-0.2C master alloy, the average grain size of α-Al in Al-6Mg alloy is refined to about25μm. Both macrohardness and microhardness of the alloy are improved obviously after grain refinement. By the addition of0.2%Al-5Ti-0.8B-0.2C master alloy, the average grain size of a-Al in A356alloy is around167μm. Moreover, the effect does not fade within60min. The tensile and yield strengths of A356alloy are increased by5.9%and11.7%, respectively, while the elongation is increased by124.4%.
     Besides, TiB2particles were in-situ synthesized in A390melt and TiB2/A390composite was thus prepared. TiB2particles distribute in and around the primary Si in the composite. From the edge-to-edge model, it is found that there exists a good lattice matching coherence between TiB2and Si. Specifically, the matching planes and directions are as follows,<112>Si/<1010>TiB2,{111}Si/{0001}TiB2. Compared with the A390alloy, the ultimate tensile strength and elongation at300℃of the composite are increased by8.8%and33.3%, respectively, and the hardness and wear resistance are also improved a lot.
     (3) The in-situ synthesis and strengthening behavior of LaB6in Al alloy
     LaB6particles were in-situ synthesized by Al melt reaction method and Al-3LaB6alloy was prepared. LaB6particles exhibit a cubic morphology and distribute uniformly in the alloy. The morphology evolution undergoes the following process: sphere→octa-armed crystal→dice-like crystal→perfect cube. The final morphology of LaB6is decided both by its crystal structure and the external growth condition.
     LaB6tends to form its equilibrium morphology (cube) with the minimized total surface free energy. As {111} planes have the highest growth rate and the preferential growth directions are along<111>, perfect cubic LaB6is terminated by {100} surfaces, whereas {111} and {110} planes are concealed to corners and edges, respectively. However, growth condition variations will change the relative growth rates along<111> and<100> directions during solidification, which leads to polyhedral morphologies of LaB6. In addition, by increasing the relative content of the reactants (6%), the heaves on the surface of LaB6crystal nucleus extend rapidly to the solute concentration area. Then LaB6cube with whisker-like dendrites was obtained. Furthermore, LaB6develops to pyramidal dendrite with the further increase of the reactant content (9%).
     According to Turnbull-Vonnegut equation, the calculated misfit between (200) planes of LaB6and Al is only2.64%. Crystal lattice correspondence indicates that LaB6can act as the nucleation core of a-Al. By the addition of3%LaB6, the hardness and wear resistance of A390alloy are obviously improved. Besides, compared with polyhedral and cubic LaB6, the whisker-like cube shows a much better performance on the improvement of the high temperature tensile strength as well as the reduction of the linear expansion coefficient of A390alloy.
引文
[1]D. Emin. Icosahedral boron-rich solids, Physics Today,1987,20:55-62
    [2]陶连印,郑学家.硼化合物的生产与应用,成都:成都科技大学出版社,1992
    [3]P. Vajeeston, P. Ravindran, C. Ravi, et al. Electronic-structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Physical Review B,2001,63:045115
    [4]赵振波,刘澄,朱启惠,等.硼基材料在表面工程上应用的潜力,材料工程,1998,9:35-38
    [5]郭君玉,阳世清,徐松林.轻金属硼化物体系及应用研究进展,材料开发与应用,2010,2:73-78
    [6]Z.J. Liu, X.H. Qu, B.Y. Huang. Crystal structure and morphology of a new compound LiB, Journal of Alloys and Compounds,2000,311:256-264
    [7]郑学家.金属硼化物与含硼合金,北京:化学工业出版社,2012
    [8]W. Gordon, S. Soffer. A galvanomagnetic investigation of TiB2, NbB2 and ZrB2, Journal of Physical Chemistry Solids,1975,36:627-631
    [9]Y.L. Gu, Y.T. Qian, L.Y. Chen, et al. A mild solvothermal route to nanocrystal 1 ine titanium diboride, Journal of Alloys and Compounds,2003,352:325-327
    [10]N. Haruto, H. Ken, S. Ryuichi. Thermal field emission observation of single-crystal LaB6, Journal of Applied Physics,1990,68(7):3614-3618
    [11]S. Otani, Y. Ishizawa. Thermionic emission properties of boron-rich LaB6 and CeB6 crystal cathodes, Journal of Alloys and Compounds,1996,245:18-20
    [12]X.H. Zhang, X. von Molnar, Z. Fisk, et al. Spin-dependent electronic states of the ferromagnetic semimetal EuB6, Physical Review Letters,2008,100:167001
    [13]J. Jun, B. Jiang, L.M. Li. Study on band structure of YbB6 and analysis of its optical conductivity spectrum, Journal of Rare Earths,2007,25(6):654-664
    [14]K. Flachbart, M. bartkowiak, S. Demishev, et al. Pulsed magnetic field study of the sping apininter mediate valence compound SmB6, Physica B,2009,404:2985-2987
    [15]C.H. Chen, T. Aizawa, N. Iyi, et al. Structural refinement and thermal expansion of hexaborides, Journal of Alloys and Compounds,2004,366:6-8
    [16]A.A. Abdel-Hamid, S. Hamar-Thibault, R. Hamar. Crystal morphology of the compound TiB2, Journal of Crystal Growth,1985,71:744-750
    [17]J.M. Sanchez, I. Azcona, F. Castro, et al. Mechanical properties of titanium diboride based cermets, Journal of Materials Science,2000,35:9-14
    [18]H.Z. Yi, N.H. Ma, Y.J. Zhang, et al. Effective elastic moduli of Al-Si composites reinforced in situ with TiB2 particles, Scripta Materialia,2006,54:1093-1097.
    [19]闫卫平,荣福杰,宋国金,等.混合盐法制备TiB2/Al复合材料的研究现状,铸造,2006,55,1114-1116
    [20]韩延峰,刘相法,边秀房.原位生成TiB2/Al-Si-Mg复合材料的组织与性能,中国有色金属学报,2001,11(5):840-844
    [21]A. Cibula. The mechanism of grain refinement of sand castings in aluminum alloys, Journal of the Institute Metals,1949-50,76:320-360
    [22]Y. Birol. Effect of the salt addition practice on the grain refining efficiency of Al-Ti-B master alloys, Journal of Alloys and Compounds,2006,420(1-2):207-212
    [23]刘相法AlTiB中间合金的遗传性研究,山东工业大学博士学位论文,1997
    [24]G.P. Jones, J. Pearson. Factor affecting grain refinement of aluminium using Ti and B additives, Metallurgical Transactions B,1976,7B:223-234
    [25]F.A. Crossley, L.F. Mondolfo. Mechanism of grain refinement in aluminum alloys, Transactions, AIME,1951,191:1143-1148
    [26]P.S. Mohanty, J.E. Gruzleski. Mechanism of grain refinement in aluminium, Acta Metallurgica et Materialia,1994,43:2001-2012
    [27]P.L. Schaffer, A.K. Dahle. Settling behaviour of different grain refiners in aluminium, Materials Science and Engineering A,2005,413-414:373-378
    [28]D.G. McCartney. Grain refining of aluminium and its alloys using inoculants, International Materials Reviews,1989,34(5):247-260
    [29]韩行霖Al-Ti-B对铝合金细化过程的研究和理论分析,轻合金加工技术,1986,(6):1-6
    [30]高泽生.国产AlTiB晶粒细化剂的研制与应用,轻合金加工技术,1990,(1):5-14
    [31]A.L. Greer, A.M. Bunn, A. Tronche, et al. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B, Acta Materialia,2000,48:2823-2835
    [32]陈亚军,许庆彦,黄天佑.铝合金晶粒细化剂研究进展,材料导报,2006,20(12):57-61
    [33]刘相法,边秀房AlTiB中间合金细化效果的遗传效应,金属学报,1996,32(2):149-153
    [34]M.A. Easton, D.H. Stjohn. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Materialia,2001,49:1867-1878
    [35]Y. Birol. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6, Journal of Alloys and Compounds,2008,458(1-2):271-276
    [36]Y. Birol. Production of Al-Ti-B grain refining master alloys from Ti sponge and KBF4, Journal of Alloys and Compounds,2007,440(1-2):108-112
    [37]Y.F. Han, K. Li, J. Wang, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium, Materials Science and Engneering A,2005, 405:306-312
    [38]Y. Birol. Production of Al-Ti-B grain refining master alloys from B2O3 and K2TiF6. Journal of Alloys and Compounds,2007,443:94-98
    [39]D. Qiu, J.A. Taylor, M.-X. Zhang, et al. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys, Acta Materialia,2007,55:1447-1456
    [40]陈亚军,许庆彦,黄天佑.稀土铝钛硼中间合金的细化能力与长效性,中国有色金属学报,2007,17(8):1232-1239
    [41]T.M. Wang, H.W. Fu, Z.N. Chen, et al. A novel fading-resistant Al-3Ti-3B grain refiner for Al-Si alloys. Journal of Alloys and Compounds,2012,511:45-49
    [42]J. Surbrahmanyam, M. Vijvyakumar. Self-propagating high-temperature synthesis, Journal of Materials Science,1992,27(23):6249-6273
    [43]李险峰.原位TiB2颗粒增强铝基复合材料的研究,上海交通大学博士学位论文,2005
    [44]K.L. Tee, L. Lu, M.O. Lai. In situ stir cast Al-TiB2 composite:processing and mechanical Properties, Material Science and Technology,2001,17(2):201-206
    [45]H.Z. Yi, N.H. Ma, X.F. Li, et al. High-temperature mechanics properties of in situ TiB2p reinforced Al-Si alloy composites, Materials Science and Engneering A,2006,419:12-17
    [46]苏雅璇.原位合成TiB2/ZL109复合材料的性能研究,上海交通大学硕士学位论文,2006
    [47]吕映宾TiB2+SiC颗粒混杂增强ZL109复合材料,上海交通大学硕士学位论文,2007
    [48]I. Gotman, M.J. Koczak. Fabrication of Al matrix in situ composites via self-propagating synthesis, Materials Science and Engineering A,1994,187A:189-199
    [49]A.R.C. Westwood. Materials for advanced studied and devices, Metallurgical Transaction, 1988,19:749-758
    [50]A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, et al. Microstructure property correlation in Al/TiB2 composites, Scripta Metallurgica Materialia,1990,24:873-879
    [51]于化顺.金属基复合材料及其制备技术,北京,化学工业出版社,2006
    [52]李庆勇,王日初,魏圣明,等.快速凝固粉末冶金TiB2颗粒增强AlFeVSi耐热铝合金,中国有色金属学报,2005,15:637-642
    [53]D.Z. Zhu, G.H. Wu, G.Q. Chen, et al. Dynamic deformation behavior of a high reinforcement content TiB2/Al composite at high strain rates, Materials Science and Engneering A,2008,487: 536-540
    [54]赵敏,姜龙涛,武高辉,等.挤压铸造TiB2p/Al复合材料室温性能,复合材料学报,2007,24(5):1-5
    [55]徐萌,陈刚,赵玉涛,等.电磁搅拌制备TiB2颗粒增强7055铝基复合材料的研究,铸造,2009,58:1233-1237
    [56]J.V. Wood, P. Davies, J.L.F. Kellite. Properties of reactively cast aluminium-TiB2 alloys, Materials Science and Technology,1993,9:833-840
    [57]赵德刚.多相颗粒增强铝基复合材料的研究,山东大学硕士学位论文,2006
    [58]王强强.TiB2颗粒增强Al-18%Si基复合材料的制备工艺和性能研究,兰州理工大学硕士学位论文,2011
    [59]方信贤,孙国雄.熔体直接反应生成TiB2对ZL101硅相形貌及变质剂变质效果的影响,铸造,2000,5:272-275
    [60]赵芳欣,李德成,张瑛洁.原位生成铸造TiB2/Al-Si复合材料的微观特征及弹性模量,特种铸造及有色合金,1999,5:10-11
    [61]金帅,刘丹敏,周身林,等.LaB6热阴极陶瓷材料的研究进展,功能材料,2007,38:480-483
    [62]V. Craciun, D. Craciun. Pulsed laser deposition of crystalline LaB6 thin films, Applied Surface Science,2005,247:384-389
    [63]M.E. Schlesinger, P.K. Liao, K.E. Spear. The B-La (boron-lanthanum) system, Journal of Phase Equilibria,1999,20(1):73-78
    [64]A.N. Broers. Electron gun using long-Life lanthanum hexaboride cathode, Journal ofApplied Physics,1967,38(4):1991-1992
    [65]于普涟.六硼化镧多晶材料的制备及应用,山东大学硕士学位论文,2001
    [66]Y.F. Yuan, L. Zhang, L.M. Liang, et al. A solid-state reaction route to prepare LaB6 nanocrystals in vacuum, Ceramics International,2011,37:2891-2896
    [67]徐秀华.六硼化镧粉体的制备及其烧结性能研究,湖南大学硕士学位论文,2011
    [68]M.F. Zhang, L. Yuan, X.Q. Wang, et al. A low-temperature route for the synthesis of nanocrystalline LaB6, Journal of Solid State Chemistry,2008,181:294-297
    [69]高瑞兰,于化顺,于普涟,等.LaB6多晶材料的制备工艺研究,山东大学学报(工学版),2002,32(6):594-597
    [70]张久兴,曾宏,周身林,等.高纯纳米级LaB6块体材料的原位合成法,中国,C01B 35/04,ZL 2006100122979.2007-1-17
    [71]G.H. Olsen, A.V. Cafiero. Single-crystal growth of mixed (La, Eu, Y, Ce, Ba, Cs) hexaborides for thermionic emission, Journal of Crystal Growth,1978,44:287-290
    [72]S.V. Moshkin, A.V. Nardov. Growt h kinetics of constant composition binary crystals from solutions, Journal of Crystal Growth,1981,52:816-819
    [73]卢庆亮,闵光辉,于化顺.LaB6单晶体制备方法的特点和进展,材料导报,2005,19:5-7
    [74]E.I. Givargizov, L.N. Obolenskaya. Regular arrays of LaB6 whiskers grown on singlecrystal substrates by the vapour-liquid-solid method, Journal of Crystal Growth,1986,117:97-103
    [75]T. Tanaka, E. Bannai, S. Kawai. Growth of high purity LaB6 single crystals by multi-float zone passage, Journal of Crystal Growth,1987,50(25):193-197
    [76]T.T. Shen, D.H. Xiao, X.Q. Ou, et al. Effects of LaB6 addition on the microstructure and mechanical properties of ultrafine grained WC-10Co alloys, Journal of Alloys and Compounds, 2011,509:1236-1243
    [77]H. Deng, E.C. Dickey. Crystallographic characterization and indentation mechanical properties of LaB6-ZrB2 directionally solidified eutectics, Journal of Materials Science,2004,39: 5987-5994
    [1]左敏Al-X(Si, Zr, Ca)-P合金中磷化物的研究,山东大学博士学位论文,2010
    [2]李大奎.铝熔体中碳质体结构演变与原位合成SiC颗粒的研究,山东大学硕士学位论文,2012
    [3]马海建.元素添加对铁基非晶非晶形成能力、晶化及性能的影响,山东大学博士学位论文,2011
    [1]P.L. Schaffer, A.K. Dahle. Settling behaviour of different grain refiners in aluminium, Materials Science and Engineering A,2005,413-414:373-378
    [2]丁海民.铝熔体中TiC合成与演变的研究,山东工业大学博士学位论文,2010
    [3]Y. Birol. Effect of the salt addition practice on the grain refining efficiency of Al-Ti-B master alloys, Journal of Alloys and Compounds,2006,420(1-2):207-212
    [4]Y. Birol. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6, Journal of Alloys and Compounds,2008,458(1-2):271-276
    [5]Y. Birol. Production of Al-Ti-B grain refining master alloys from Ti sponge and KBF4, Journal of Alloys and Compounds,2007,440(1-2):108-112
    [6]陈亚军,许庆彦,黄天佑.稀土铝钛硼中间合金的细化能力与长效性,中国有色金属学报,2007,]7(8):1232-1239
    [7]M.A. Easton, D.H. Stjohn. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Materialia,2001,49:1867-1878
    [8]M. Emamy, M. Mahta, J. Rasizadeh. Formation of TiB2 particles during dissolution of TiAl3 in Al-TiB2 metal matrix composite using an in situ technique, Composites Science and Technology, 2006,66:1063-1066
    [9]王萍,李国昌.结晶学教程,北京:国防工业出版社,2008
    [10]刘相法.AlTiB中间合金的遗传性研究,山东工业大学博士学位论文,1997
    [11]G.K. Sigworth. The grain refining of aluminum and phase relationships in the Al-Ti-B system, Metallurgical and Materials Transaction A,1984,15(2):277-282
    [12]J. Fjellstedt, A.E.W. Jarfors, L. Svendsen. Experimental analysis of the intermediary phases AlB2, AlB12 and TiB2 in the Al-B and Al-Ti-B systems, Journal of Alloys and Compounds,1999, 283:192-197.
    [13]胡汉启.金属凝固原理,北京:机械工业出版社,2000
    [14]K.A. Jackson. Liquid metals and solidification ASM Cleveland, Ohio,1958,174
    [15]K.A. Jackson. Constitutional supercooling surface roughening, Journal of Crystal Growth, 2004,264:519-529
    [16]I. Sunagawa. Crystals growth, morphology and perfection, Cambridge:Cambridge University Press,2005
    [17]G.H. Liu, K.X. Chen, H.P. Zhou, et al. Fast shape evolution of TiN microcrystals in combustion synthesis, Crystal Growth & Design,2006,6(10):2404-2411
    [18]P. Hartman. Crystal growth:an introduction, Amsterdam:North-Holland Publishing Company,1973
    [19]A.A. Abdel-Hamid, S. Hamar-Thibault, R. Hamar. Crystal morphology of the compound TiB2, Journal of Crystal Growth,1985,71:744-750
    [20]戴洪尚.超高硅铝合金中硅相的细化与界面性质研究,山东大学博士学位论文,2009
    [21]B. Sadigh, M. Dzugutov, S.R. Elliot. Vacancy ordering and medium-range structure in a simple monatomic liquid, Physical Review B,1999,59:1-4
    [22]W.M. Wang, X.F. Bian, J.Y. Qin, et al. The atomic-structure changes in Al-16 pct Si alloy above liquidus, Metallurgical and Materials Transactions A,2000,31:2163-2168
    [23]R.Y. Wang, W.H. Lu, L.M. Hogan. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth, Journal of Crystal Growth,1999,207:43-54
    [24]S.B. Jin, P. Shen, B.L. Zou, et al. Morphology evolution of TiCx grains during SHS in an Al-Ti-C system, Crystal Growth & Design,2009,9:646-649
    [25]Y.H. Tong, Y.C. Liu, C.L. Shao, et al. Structural and optical properties of ZnO nanotower bundles, Applied Physics Letters,2006,88:123111
    [26]L. Zhou, W.Z. Wang, H.L. Xu. Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy, Crystal Growth & Design,2008, 8(2):728-733
    [27]王春雷,周理海,胡雪慧,等.TiB2(0001)表面性质的密度泛函理论,中国有色金属学报,2008,18:145-150
    [28]马晓光.铝熔体反应合成TiC的微观形貌与生长机制研究,山东大学硕士学位论文,2010
    [29]B. Chalmers. Principles of solidification. New York:John Wiley,1964,77-83
    [30]介万奇.晶体生长原理与技术,北京:科学出版社,2010
    [1]J.F. Nie, X.F. Liu, Y.Y. Wu. The influences of B dopant on the crystal structure and nucleation ability of TiCx in the Al melt, Materials Research Bulletin,2013,48:1645-1650
    [2]J.F. Nie, H.M. Ding, Y.Y. Wu, et al. Fabrication of titanium diboride-carbon core-shell structure particles and their application as high-efficiency grain refiners of wrought aluminum alloys, Scripta Materialia, http://dx.doi.org/10.1016/j.scriptamat.2013.01.026
    [3]刘相法.AlTiB中间合金的遗传性研究,山东工业大学博士学位论文,1997
    [4]丁海民.铝熔体中TiC合成与演变的研究,山东工业大学博士学位论文,2010
    [5]A.R. Kennedy, D.P. Weston, M.I. Jones, et al. Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures, Scripta Materialia,2000,42: 1187-1192
    [6]马晓光.铝熔体反应合成TiC的微观形貌与生长机制研究,山东大学硕士学位论文,2010
    [7]V.L. Solozhenko, E.G. Solozhenko, C. Lathe. Equation of state and thermal stability of Al3BC, Solid State Communications,2006,137:533-535
    [8]Y. Birol. Production of Al-Ti-B grain refining master alloys from Ti sponge and KBF4, Journal of Alloys and Compounds,2007,440(1-2):108-112
    [9]Y.F. Han, K. Li, J. Wang, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium, Materials Science and Engneering A,2005, 405:306-312
    [10]Y. Birol. Production of Al-Ti-B grain refining master alloys from B2O3 and K2TiF6. Journal of Alloys and Compounds,2007,443:94-98
    [11]D.G. McCartney. Grain refining of aluminium and its alloys using inoculants, International Materials Reviews,1989,34(5):247-260
    [12]O. Fakhraei, M. Emamy, H. Farhangi. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy, Materials Science and Engneering A,2013,560: 148-153
    [13]V. Patlan, K. Higashi, K. Kitagawa. Cyclic response of fine grain 5056 Al-Mg alloy rocessed by equal-channel angular pressing, Materials Science and Engineering A,2001,319-321:587-591
    [14]A. Vinogradov, V. Patlan, K. Kitagawa, et al. Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing, Nanostructured Materials,1999,11:925-934
    [15]M. Zhu, Z.Y. Jian, G.C. Yang, et al. Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys, Materials and Design,2012,36: 243-249
    [16]S.A. Sajjadi, H.R. Ezatpour, M. Torabi Parizi. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes, Materials and Design,2012,34:106-111
    [17]Y. Birol. AlB3 master alloy to grain refine AlSi10Mg and AlSi12Cu aluminium foundry alloys, Journal of Alloys and Compounds,2012,513:150-153
    [18]姜文辉,韩行霖,朱丽红Al-12%Si合金a-Al晶粒细化剂的研究,铸造,1997,(1):19-21
    [19]王丽,孙益民,边秀房,等.亚共晶Al-Si合金的细化处理,特种铸造及有色合金,1998,(5):18-20
    [20]X.W. Xu, C.K. Fu, Y.X. Li, et al. Fabrication of monolithic bulk Ti3AlC2 and impurity measurement by K-value method, Transcations of Nonferrous Metals Society of China,2006,16: 490-493
    [21]Y.G. Li, Y.Y. Wu, Q. Zhang, et al. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy, Matererials Science and Engneering A,2009,527: 146-149
    [22]M.M. Haque, M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology,1998,77:122-128
    [23]N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia,2005,53:4709-4722
    [24]H.Z. Yi, N.H. Ma, Y.J. Zhang, et al. Effective elastic moduli of Al-Si composites reinforced in situ with TiB2 particles, Scripta Materialia,2006,54:1093-1097
    [25]M. Emamy, M. Mahta, J. Rasizadeh. Formation of TiB2 particles during dissolution of TiAl3 in Al-TiB2 metal matrix composite using an in situ technique, Composites Science and Technology, 2006,66:1063-1066
    [26]L.N. Yu, X.F. Liu, H.M. Ding, et al. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy, Journal of Alloys and Compounds,2007,432:156-162
    [27]P.K. Rohatgi, F.M. Yarandi, Y. Liu, et al. Segregation of silicon carbide by settling and particle pushing in cast aluminum-silicon-carbide particle composite, Materials Science and Engneering A,1994,147:L1-L6
    [28]P.L. Schaffer, D.N. Miller, A.K. Dahle. Crystallography of engulfed and pushed TiB2 particles in aluminium, Scripta Materialia,2007,57:1129-1132
    [29]Q. Han, J.D. Hunt. Particle pushing:critical flow rate required to put particles into motion, Journal of Crystal Growth,1995,152:221-227
    [30]D. Qiu, J.A. Taylor, M.-X. Zhang, et al. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys, Acta Materialia,2007,55:1447-1456
    [31]M.-X. Zhang, P.M. Kelly, M.A. Easton, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model, Acta Materialia,2005,53:1427-1438
    [32]M.-X. Zhang, P.M. Kelly, M. Qian, et al. Crystallography of grain refinement in Mg-Al based alloys, Acta Materialia,2005,53:3261-3270
    [33]M.-X. Zhang, P.M. Kelly. Crystallography of grain refinement in Mg-Al based alloys, Acta Materialia,2005,53:1073-1084
    [34]G. Celotti, D. Nobili, P. Ostoja. Lattice parameter study of silicon uniformly doped with boron and phosphorus, Journal of Materials and Science,1974,9:821-828
    [35]V.C. Nardone, K.M. Prewo. On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metallurgica,1986,20:43-48
    [36]X.F. Liu, Y.Y. Wu, X.F. Bian. The nucleation sites of primary Si in Al-Si alloys after addition of boron and phosphorus, Journal of Alloys and Compounds,2005,391:90-94
    [37]S.C. Sharma, B.M. Girish, D.R. Somashekar, et al. Mechanical properties and fractography of zircon-particle-reinforced ZA-27 alloy composite materials, Composites Science and Technology, 1999,59:1805-1812
    [38]Y.F. Han, X.F. Liu, X.F. Bian. In situ TiB2 particle reinforced near eutectic Al-Si alloy composites, Composites:Part A,2002,33:439-444
    [39]J.V. Wood, P. Davies, J.L.F. Kellie. Properties of reactively cast aluminum-TiB2 alloys, Material Science and Technology,1993,9:833-840
    [40]M.D.皮特森,W.D.怀纳.磨损控制手册.汪一麟译.北京:机械工业出版社,1994
    [1]T. Tanaka, E. Bannai, S. Kawai. Growth of high purity LaB6 single crystals by multi-float zone passage, Journal of Crystal Growth,1987,50(25):193-197
    [2]T.T. Shen, D.H. Xiao, X.Q. Ou, et al. Effects of LaB6 addition on the microstructure and mechanical properties of ultrafine grained WC-10Co alloys, Journal of Alloys and Compounds, 2011,509:1236-1243
    [3]H. Deng, E.C. Dickey. Crystallographic characterization and indentation mechanical properties of LaB6-ZrB2 directionally solidified eutectics, Journal of Materials Science,2004,39:5987-5994
    [4]D.B. Wang, M.S. Mo, D.B. Yu, et al. Large-scale growth and shape evolution of Cu2O cubes, Crystal Growth & Design,2003,3(3):717-720
    [5]Z.W. Quan, C.X. Li, X.M., Zhang, et al. Polyol-mediated synthesis of PBS crystals:Shape evolution and growth mechanism, Crystal Growth & Design,2008,8(7):2384-2392
    [6]I. Sunagawa. Crystals growth, morphology and perfection, Cambridge:Cambridge University Press,2005
    [7]G.H. Liu, K.X. Chen, H.P. Zhou, et al. Fast shape evolution of TiN microcrystals in combustion synthesis, Crystal Growth & Design,2006,6(10):2404-2411
    [8]X.H. Ji, Q.Y. Zhang, J.Q. Xu, et al. Rare-earth hexaborides nanostructures:Recent advances in materials characterization and investigations of physical properties, Progress in Solid State Chemistry,2011,39(2):51-69
    [9]P. Hartman. Crystal growth:an introduction, Amsterdam:North-Holland Publishing Company, 1973
    [10]L.N. Bai, N. Ma, F.L. Liu. Structure and chemical bond characteristics of LaB6, Physical B: Condensed Matter,2009,404(21):4086-4089
    [11]C. Li, Y.Y. Wu, H. Li, et al. Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys, Acta Materialia,2011,59(3):1058-1067
    [12]M. Qian, P. Cao, M.A. Easton, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction, Acta Materialia,2010,58(9):3262-3270
    [13]S.M. Lee, S.N. Cho, J. Cheon. Anisotropic shape control of colloidal inorganic nanocrystals, Advanced Materials,2003,15(5):441-444
    [14]S.V. Moshkin, A.V. Nardov. Growth kinetics of constant-composition binary crystals from solutions, Journal of Crystal Growth,1981,52(2):816-819
    [15]W.F. Miao, H.R. Liu, Z.M. Zhang, et al. Large-scale growth and shape evolution of micrometer-sized Cu2O cubes with concave planes via c-irradiation, Solid State Sciences,2008, 10(10):1322-1326
    [16]C.J. Murphy. Nanocubes and Nanoboxes, Materials Science,2002,298(5601):2139-2141
    [17]Z.L. Wang. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, Journal of physical chemistry B,2000,104(6):1153-1157
    [18]L. Shi, Y.M. Xu, Q. Li. Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures, Crystal Growth Desigh,2009,9(4):2214-2219.
    [19]N. D'Souza, P.A. Jennings, X.L. Yang, et al. Seeding of single-crystal superalloys-Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth, Metallurgical and Materials Transactions B,2005,36:657-666
    [20]O. Hunziker. Theory of plane front and dendritic growth in multicomponent alloys, Acta Materialia,2001,49(20):4191-4203
    [21]I. Maxwell, A. Hellawell. A simple model for grain refinement during solidification, Acta Metallurgica,1975,23:229-237
    [22]M.A. Easton, D.H. Stjohn. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Materialia,2001,49:1867-1878
    [23]刘智恩.材料科学基础,西安:西北工业大学出版社,2007
    [24]安阁英.铸件形成理论,北京:机械工业出版社,1990
    [25]D. Turnbull, B. Vonnegut. Nucleation catalysis, Industrial & Engineering Chemistry,1952,44: 1292-1298
    [26]B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metallurgical Transaction,1970; 1:1987-1995
    [27]J.V. Wood, P. Davies, J.L.F. Kellie. Properties of reactively cast aluminum-TiB2 alloys, Material Science and Technology,1993,9:833-840
    [28]U. Vaidya Rajendra, K.K. Chawla. Thermal expansion of metal matrix composites, Composite Science and Technology,1994,50(1):13-22
    [29]S.C. Tjong, K.F. Tam, S.Q. Wu. Thermal cycling characteristics on in-situ Al-based composites prepared by reactive hot pressing, Composite Science and technology,2003,63:89-97
    [30]陈亚军,许庆彦,黄天佑.稀土铝钛硼中间合金的细化能力与长效性,中国有色金属学报,2007,17(8):1232-1239
    [31]刘红才Al-Ti-B-Re中间合金细化剂研究,大连理工硕士学位论文,2007
    [32]张胜华,张涵,朱云.稀土在Al-Ti-B-KE中间合金中的作用,中南大学学报(自然科学版),2005,36(3):386-389

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700