用户名: 密码: 验证码:
酶解海藻产物对刺参(Apostichopus japonicus)肠道菌群和免疫相关因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将0.1%的褐藻寡糖(ADO)和5%经褐藻胶裂合酶酶解的海藻粉添加到刺参基础饲料中进行周期40d的投喂实验,实验期间每隔10d取样一次,取样后检测刺参肠道内细菌总数和弧菌总数,体腔液和体壁中免疫相关因子的活性和免疫相关酶同工酶的变化,研究海藻粉和褐藻寡糖对刺参非特异性免疫的影响和初步作用机制,具体实验内容和结果如下:
     1.采用平板计数的方法测定刺参肠道内细菌总数和弧菌总数。对照组刺参肠道细菌总数波动较大,海藻粉组和褐藻寡糖组细菌总数波动较小;实验期间海藻粉组刺参肠道细菌总数均小于对照组,但未形成显著性差异(P>0.05)。海藻粉组和褐藻寡糖组刺参弧菌总数占细菌总数的比值均大于对照组,而褐藻寡糖的体外抑菌实验中褐藻寡糖对副溶血弧菌没有抑制作用,推测海藻粉和褐藻寡糖对刺参肠道内优势茵群弧菌属部分细菌有一定的促进作用。
     2.采用分光光度技术测定了海藻粉和褐藻寡糖对刺参体腔液和体壁组织中免疫相关因子溶菌酶(LSZ)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)和溶血素活性的影响。结果表明:实验期间海藻粉组和褐藻寡糖组刺参免疫相关因子活性均高于对照组。海藻粉组和褐藻寡糖组刺参体腔液中ACP、AKP、溶血素和LSZ活性分别在第20d、20d、30d和40d达到最高,并且均与对照组形成显著性差异;海藻粉组和褐藻寡糖组刺参体壁中ACP、AKP和溶血素在其活性最高时均与对照组形成显著性差异。刺参体腔液中免疫相关因子活性的提高幅度要比体壁大,这可能是因为体腔液包含体腔细胞和各种体液免疫因子,是机体免疫反应发生的主要场所,其对免疫刺激物的免疫刺激反应比较强烈,因此活性的提高幅度较大。
     3.海藻粉组和褐藻寡糖组刺参体腔液和体壁组织中抗氧化相关酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性实验期间均高于对照组。体腔液和体壁组织中抗氧化酶均呈现先增高后降低的趋势,体腔液中酶活性达到峰值的时间比体壁组织提前10d并且酶活性提高幅度较大,推测是由于体腔液中免疫刺激反应比较强烈所致。同工酶结果表明:褐藻寡糖和海藻粉对刺参抗氧化相关酶的诱导提高作用不仅体现在增加酶的浓度,同工酶酶带的增多也是增加酶活性的途径之一
     海藻粉和褐藻寡糖对刺参肠道的稳定性和优势菌群的生长均有一定的促进作用,并且可以诱导刺参体腔液和体壁组织中免疫相关因子活性的提高,对刺参非特异性水平有一定的提高作用,因此将海藻粉和褐藻寡糖开发为水产动物尤其是刺参的免疫增强剂具有广阔的前景。
The effects of enzymatic hydrolysis algae powder by alginate lyase and alginate derived oligosaccharide (ADO) on the non-specific immune system of sea cucumber (Apostichopus japonicus) and the preliminary mechanism were studied by supplying 5% algae powder and 0.1% ADO in diets. The total numbers of the bacteria and the vibrio.spp, the activities of immune-relative factors in the coelomic fluid and the body wall and the changes of the isozymes were determined every 10 days during the experiment period (40 days). The specific content and results are as follows:
     1.The total numbers of bacteria and vibrio.sp in the intestinal tract of sea cucumber were measured with the plate counting method. The fluctuation range of the total number of bacteria of the control was wider than those of the algae powder group and the ADO group. The total numbers of bacteria of the algae powder group were all smaller than those of the control, but did not have significant differences (P>0.05). The ratios of the total numbers of vibrio.sp to bacteria of the algae powder and ADO groups were higher that of the control. The ADO did not have antibacterial activity to vibrio parahaemolyticus in vitro experiment, so the algae powder and ADO could promote the growth of some bacteria belonging to the vibrio.sp which is one of the dominant flora in the intestinal tract.
     2.Effects of algae powder and ADO on the activities of lysozyme (LSZ), acid phosphatase (ACP),alkaline phosphatase (AKP) and hemolysin in the coelomic fluid and the body wall were studied by the use of spectrophotometry. The results indicated that all the activities of immune-relative factors of the algae powder and ADO groups were higher than those of the control. The activities of the ACP, AKP, hemolysin and LSZ reached their maximum values on the 20th,20th,30th and 40th day respectively, and they all had significant differences compared with the control.The highest activities of ACP, AKP and hemolysin also had significant differences compared with the control. The coelomic fluid contains a variety of humoral immune factors and immune cells and the immune reactions take place here. So the reactions of the immune-relative factors in the coelomic fluid to the immunologic stimulant were stronger than those of the body wall and the enhancements of the activities of immune-relative factors were also higher.
     3. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) of the algae powder and ADO groups were all higher than those of the control during the experiment period, and they all increased firstly and then decreased. The time that the activities of enzymes in the coelomic fluid reached the peak was 10 days ahead of that in the body wall and the enhancements of the activities were also higher than those in the body wall. The reason may be that the reactions of the immune-relative factors in the coelomic fluid to the immunologic stimulant were stronger than those of the body wall too. The results of the isozymes indicated that algae powder and ADO could not only increase the concentration of the enzymes, but also increased the bands of the isozymes.
     The algae powder and ADO could sustain the stability of the intestinal flora, promote the growth of the dominant flora and enhance the activities of immune-relative factors suggesting that the presence of algae powder and ADO improved the non-specific immunity of sea cucumber significantly and applying them as non-specific immunostimulants for sea cucumber will have a broad foreground.
引文
[1]McElroy S. Beche-de-mer species of commercial value-an-update. Beche-de-mer Lnf. Bull, 1990, (2):2-7.
    [2]廖玉麟.中国动物志·棘皮动物门·海参纲.北京:北京科学出版社,1997.1-39.
    [3]张群乐,刘永宏.海参海胆增养殖技术.青岛:青岛海洋大学出版社,1998.1-120.
    [4]隋锡林,高绪生.海参海胆增养殖技术.北京:金盾出版社,2004.1-173.
    [5]Kalinin V L, Levin V S, S tonic V A. Chemical Morphology:Triterpene Glycosides of Holothurians (Holothurioidea Echinodermata), Vladivostok:Dal'nauka.1994.
    [6]Hatakeyama T, Sato T, Taira E. Characterization of the Interaction of Hemolytic Lectin CEL-Ⅲ from the Marine Invertebrate, Cumcumaria echinata, With Artificial Lipid Membrance:Involvement of Neutral Sphingogly colipids in the Pore-Forming Process.J. Biochem. (Tokyo),1999,125(2):277~284.
    [7]樊绘曾.海参:海中人参.关于海参及其成分保健医疗功能的研究与开发.中国海洋药物,2001,(4):37-44.
    [8]尾崎久雄.消化生理.(李爱杰,沈宗武译).上海:上海科技出版社,1985.44-47.
    [9]Spanggard B, Huber I, Nielsen J et al. Microflora of rainbow trout intestine:A comparison of traditional and molecular identification. Aquaculture,2000,182:1~15.
    [10]Deming J W, Colwell R R. Bsrophilic bacteria associated with digestive tracts of abyssal holothurian. Appl Enviro Microbial,1982,44:1222~1230.
    [11]孙奕,陈騳.刺参体内外微生物组成及其生理特性的研究.海洋与湖沼,1989,20(4):300-307.
    [12]Rainey N W, Rainey F A, Stackebrandt E. A study of the bacterial flora associated with Holothuria atra. J Exp Biol Ecil,1996,203:11~26.
    [13]Clifford C, Walsh J, Johnson D B. Digestive enzymes and subcellular localization of disaccharidases in some echinoderms. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,1982,71 (1):105~110.
    [14]Harris J M. The presence, nature, and role of gut microflora in aquatic invertebrates:a synthesis. Micro Ecol,1993,25:195~231.
    [15]汪婷婷,孙永欣,徐永平等.多糖类免疫增强剂对海参肠道菌群的影响.饲料工业,2008,29(4):19-20.
    [16]Fuller M E, Lau S S, Ferris H. Development and Testing of an Assay for Soil Ecosystem Health Using the Bacterial-Feeding Nematode Cruznema tripartitum. Ecotoxicology and Environmental Safety,1997,36(2):133~139.
    [17]陈孝煊,吴志新,周文豪.鱼类消化道菌群的作用与影响因素研究进展.华中农业大学学报,2005,24(5):523-528.
    [18]Becker P, Gillan D, Lanterbecq D et al. The skin ulceration desease in cultivated juveniles of Holothuria scara (Holothuroidea,Echinodermata). Aquaculture,2004,242:13~30.
    [19]张春云,王印庚,荣小军等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,2004,25(3):89-97.
    [20]Sugita H, Shibuya K, Shimooka H. Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquacuture,1996,145:196~203.
    [21]Newman K. Mannanoligosaccharide:Natural polymers with significant impact on the gastrointestinal microflora and the immune system. Lyons T P,Jacques K A. Biotechnology in the Feed Industry. Proceeding of Alltech's Tench Annual Symposium. Nottingham,UK: Nottingham University Presss,1994.167~174.
    [22]Ofec 1, D Mirelman, N Sharon. Adherence of Escherichiacoli to human mucosal cells mediated by mannose receptors. Nature (London),1997,265:623~625.
    [23]李云兰.甘露寡糖对幼建鲤肠道菌群和免疫功能的影响:[硕士学位论文].雅安:四川农业大学,2004.
    [24]张红梅,张磊,姜会民.甘露寡糖对生长期鲤鱼生长性能及肠道菌群的影响.中国饲料,2003,9:22.
    [25]杜英男,鞠贵春,薛军.果聚糖和甘露寡糖对水貂肠道菌群影响的研究.经济动物学报,11(2):83-86.
    [26]蔡雪峰,罗琳,战文斌.寡糖对虹鳟幼鱼肠道菌群影响的研究.中国海洋大学学报,2006,36(4):606-610.
    [27]李宝玉,李德发.双歧杆菌和乳酸杆菌对不同碳水化合物利用能力.中国饲料,1999(18):9-10.
    [28]Mahious A S, Gatesoupe F J, Hervi M, et al. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus,C.1758). Aquaculture International, 2006 (14):219~229.
    [29]孙永欣.黄芪多糖促进刺参免疫力和生长性能的研究:[博士学位论文].大连:大连理工大学,2008.
    [30]Isao K, Tatsuya I, Masako F. Structure of Echinoside A and B, two antifungal Oligoglycosides form the sea cucumber Actinopyga echinites(Jaeger). J Chem Pharm Bull, 1980,28(5):1651.
    [31]聂竹兰,李霞,辛涛.仿刺参体壁的组织学和组织化学.大连水产学院学报,2007,22(3):184-187.
    [32]李继业.养殖刺参免疫学特征与病害研究:[博士学位论文].青岛:中国海洋大学,2007.
    [33]Eliseikina M QMagarlamov T Y. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota Stichopodidae) and cucumaria japonica (Dendrochirota:Cucumariidae). J Mar Biol,2002,28(3):197~202.
    [34]Ridzwan B H,KaswandiM A,AzmanY, et al. Screening for antibacterial agents in three species of sea cucumbers from coastal areas of sabah. J Gen Pharmac,1995,26(7): 1539~1543.
    [35]Haug T, Kjuul A K, Styrvold O B, et al. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Patho,2002(81):94~102.
    [36]Ana PM, Claudia M, Alicia M S, et al. Patagonicoside:a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. J Tetrahedron,2001(57): 9563~9568.
    [37]Eliseikina M,G. and Magarlamov T,Yu. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota:Stichopodidae) and Cucumaria japonica (Dendrochirota:Cucumariidae). Russian Journal of Marine Biology,2002,28(3):197~202.
    [38]廖玉麟.中国动物志·棘皮动物门·海参纲.北京科学出版社.1997,1-39.
    [39]刘晓云,谭金山,包振民等.刺参体腔细胞的超微结构观.电子显微学报,2005,24(6):613-615.
    [40]EddsK T. Morphological and cytoskeletal transformationin sea urchin coelomocytes//Cohen W D. Blood cells of marine invertebrates:experimental systems in cell biology and comparative physiology. New York, NY:AR Liss,1985:53~74.
    [41]Jans D, dubois P, Jangoux M. Defensive mechanism of holothuroids (Echinodermata): formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. Cell Tissue Res,1996,283:99~106.
    [42]Dybas L, Fankboner P V. Holothurian survival strategies:mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber,Parstichopus californicus. J dev comp Immunol,1986,10:311~330.
    [43]Canicatti C, Rizzo A. A220kDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur J Cell Biol,1991,56:79~83.
    [44]Bertheusen K. Receptors for complement on echinoid phagocytes Ⅱ. Purified human complement mediates echinoid phagocytosis. J Dev Comp Immuno,1982(6):635~642.
    [45]Matranga V. Molecular aspects of immune reactions in Echinodermata//Muller W E G,Rinkevich B.Invertebrate immunology, PMSB series, vol 15. Springer, Heidelberg Berlin New York,1996:235~247.
    [46]Beck G, Habicht G S. Primitive cytokines:harbingers of vertebrate defence. Immunol Today, 1991,12:180~183.
    [47]Xing J, Chia F S. Opsonin-like molecule found in coelomic fluid of sea cucumber, Holothuria leucospilota. Mar Biol,2000,136:979~986.
    [48]Boolootian R A. Physiology of Echinodermata. New York:Interscience Publishers,1966.
    [49]Smith L C,Clow L A,Terwilliger D P. The ancestral complement system in sea urchins. Immunol Rev,2001,180:16~34.
    [50]Foniaine A R, Lambert P. The fine structure of leukocytes of the holothurian, Cucumaria miniata. Can J Zool,1997,55:1530~1542.
    [51]Kanungo K. In vitro studies on the effect of cell-free coelomic fluid calcium, and magnesium on clumping of coelomocytes of the sea star Asteria forbesi. Biol Bull,1982,163:438~452.
    [52]Matsui T, Ozeki Y, Suzuki A. Purification and characterization of two Ca2+-dependent lectins from coelomic plasma of sea cucumber, Stichopus japonicus [J]. Biochem,1994, 116:1127~1123.
    [53]Hatakeyama T, Nagatomo H, Yamasaki N. Interaction of the hemolytic lectin CEL-Ⅲ from the marine invertebrate Cucumaria echinata with the erythrocyte membrane [J].J Biol Chem,1995 (1270):3560~3564.
    [54]Himeshima T, Hatakeyama T, Yamasak N. Amino acid sequence of a lectin from the sea cucumber, Stichopus japonicus, and itsstructural relationship to the C-type animal lectin family. J Biolchem,1994,115:689~692.
    [55]Canicatti C, Parrinello N. Hemaglutinin and hemolysin level in coelomic fluid from Holothuria polii (Echinodermata) following sheep erythrocyte injection.J Biol Bull,1985 (168):175~182.
    [56]Calogero Canicatti, Donatella Ciulla. The hemolysin-producer coelomocytes in Holothuria polii.Developmental & Comparative Immunology,1988,12(4):729-736
    [57]Roach J C, Glusman G, Rowen L, et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. U. S. A.2005.102,9577-9582.
    [58]Smith V J, Soderhall K. A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev Comp Immunol.1991,15(4):251~61.
    [59]于善谦,王洪海,朱乃硕等.免疫学导论.北京高等教育出版社,1999:68-87.
    [60]Leonard L A, Strandberg J D, Winkelstein J A. Complement-like activity in the sea star Asteria forbesi. Dev Comp Immunol,1990,14:19~30.
    [61]Holmskov U,Malhotra R,Sim R B et al. Collectins:collagenous C-type lectins of the innate immune defence system. Immunol Today,1994,15:67~74.
    [62]Dahl M R.MASP-3 and its association pathway. J Immunity,2001,15:127~315.
    [63]王长法,张士璀,王勇军.补体系统的进化.海洋科学,2004,28(8):55-58.
    [64]Xing J, Chia F S. Opsonin like molecule found in coelomic fluid of a sea cucumber, Holothuria leucospilota. J Mar Bilo,2000 (136):979~986.
    [65]Bulgakov A A, Nazarenko E L, Petrova I Y. Isolation and properties of a mannan binding lectin from the coelomic fluid of the Holothurian Cucumaria japonica. J Biochemis (Mosc), 2000,65 (8):933~939.
    [66]EliseikinaM G, Bulgakov A A, Nazarenko E L. Localization of a 32 kD a mannan binding Lectin in the Tissues of the Far Eastern Holothurian Stichopus japonicus. J Izv RAN,1999 (2):228~232.
    [67]江晓路,刘树青,张朝晖.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6(1): 66-68.
    [68]牟海津,江晓路,刘树青,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响.青岛海洋大学学报,1999,25(3):463-468.
    [69]刘树青,江晓路,牟海律,等.免疫多糖对中国明对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283.
    [70]Siwicki, A K, Anderson D P, Rumsey G L, et al. DIetry intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis.Veterinary science and hygiene.1994,41(1):125~139.
    [71]李伟佟,长青,熊川男等.海洋生物寡糖对养殖类海洋无脊椎动物免疫机能的影响研究.饲料工业,2006,27(2):52-54.
    [72]Sahoo P K. Effects of dietaryβ-1,3glucan on immune responses and disease resistance of healthy and aflatoxin P-induced innunocompromised rohu (Labreo rihito Hamiton). Fish Shellfish Immunol,2001,11:683~695.
    [73]王树芹,洪琪.壳聚糖对异育银鲫溶菌酶和白细胞吞噬活性的影响[J].上海水产大学学报,2004,13(2):121-125.
    [74]Yano T, Matsuyama H, Mangindaan REP. Polysaccharide-induced protection of carp, Cyprinus carpio L.against bacterial infection. Fish Dis,1991,14:577~582.
    [75]Yano T, Mangindaan REP, Matsuyama H. Enhancement of the resistance of carp Cyprinus carpio to experimental Edwardsiella tarda infection,by some β-1,3-glucans. Nippon Suisan Gakkaishi,1989,55:1815~1819.
    [76]Sakai M, Karniya H. The immunostimulating effects of chitin in rainbow trout, Oncorrhynchus mykiss. Diseases in Asia Aquaculture,1992 (1):413~417.
    [77]Bullock G, Blazer V, Tsukuda S. Toxicity of acidified chitosan for cultured rainbow trout(Oncorhynchus mykiss). Aquaculture,2000,185:273~280.
    [78]王锐,刘军,刘辉宁.半乳甘露寡糖对异育银鲫幼鱼生长和非特异性免疫的影响.上海水产大学学报,2008,17(4):502-506.
    [79]郝林华,孙丕喜,石红旗,等.牛蒡寡糖对大菱鲆生长和免疫机能的影响.海洋科学进展,2007,25(2):208-214.
    [80]王艳,吴志新,庞素风.果寡糖对银鲫非特异性免疫功能的影响.水生生物学报,32(4):487-492.
    [81]江晓路,刘树青,牟海津.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响.动物学研究,1999,20(1):41-45.
    [82]许乐乐.刺参体腔细胞原代培养技术的建立及其在快速筛选免疫增强剂中的应用:[博士学位论文].青岛:中国海洋大学,2009.
    [83]Anisworth A J, Mao C P. Immune responses enhancement in channel catfish, Ictalurus punctatus, using-β-glucan from Schizophyllum commune. Fish Immune Response,1994, 1:67~81.
    [84]余水法,蔡春芳,宋学宏.β-葡聚糖对河蟹免疫功能的影响.中国饲料.2006(5):20-22.
    [85]孙虎山,李光友.硒多糖和酵母葡聚糖对栉孔扇贝血淋巴中两种抗氧化酶活力的影响.中国海洋药物,2000,19(5):20-23.
    [85]孙虎山,李光友.硒化卡拉胶和酵母葡聚糖对栉孔扇贝血淋巴中两种水解酶活力的影响.海洋与湖沼,2002,33(3):245-249.
    [87]Claire Dautremepuits, Stephane Betoulle, Severine paris Palaeios. Humoral immune faetors modulated by copper and chitosan in healthy or parasitised carp (Cyprinus carpioL) by Piychobothrium sp. (Cestoda). Aquatic toxicology,2004,68 (4):325~338.
    [88]王树芹,周洪琪.壳聚糖对异育银鲫溶菌酶和白细胞吞噬活性的影响.上海水产大学学报,2004,13(2):121-125.
    [89]刘云,孔伟丽,姜国良,等.2种免疫多糖对刺参组织主要免疫酶活性的影响.中国水产科学,2008,15(5):787-793.
    [90]刘志鸿.海洋双壳贝类的免疫特性及调节:[博士学位论文].青岛:中国海洋大学,2004.
    [91]朱越雄,魏育红,贡成良.罗氏沼虾两种抗氧化酶活性与云芝多糖的影响.内陆水产,2000,25(7):6-7.
    [92]何四旺,许国焕,吴月嫦,等.低聚异麦芽糖和低聚果糖对罗非鱼生长和非特异性免疫的影响.中国饲料,2003,(23):14-15.
    [93]王鹏,江晓路,江艳华,等.褐藻低聚糖对大菱鲆免疫机能的作用.海洋科学,2006,30(8):6-9.
    [94]王艳,吴志新,庞素风.果寡糖对银鲫非特异性免疫功能的影响.水生生物学报,32(4):487-492.
    [95]常巧玲,孙建义.海藻饲料资源及其在水产养殖中的应用研究.饲料工业,2006,27(2)62-64.
    [96]薛艳丽.一种新型饲料添加剂——海藻粉.饲料添加剂,2007,12(6):13-14.
    [97]Yuan X, Yang H, Zhou Y. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata Holothuroidea). Aquaculture,2006,256 (4):457~467.
    [98]胡晓珂.胶裂合酶工程化研究与应用:[博士学位论文].青岛:中国海洋大学,2004.
    [99]陈明耀.饵料培养.北京:中国农业出版社,1995.
    [100]孙晓庆,董树刚.生物饵料在水产养殖中的综合应用现状.齐鲁渔业,2006,23(10):31-33.
    [1]Harris J M. The presence,nature,and role of gut microflora in aquatic invertebrates:a synthesis. Micro Ecol,1993,25:195~231.
    [2]汪婷婷,孙永欣,徐永平等.多糖类免疫增强剂对海参肠道菌群的影响.饲料工业,2008,29(4):19-20.
    [3]Fuller M E, Lau S S, Ferris H. Development and Testing of an Assay for Soil Ecosystem Health Using the Bacterial-Feeding Nematode Cruznema tripartitum. Ecotoxicology and Environmental Safety,1997,36(2):133~139.
    [4]蔡雪峰,罗琳,战文斌.寡糖对虹鳟幼鱼肠道菌群影响的研究.中国海洋大学学报,2006,36(4):606-610.
    [5]Mahious A S, Gatesoupe F J, Hervi M, et al. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C.1758). Aquaculture International, 2006(14):219~229.
    [6]庄承纪,刘劲科,杨清友等.壳多糖对罗氏沼虾、斑节对虾苗生长和抗菌防病作用研究.湛江海洋大学学报,1998,18(3):29-34
    [7]胡晓珂.胶裂合酶工程化研究与应用:[博士学位论文].青岛:中国海洋大学,2004.
    [8]刘瑞志.褐藻寡糖刺进植物生长与抗逆效应机理研究:[博士学位论文].青岛:中国海洋 大学,2009
    [9]陈明耀.饵料培养.北京:中国农业出版社,1995.
    [10]孙晓庆,董树刚.生物饵料在水产养殖中的综合应用现状.齐鲁渔业,2006,23(10):31-33.
    [11]孙奕,陈騳.刺参体内外微生物组成及其生理特性的研究.海洋与湖沼,1989,20(4)300-307.
    [12]Rainey N W, Rainey F A, Stackebrandt E. A study of the bacterial flora associated with Holothuria atra. J Exp Biol Ecil,1996,203:11-26.
    [13]杨小强.新一代活性饲料——大型海藻饲料.饲料研究,2000(1):22-25.
    [14]Becker P, Gillan D, Lanterbecq D et al. The skin ulceration desease in cultivated juveniles of Holothuria scara(Holothuroidea,Echinodermata). Aquaculture,2004,242:13-30.
    [15]张春云,王印庚,荣小军.养殖刺参腐皮综合症病原菌的分离与鉴定.水产学报,2006,30(1):118-123.
    [16]马悦欣,徐高蓉,常亚青.大连地区刺参幼参溃烂病细菌性病原的初步研究.大连水产学院学报,2006,21(1):13-18.
    [17]Clifford C, Walsh J, Johnson D B. Digestive enzymes and subcellular localization of disaccharidases in some echinoderms. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,1982,71(1):105~110.
    [1]沈鸣.海参的化学成分和药理研究进展.中成药,2001,23(10):758-761.
    [2]Moon J H, Ryu H S, Yang H S, et al. Antimutagenic and anticancer effect of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus). The Korean Society of Food Science and Nuitrition,1998,27(2):350-358.
    [3]王印庚,荣小军,张春运,等.养殖海参主要疾病及防治技术.海洋科学,2005,29(3):1-7.
    [4]Bricknell I, Dalmo R A. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol,2005,19:457~472.
    [5]聂竹兰,李霞,辛涛.仿刺参体壁的组织学和组织化学.大连水产学院学报,2007,22(3):184-187.
    [6]李继业.养殖刺参免疫学特征与病害研究:[博士学位论文].青岛:中国海洋大学,2007.
    [7]Canicatti C, Parrinello N. Hemaglutinin and hemolysin level in coelomic fluid from Holothuria polii (Echinodermata) following sheep erythrocyte injection. J Biol Bull,1985 (168):175~ 182.
    [8]许乐乐.刺参体腔细胞原代培养技术的建立及其在快速筛选免疫增强剂中的应用:[博士学位论文].青岛:中国海洋大学,2009.
    [9]王鹏,江晓路,江艳华,等.褐藻低聚糖对大菱鲆免疫机能的作用.海洋科学,2006,30(8):6-9.
    [10]何四旺,许国焕,吴月嫦,等.低聚异麦芽糖和低聚果糖对罗非鱼生长和非特异性免疫的影响.中国饲料,2003,(23):14-15.
    [11]郝林华,孙丕喜,石红旗,等.牛蒡寡糖对大菱鲆生长和免疫机能的影响.海洋科学进展,2007,25(2):208-214.
    [12]范曼芳,陈琼华.褐藻淀粉和褐藻硫酸酯的提取、分析及生物活性的比较.中国药科大学学报,1988,19(1):30-34.
    [13]李应全,盛少虎.甘糖酯对小鼠免疫功能的影响.中国海洋药物,1995(3):14-16.
    [14]江晓路,刘树青,张朝晖.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6(1):66-68.
    [15]Yuan X, Yang H, Zhou Y. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata Holothuroidea). Aquaculture,2006,256 (4):457~467.
    [16]胡晓珂.胶裂合酶工程化研究与应用:[博士学位论文].青岛:中国海洋大学,2004.
    [17]陈明耀.饵料培养.北京:中国农业出版社,1995.
    [18]孙晓庆,董树刚.生物饵料在水产养殖中的综合应用现状.齐鲁渔业,2006,23(10):31-33.
    [19]Hultmark, D. Insect immunity:Purifieation and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyatophom cecropia.Eur J Biochem,1980, 106:7-16.
    [20]宋善俊主编.临床医师手册.上海:上海科学技术出版社,1991,378-380.
    [21]宋善俊主编.临床医师手册.上海:上海科学技术出版社,1991,185-200.
    [22]陈勤.抗衰老研究实验方法.北京:中国医药科技出版社.1996.344-348.
    [23]Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm. Bombyx Mori Arch Biochem Biophy,1971,144:749~762.
    [24]孙永欣.黄芪多糖促进刺参免疫力和生长性能的研究:[博士学位论文].大连:大连理工大学,2008.
    [25]Isao K, Tatsuya I, Masako F. Structure of Echinoside A and B, two antifungal Oligoglycosides form the sea cucumber Actinopyga echinites(Jaeger). J Chem Pharm Bull, 1980,28(5):1651.
    [26]孟繁伊,麦康森,马洪明等.棘皮动物免疫学研究进展.生物化学与生物物理进展,2009:1-9.
    [27]Eliseikina M G,Magarlamov T Y. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota Stichopodidae) and cucumaria japonica (Dendrochirota:Cucumariidae). J Mar Biol,2002,28(3):197~202.
    [28]Wang F Y, Yang H S, Gao F. Effects of acute temperature or salinity stress on the immune response in seacucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology, Part A 151 (2008) 491~498.
    [29]Li Jiye, Sun Xiuqin, Zheng Fengrong, et al. Screen and effect analysis of immunostimulants for sea cucumber, Apostichopus japonicus.Chinese Journal of Oceanology and Limnology, 2009,7(1):80~84.
    [30]刘云,孔伟丽,姜国良,等.2种免疫多糖对刺参组织主要免疫酶活性的影响.中国水产科学,2008,15(5):787-793.
    [31]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼,1995,26(2):179-184.
    [32]Haug T, Kjuul K, Styrvold O B, et al. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa(Holothuroidea), and Asterias rubens (Asteroidea). Invertebrate Pathology.2002(81):94~102.
    [33]Canicatti C. Lysosomal enzyme pattern in Holothuria polii coelomocytes. J Invert Pathol, 1990(56):70~74.
    [34]蔡春芳,宋学宏,潘兴法,等.几种抗病促生长剂对银鲫生长和免疫力的影响.水利渔业,2002,3:20-22.
    [35]Zhang R Q, Chen Q X, Zheng W Z. Inhibition kinetics of green crab(Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol. Int J Biochemistry & Cell Biology,2000,32:865~872.
    [36]Canicatti C. The Lytic system of Holothuria polii:a review. Boll Zool,1988,55 (3):139~ 144.
    [37]王雷,李光友.甲壳动物的体液免疫研究进展.海洋科学,1992,3:18-19.
    [38]Armstrong P B, Armstrong M T, Qtugley J P. A hemolytic activity In the blood of the American horseshoe crab, Limulus polyphemus that resembles the mammalian complement system. Biol Bull Mar Biol lab Woods Hole,1992,183(2):378~379.
    [39]Hatakeyama T, Kohzaki H, Nagatomo H et al. Purification and characterization of four Ca super(2+)-dependent lectins from the marine invertebrate.Cucumaria echinata. J Biochem Tokyo,1994,116(1):209~214.
    [40]江晓路,刘树青,牟海津.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响.动物学研究,1999,20(1):41-45.
    [41]牟海津,江晓路,刘树青,等.日本对虾溶血素的活性测定及性能研究.海洋与湖沼,1999,30(4):362-367.
    [42]Roch P, Canicatti C, Sammarco S. Tetrameric structure of the active phenoloxidase evidenced in the coelomocytes of the echinoderm Holothuria tubulosa Comp Biochem Physiol,1992,102B(2):349~355.
    [1]沈鸣.海参的化学成分和药理研究进展.中成药,2001,23(10):758-761.
    [2]Moon J H, Ryu H S, Yang H S, et al. Antimutagenic and anticancer effect of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus). The Korean Society of Food Science and Nuitrition,1998,27(2):350~358.
    [3]王印庚,荣小军,张春运,等.养殖海参主要疾病及防治技术.海洋科学,2005,29(3):1-7.
    [4]Bricknell I, Dalmo R A. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol,2005,19:457~472.
    [5]Roch P. Defense mechanisms and disease prevention in farmed marine invertebrate. Aquaculture,1999,172,125-145.
    [6]许乐乐.刺参体腔细胞原代培养技术的建立及其在快速筛选免疫增强剂中的应用:[博士学位论文].青岛:中国海洋大学,2009.
    [7]孙虎山,李光友.硒多糖和酵母葡聚糖对栉孔扇贝血淋巴中两种抗氧化酶活力的影响.中国海洋药物,2000,19(5):20-23.
    [8]胡晓珂.胶裂合酶工程化研究与应用:[博士学位论文].青岛:中国海洋大学,2004.
    [9]陈明耀.饵料培养.北京:中国农业出版社,1995.
    [10]孙晓庆,董树刚.生物饵料在水产养殖中的综合应用现状.齐鲁渔业,2006,23(10):31-33.
    [11]Zheng X D, Zhao J M, Xiao S, et al. Isozymesanalysisof the golden Cuttle fish Sepia esculenta (Cephalopoda:Sepiidae). J Ocean Univ. China (in English),2004,3(1):48~52.
    [12]楼东,高天翔,张秀梅,等.中日花鲈生化遗传变异的初步研究.青岛海洋大学学报:自然科学版,2003,33(1):22-28.
    [13]高明君,葛兰,蔡亚能.不同地理品系卤虫的同工酶变异初步研究.青岛海洋大学学报,1994,24(1):40v46.
    [14]黄灿华,陈棣华.中国对虾病虾体内同工酶表型变化的初步研究.中国水产科学,1999,6(1):45-49.
    [15]李太武,苏秀榕.中国对虾和日本对虾6种同工酶的比较研究.海洋学报,1997,19(2):85-88
    [16]高悦勉,孙静波.刺参种群同工酶的生化遗传分析.大连水产学院学报,2004,19(1):30-34.
    [17]Kanno M, Kijima A. Genetic differentiation among three color variants of Japanese sea cucumber Stichopusj aponicas. Fish Sci,2003,69(4):806~812
    [18]邓碧玉,袁勤生,李文杰.改良的连苯三酚自氧化测定超氧化物歧化酶活性的方法.生物化学与生物物理进展,1991,18(2):163.
    [19]周强,曹春艳.血清过氧化氢酶的比色测定.哈尔滨医科大学学报,2001,35(6):473-474.
    [20]施特尔马.酶的测定方法(钱嘉渊译).北京:中国轻工业出版社,1992.276-278.
    [21]袁庆华,桂枝.苜蓿褐斑病抗性与几种同工酶的关系.草业学报,2003,12(6):58-63.
    [22]赵赣,曹永长,钱芳.过氧化氢同工酶KMnO4染色法的初步研究.江西农业大学学报,2002,24(4):541-543.
    [23]胡能书,万贤国.同工酶技术及其应用.长沙:湖南科学技术出版社,1985.
    [24]Jans D, Dubois P, Jangoux M. Defensive mechanisms of holothuroids (Echinodermata): Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa.J Cell Tissue Res,1996(283):99~106.
    [25]Bellavite P. The superoxide-forming enzymatic system of Phagocytes. Free Radic Biol Med, 1998,4:225.
    [26]McCord J M, Fridovich I. Superoxide dismutase:An enzyme function for erythrocuprein. Biol chem,1969,224:6049~6055.
    [27]李继业.养殖刺参免疫学特征与病害研究:[博士学位论文].青岛:中国海洋大学,2007.
    [28]刘云,孔伟丽,姜国良,等.2种免疫多糖对刺参组织主要免疫酶活性的影响.中国水产 科学,2008,15(5):787-793.
    [29]蔡春芳,宋学宏,潘兴法,等.几种抗病促生长剂对银鲫生长和免疫力的影响.水利渔业,2002,3:20-22.
    [30]Wang F Y,Yang H S, Gao F. Effects of acute temperature or salinity stress on the immune response in seacucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology, Part A 151 (2008)491~498.
    [31]Ji T T, Dong Y W, Dong S L. Growth and phylogical responsesin the sea cucumber, Apostichopus japonicus Selenka:Aestivation temperature. Aquaculture,2008,283: 180~187.
    [32]Chance B, Machly A C,Assay of catalase and peroxidases. Colowick S P. Methods in Enzymology (2). New York:Academic press,1995.764~775.
    [33]刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283.
    [34]Buchner T, Abele-Oeschger D, Theede H. Aspects of antioxidant status in the polychaete Arenicola marina:tissue and subcellular distribution, andreaction to environmental hydrogen peroxide and elevated temperatures. Mar.Ecol., Prog. Ser,1996,143,141~150.
    [35]Abele D, Burlando B, Viarengo A, et al. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp. Biochem. Physiol.,1998,120B:425-435.
    [36]Rogers K D, Seebacher F,'Thompson M B. Biochemical acclimation of metabolic enzymes in response to lowered temperature in tadpoles of Limnodynastes peronii. Comp Biochem Physiol,2004,137A:731~738.
    [37]高夕全,夏凯,周燮.温度胁迫对稻胚酯酶同工酶、蛋白质和内源脱落酸(ABA)水平的影响.安徽农业技术师范学院学报,1999,13(4):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700