用户名: 密码: 验证码:
刺参(Apostichopus japonicus Selenka)对典型环境胁迫的生理生态学响应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺参(Apostichopus japonicus Selenka)属于棘皮动物门(Echinodermata)、海参纲(Holothroidea),是我国重要的海水养殖经济种类。近年来,由于其较高的经济价值,刺参养殖业在我国发展很快,目前已成为海水养殖的支柱产业之一。本论文以刺参为研究对象,设计了典型的环境胁迫因子,包括温度、氨氮、饥饿和夏眠、运输、排脏等,对比研究了胁迫种类、胁迫强度、胁迫作用方式等对刺参生理和生态学的不同影响。通过本研究的进行,不仅可以揭示环境胁迫对刺参影响的生理和生态学机制,丰富刺参生物学研究内容,还有助于找到消除或缓解环境胁迫对刺参负面影响的方法,从而为改进刺参养殖技术、促进刺参养殖业的健康发展提供必要的理论依据,因此具有重要的理论和实际意义。研究结果总结如下:
     1.采用实验生态学的方法,研究了不同变温模式(变温回复、变温维持)、变温强度(16±4℃,±8℃,±12℃)及变温方向(升温、降温)对刺参(Apostichopusjaponicus Selenka)幼参(体重3.37-4.61g)热休克蛋白70(Hsp70)表达的影响。主要结果如下:(1)升温组在不同变温模式下刺参热休克蛋白70表达量在实验开始后均迅速升高,说明温度胁迫可以迅速诱导热休克蛋白70的表达(P <0.05)。(2)在升温回复实验中,温度可以诱导热休克蛋白70的迅速表达(P<0.05),当放回正常温度时,热休克蛋白70水平逐渐下降,下降趋势一直保持到72h,其中R24组在第72h与对照组无显著差异(P>0.05),R20组在第48h与对照组无显著差异(P>0.05),这说明热应激后热休克蛋白70表达迅速但维持时间较短。(3)升温维持组刺参热休克蛋白70表达在实验开始后迅速升高,之后缓慢降低但始终维持在一个较高的水平上,说明持续的热应激可以诱导热休克蛋白70持续表达。(4)刺参热休克蛋白70的诱导强度不仅与变温持续时间有关,并且也与变温强度相关联。在本实验中,升温组变温幅度越大,刺参热休克蛋白70的表达越迅速,表达强度越高,维持时间越长。(5)本实验研究发现,升温组刺参热休克蛋白表达在应激开始后2h迅速升高,但是降温组刺参热休克蛋白表达在应激开始后4h内保持相对稳定,然后迅速升高至第8h达到最高。刺参热休克蛋白70的表达对不同变温方向的相应不同,相比降温波动,刺参对升温波动更加敏感。综上,更多的研究应当以此为基础,关注于更复杂的、贴近自然状态的热应激条件下刺参热休克蛋白表达的规律和分子机制。
     2.以初始体重为(50.50±1.67)g左右的刺参(Apostichopus japonicus Selenka)为研究对象,研究了不同氨氮浓度对刺参体壁和体腔液中酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性及Hsp70表达的影响。20天慢性毒性实验研究结果表明:(1)刺参体壁和体腔液ACP、AKP活性在0.51和2.04mg/L氨氮浓度下表现出先上升后降低的趋势,而在5.09、10.19和50.93mg/L下,则表现出降低的趋势;(2)不同浓度氨氮胁迫下,刺参体壁CAT活性均呈现降低趋势,且与氨氮浓度呈现显著的负相关性(P<0.05),而刺参体腔液CAT活性在0.51、5.09、10.19和50.93mg/L浓度下则均随取样时间而降低;(3)在氨氮浓度0.51~5.09mg/L时,刺参体壁和体腔液SOD活性均表现出不同程度的先增高后降低的趋势,而在高浓度下则与氮氮浓度显著负相关;(4)在氨氮胁迫下,刺参体壁、呼吸树、肠道和体腔液中Hsp70表达量迅速升高,氨氮胁迫第5天时检测到达到最高;随后各组织Hsp70的表达量缓慢降低,但在氨氮胁迫第20天时,各组织Hsp70的表达量仍显著高于氨氮胁迫前的水平(P<0.05)。各组织中Hsp70最高表达量与氨氮浓度呈现明显的正相关性。综合本研究结果可以看出,随着氨氮胁迫浓度的增加和胁迫时间的延长,刺参免疫酶活性趋于降低,同时机体清除自由基的能力下降,机体非特异性免疫防御系统遭到损伤。而Hsp70表达量维持在较高水平,对于增强机体的抗逆性具有重要的作用。
     3.采用实验生态学方法,研究了刺参(Apostichopus japonicus Selenka)在夏眠、实验性夏眠、饥饿状态下生长、代谢及免疫应答的变化。通过测定刺参体重、耗氧率(OCR)、体壁和体腔液中免疫酶活性包括酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性以及热休克蛋白70(Hsp70)表达,以评估刺参在不同处理下的生理反应。主要结果如下:(1)在所有三个处理中刺参体重显著下降(P <0.05)。(2)饥饿组、实验性夏眠组刺参OCR下降,但自然夏眠组刺参COR逐渐升高。(3)三个处理组体壁和体腔液中ACP、AKP活性逐渐降低,饥饿组和实验性夏眠组刺参体壁和体腔液中SOD、CAT活性及Hsp70表达逐渐降低,但是自然夏眠组刺参体壁和体腔液中SOD、CAT活性及Hsp70表达逐渐升高。结果显示,刺参在饥饿条件下,体重、代谢速率及免疫应答由于停止摄食而降低。当水温保持在24℃时,刺参进入夏眠状态,但是实验性夏眠与自然夏眠状态在耗氧率、免疫应答及Hsp70表达方面不尽相同。这揭示了夏眠的机制是复杂的,不能仅仅归咎于环境因子的变化,比如温度。
     4.采用实验生态学的方法,研究了带水运输法不同运输温度(10℃、15℃、20℃)、密度和运输时间(<24h)对刺参(Apostichopus japonicus Selenka)幼参行为、排脏及存活的影响,并在此基础上确定不同温度下刺参幼参运输的临界密度以研究不同温度、密度和运输时间对刺参机体生理指标的影响以及机体对运输过程中胁迫因子的响应机制。通过研究发现,运输作为一种多因子协同作用的急性胁迫过程,运输密度、运输温度及运输时间对刺参的行为、存活及生理指标均具有显著地影响。采用塑料袋加水充氧的方法以较高的密度运输刺参稚参是可行的。保持较低温度(10℃)可以提高刺参的运输密度(140头/2kg水),并可以延长运输时间(24h),但较低的温度、较高的密度及较长的运输时间会延长刺参休克后恢复的时间。因而,在10℃下保持140头/2kg水的密度运输24h是可行的,但我们建议刺参的运输采用更加保守的范围,降低胁迫强度以利于释放后更快的恢复。
     5.于2009年5月17日到2009年6月30日,采用实验生态学的方法,研究了人工诱导排脏对刺参(Apostichopus japonicus Selenka)生长、代谢及免疫应答的影响。通过测定体重、特定生长率(SGR)、耗氧率(OCR)及体壁、肠道、呼吸树中免疫酶活力,包括酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)、微量丙二醛(MDA)以评估刺参排脏及内脏再生过程中的生理反应。结果显示,排脏后刺参体重显著下降然后随着消化功能的恢复逐渐上升,然而排脏45天后末体重始终极显著低于对照组(P <0.01)。实验第10天至第20天再生组SGR上升而在实验结束时与对照组无显著差异(P>0.05)。刺参排脏后OCR迅速降低随后逐渐升高并在第45天与对照组无显著差异(P>0.05)。刺参再生期间的免疫应答具有明显的组织特异性。排脏后体壁内ACP和AKP活力升高,于第10天达到峰值然后逐渐降低并于第45天降至正常水平(P>0.05)。20天后再生组织中ACP和AKP活力存在不同的上升趋势,在实验结束时呼吸树中ACP活力、肠道和呼吸树AKP活力恢复正常水平(P>0.05),而肠道ACP活力仍然显著高于对照组(P <0.05)。体壁SOD活力受排脏影响不大而再生组织中SOD活力显著升高并于实验结束时极显著高于对照组(P<0.01)。体壁CAT活力升高并于20天达到峰值且在实验过程中始终显著高于对照组(P <0.05),呼吸树中CAT活力持续升高并在第45天与对照组无显著差异(P>0.05),而肠道中CAT活力受排脏影响不大(P>0.05)。排脏后三种组织中T-AOC和MDA均显著升高(P <0.05),但在实验结束时均恢复正常水平(P>0.05)。本研究说明排脏对刺参生长、代谢以及免疫应答均具有显著的影响。尽管再生组体重与对照组具有显著差异,但SGR、OCR和主要非特异性免疫因子均在排脏后45天之内恢复正常水平,从生理学上说明刺参已从排脏中恢复。
1. Sea cucumber (Apostichopus japonicus Selenka) is an important marine culturespecies in northern China. Using experimental ecology methods, the influence ofdifferent temperature fluctuation modes and intensities and directions to heat shockprotein70(Hsp70) were studied. The results are as follows:(1). Hsp70contentsincreased rapidly initially under different temperature fluctuation modes intemperature increase treatment.(2). Hsp70contents decreased as temperature turnsback to normal level, the R24and R20group got no significant difference with thecontrol group(P>0.05) at72h and48h, respectively.(3) Hsp70contents increased\apidly and maintained at a high level in consecutive heating-up treatment, whichillustrate that Hsp70contents can be continuous expressed with consecutivetemperature stimulus.(4) The induction of Hsp70is in connection with not only thecontinuity of temperature changing but also the intensities of temperature fluctuation.The more the temperature changed, the quicker and the more Hsp70was induced.(5)In this experiment, Hsp70contents increased rapidly after2h in temperature-uptreatment while increased slowly in temperature-drop treatment and didn’t reach thepeak value until8h. Therefore we estimated that Hsp70was more sensitive to thetemperature-up treatment than to the temperature-drop treatment. In conclusion, moreresearch based on this experiment should be done to fully understand the laws ofexpress for heat shock protein under more complicated condition which is similarwith the natural environment.
     2. The influence of chronic stress of ammonical nitrogen on the activities of immunoenzymes (acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase(CAT) and superoxide dismutase (SOD) and heat shock protein70(Hsp70) contentwere investigated in Sea Cucumber, Apostichopus japonicus Selenka. Body wall andcoelomic fluid samples of sea cucumbers in5ammonical nitrogen concentration(ANC) groups (0.51、2.04、5.09、10.19and50.93mg/L) were collected anddetermined every5days till the20thday. ACP and AKP activities in both tissuesincreased at first and decreased afterwards in0.51and2.04mg/L groups whiledecreased in5.09、10.19and50.93mg/L groups. CAT activities in body walldecreased in all5groups and were reversely correlated with ANC, while those incoelomic fluid decreased in0.51、5.09、10.19and50.93mg/L groups. SOD activitiesin both tissues increased firstly and then decreased in0.51、2.04、5.09mg/L groupswhile those were reversely correlated with ANC in high concentrations. Hsp70content in body wall, intestine, respiratory tree and coelomic fluid rose rapidly underammonical nitrogen stress and peaked on the5thday. The Hsp70content were stillmarked higher than the control on the20thday (P<0.05). The maximum Hsp70content in4tissues weas positively correlated with ANC. All the results indicated theactivities of immunoenzymes tended to decrease and the non-specific immune systemof sea cucumbers were damaged as ANC increased and time went by. However, Hsp70concentration maintained high level, which was important to promote the stressresistance of sea cucumbers.
     3. Growth, metabolism and physiological responses of sea cucumber, Apostichopusjaponicus Selenka, during periods of inactivity, were investigated in this study. Thebody weight, oxygen consumption rate (OCR), activities of immunoenzymesincluding acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) andsuperoxide dismutase (SOD), and Heat shock protein70(Hsp70) contents in bodywall and coelomic fluid were measured to evaluate the growth, metabolism andphysiological responses of A. japonicus during starvation, experimental aestivationand aestivation. The results showed that body weight of sea cucumbers in all threetreatments dropped significantly (P <0.05). OCR reduced in starvation, experimental aestivation treatments but increased gradually in aestivation group. Both ACP andAKP activities in all treatments decreased gradually, and SOD and CAT activities andHsp70contents in starvation and experimental aestivation treatments decreased,however, SOD and CAT activities and Hsp70contents increased in aestivationtreatment. Results of this study indicated that growth, metabolism and physiologicalresponses declined in A. japonicus due to the stress of fasting. The sea cucumber A.japonicus enters a state of aestivation when the temperature is maintained at24°C.However, the experimental aestivation is different from aestivation to some extent inmetabolism and physiological responses. This suggest that the mechanism ofaestivation in A. japonicus is complex and may not be attributed only toenvironmental changes, such as temperature, as shown in previous studies.
     4. Sea cucumber (Apostichopus japonicus Selenka) is an important marine culturespecies in northern China. Using experimental ecology methods, the influence ofdifferent transportation densities and temperatures (10℃、15℃、20℃) and duration(<24h) were to behaviors and evisceration and survival of A. japonicus juveniles werestudied, and the critical densities under different temperatures were determined toinvestigate the influence of different transportation densities and temperatures (10℃、15℃、20℃) and duration to physiological parameters and response mechanism of A.japonicus juveniles. The results showed that as an acute environmental stress undermulti-factor synergy, transportation densities and temperatures and durationsignificantly influence the behaviors and survival and physiological parameters of A.japonicus. It’s feasible to transport A. japonicus juveniles using plastic sea water bagswith oxygen under high densities. Low temperature (10℃) is benefit to increasetransportation density (140juveniles per bag) and prolong duration (24h), however,shock duration will be prolonged and recovery will be delayed under this conditions.Our results showed that transportation at densities of140juveniles per bag (2L water,4L oxygen) for24h at10℃is feasible, but we recommend transportation for A.japonicus juveniles at more conservative densities and durations where possible tominimize transportation stress. 5. The growth, metabolism and immune responses of sea cucumber, Apostichopusjaponicus Selenka, following evisceration induced artificially, were investigated inthis study. The body weight, specific growth rate (SGR), oxygen consumption rate(OCR), activities of immunoenzymes including acidic phosphatase (ACP), alkalinephosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), totalantioxidant capacity (T-AOC) and malonyl-dialdehyde (MDA) in muscle, intestineand respiratory tree were measured to evaluate the physiological responses of A.japonicus to evisceration and the regeneration of viscera. The results showed that thebody weight of sea cucumber significantly dropped following evisceration and thenincreased gradually with digestive function resumed. Accelerated growth rates wereobserved in the regeneration group from the10thday to20thday, but there was nosignificant difference between the regeneration group and control group at the end ofthe experiment. As for OCR, it reduced rapidly after evisceration, then increasedgradually afterwards. Compared to the control, no significant difference in OCR wasfound on the45thday (P>0.05). The immune responses of A. japonicus were highlytissue-specific during the regeneration of the viscera. Both ACP and AKP activities inmuscle enhanced and peaked on the10thday, then decreased gradually to normal levelon the45thday (P>0.05). ACP and AKP activities in the regenerated tissuesexhibited a differential rising trend from the20thday after evisceration. SOD activityin muscle was not significantly influenced by evisceration with respected to thecontrol; however, those in the regenerated tissues significantly enhanced and weresignificantly higher than those in the control on the45thday (P <0.01). CAT activityin muscle of the regeneration group was significantly higher than that in the controlduring the whole period of the experiment (P <0.05). CAT activity in the regeneratedrespiration tree enhanced invariably after evisceration, while that in the intestine werenot significantly affected by evisceration (P>0.05). Significant increase was found inboth T-AOC and MDA in all three tissues after evisceration (P <0.05), however, theyall returned to normal at the end of the experiment. The results of this study indicatedthat the growth, metabolism and immune responses in sea cucumber weresignificantly influenced by evisceration. Although the regeneration group did not catch up with the control in body weight, SGR, OCR and major non-specific immuneparameters have resumed to normal level within45days after evisceration, whichmight mean that A. japonicus has recovered in physiology from evisceration.
引文
代国杰,朱建津,高琳琳,等.褪黑素对小鼠抗氧化作用的影响.食品工业科技,2010,31(3):347-350.
    方允中,李文杰.自由基与酶.北京:科学出版社,1994,67-69.
    管越强等.低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响.河北大学学报,2010,30(3):301-306.
    黄旭雄.中国明对虾免疫水平及免疫增强剂的研究:[博士学位论文][D].上海:上海水产大学博士论文,2005.
    李丹彤,宋亮,钟莉,等.刺参凝集素的分离纯化及其性质.水产学报,2005,29(5):654~658.
    李桂峰,康裕财,孙际佳等.酵母多糖对赤眼鳟非特异性免疫机能的影响.中山大学学报,2003,42(4):55-58.
    李馥馨,刘永宏,宋本祥等.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ—夏眠致因的探讨.中国水产科学,19963(2):49-57.
    廖玉麟.中国动物志棘皮动物门海参纲.北京:科学出版社,1997.53-64.
    刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼,1998,29:113-118.
    刘云,孔伟丽,吴志强,等.2种免疫多糖对刺参组织主要免疫酶活性的影响[J].中国水产科学,2008,15(5):787-793.
    刘晓云,谭金山,包振民,等.刺参体腔细胞超微结构的观察.电子显微学报,2005,24(6):613-615.
    孟繁伊,麦康森,马洪明.棘皮动物免疫学研究进展.生物化学与生物物理进展,2009,36(7):803-809.
    牟海津,江晓路,刘树青等.免疫多糖对栉孔扇贝酸性磷酸酶,碱性磷酸酶和超氧化物歧化酶活性的影响.青岛海洋大学学报,1999,29(3):463-468.
    农业部渔业局,2005.中国渔业统计年鉴.
    农业部渔业局,2010,中国渔业统计年鉴.
    沈鸣.海参的化学成分和药理研究进展.中成药,2001,23(10):758-761.
    孙永欣,王吉桥,汪婷婷,等.海参防御机制的研究进展.水产科学,2007,26(6):354-361.
    隋锡林.海参增养殖,北京:农业出版社,1988,15-59.
    王长法,张士璀,王昌留.水生无脊椎动物凝集素研究进展概述.海洋科学,2005,29(4):63-67.
    王树芹,周洪琪.壳聚糖对异育银鲫溶菌酶和白细胞吞噬活性的影响.上海水产大学学报,2004,13(2):121-125.
    王秀华,雷质文,黄捷,等.96孔酶标板法测定对虾血淋巴的过氧化物酶相对活性的初步研究.海洋科学,2001,25(11):55-57.
    王秀菊,王丽敏,杨美桂,孙玉生.刺参养殖技术之二:人工控温工厂化养殖刺参技术中国水产,2004,5:34.
    熊川男,李伟,白雪芳,等.凝集素作为海参免疫增强剂在人工养殖海参中的应用.饲料工业,2005,26(18):30-32.
    徐大伦,黄晓春,欧昌荣,等.浒苔多糖对华贵栉孔扇贝血淋巴中SOD酶和溶菌酶活性的影响.水产科学,2006,25(2):72-74.
    于东祥,张岩,陈四清.养殖水体的双分层是海参发病的普遍原因.齐鲁渔业,2004,21(8):8-9.
    瞿中和.细胞生物学[M].北京:高等教育出版社,2000.
    Arizza V, Giaramita F T, Parrinello D, et al. Cell cooperation in coelomocyte cytotoxic activity ofParacentrotus lividus coelomocytes. Comp Biochem Physiol,2007,147(2):389-394.
    Beauchamp C, Fridovich I. Superoxide dismutase: improved assay and an assay applicable toacrylamide gels [J]. Analytical Biochemistry,1971,44:276-287.
    Bharrhan S, Chopra K, Rishi P. Vitamin E supplementation modulates endotoxin-induced liverdamage in a rat model [J]. American Journal of Biomedical Sciences,2010,2(1):51-62.
    Boolootian R A., Giese A C. Clotting of echinoderm coelomic fluid. J. Exper Zool.,1959,140:207-211.
    Cammarata M., Arizza V., Parrinello N., et al. Phenoloxidase-dependent cytotoxic mechanism inascidian (Styela plicata) hemocytes active against erythrocytes and K562tumor cells. J. CellBiol,1997,74:302-307.
    Canieatti C. Binding Properties of Paracentrotus lividus (Eehinoidea) hemolysin. ComP. Biochem.Physiol.,1991,98(3-4):463-468.
    Canieatti C., Pagliara P., Stabili L.. Sea urchin coelomic fluid agglutinin mediates coelomocyteadhesion. J. Cell Biol,1992,58(2):291-295.
    Canieatti C.. Lysosomal enzyme Pattern in Holothuria Poliz coelomoeytes. J.Invertebr. Pathol.,1990,56:70-74.
    Canieatti C., Seymour J.. Evidence for Phenoloxidase activity in Holothuria tubulosa(Echinodermata) brown bodies and cells. Parasitol. Res.,1991,77(l):50-53.
    Canieatti C., Parrlnello N.. Hemaglutinin and hemolysin level in coelomic fluid from HdlothurliaPolli (Eehinodermata) following sheep erythrocyte injection. Biol. Bull.,1985,168:175-182.
    Canicatti C., D Aneona G.. Cellular aspects of Holothuria polii immune response. J. Invertebr.patho1.,1989,53:152-158.
    Chen, J.X.. Present status and prospects of sea cucumber industry in China. In: Advances in seacucumber aquaculture and management. A. Lovatelli, C., Conand, S. Purcell, S., Uthicke, J.-F.Hamel and A.Mercier (eds.),2004, pp.25-38. FAO, Rome.
    Chia, F., S., Xing, J.. Echinoderm coelomocytes. Zool. Stud.,1996,35(4):231-254.
    Chaga OY. Othto-diphenoloxidase system of ascidians. Tsitologiya,1980,22:619-625.
    Clow LA., Raftos DA., GrossPS., et al. The sea urchin complement homologue,SPC3, functionsas opsonin.J.Exper.Biol,2004,207(12):2147-2155.
    Clow LA., Gross PS., Shih CS., et al. Expression of SPC3, the sea urchin complement component,in response to lipopolysaccharide. Immunogenetics,2000,51(12):1021-1033.
    Cohen N., Sige MM. In: The Reticuloendothelial System, Phylogeny and Ontogeny Vol.3, Ist edn.(N. Cohen&MM Sigel, eds). New york: Plenum Press,1982. P.257-282.
    Coffaro K A, Hinegardner A T. Immune response in the sea urchin Lytechinus oictus Science,1977,197:1389-1390
    Dales R P. Phagocyte interactions in echinoid and asteroid echinoderm. J Marine Biol Assoc UK,1992,72(2):473-482.
    David A R, Jennifer R, Rebecca A N, et al. A complement component C3~like peptidestimulates chemotaxis by hemocytes from an invertebrate chordate, the tunicate, Pyurastolonifera[J]. Comp Biochem Physiol,2003,134(2):377-386.
    de Oliveira UO, da Rosa Araújo AS, Belló-Klein A, da Silva RS, Kucharski LC. Effects ofenvironmental anoxia and different periods of reoxygenation on oxidative balance in gills ofthe estuarine crab Chasmagnathus granulata[J]. Comp BiochemPhysiol,2004,140B(1):51-57.
    Dolmatova LS., EliseikinaMG., RomashinaVV. Antioxidant enzymatic activity of coelomoeytesof the Far East sea cucumber Eupentacta fraudatrix. J. Evol. Biochem. Physiol,2004,40(2):126-135.
    Dolmatova L S, Eliseikina M G, Romashina VV. Antioxidant enzymatic activity of coelomocytesof the far East sea cucumber Eupentacta fraudatrlx. J. Evol. Biochem. Physiol.,2004,40(2):126-135.
    Dybas L., Fankboner PV.. Holothurian survival strategies: mechanisms for the maintenance of aBacteriostatic environment in the coelomic cavity of the sea cucumber, Parastlchopuscalifornicus. Dev. Comp. Immunol,1986,10:311-330.
    Ellis A. Lysozyme assays. In Stolen J,Fletcher T, Anderson D, Robertsen B, Van MuiswinkelW, editors. Techniques in fish immunology [M]. Fair Haven, NJ: SOS Publications,1990:101-103.
    Eliseikina M G, Magarlamov T Y. Coelomocyte morphology in the holothurians Apostichopusjaponicus and cucumaria japonica. Russian Journal of Marine Biology,2002,28(3):197-202.
    Giga Y., Ikai A., Takahshi K.. The complete amino acid sequence of echinoidin, a lectin from thecoelomic fluid of the sea urchin Anthocidaris crassispina. J. Biol. Chem,1987,262:6197-6203.
    Gowda N M, Goswami U, Khan M I. Purification and characterization of a T-antigen specificlectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra).Fish Shellfish Immunol.,2008,24(4):450-458.
    Gross PS., AI-Sharif WZ., Clow LA., et al. Echinoderm immunity and the evolution of thecomplement system. Dev. ComP. Immimol,1999,23(4-5):429-442.
    Haug T., Kjuul AK., Styrvold OB., et al. Antibaeterial activity in Strongylocentrotusdroebachiensis (Eehinoidea),Cueumaria frondosa Holothuroidea),and Asteriasrubens(Asteroidea). J.Invertebr. Pathol,2002,81(2):94-102.
    Hatakeyama T, Nagatomo H, Yamasaki N. Interaction of the hemolytic lectin CEL-III from themarine invertebrate Cucumaria echinata with the erythrocyte membrane. J. Biol. Chem.,1995,270(8):3560-3564.
    Hatakeyama T, Sato T, Taira E, et al. Characterization of the interaction of hemocytic lectin CEL-Ⅲ from the marine invertebrate, cucumaria echinata, with artificial lipid membranes:involvement of neutral sphingoglycolipids in the pore-forming process. J Biochem(Tokyo),1999,125(2):277-284.
    Herndndez Ldpez J, Gollas Galvdn T, Vargas Albores F. Activation of prophenoloxidase systemof the brown shrimp (Penaeus callforniensis Holmes)[J]. Comp Biochem Physiol C,1996,113:61-66.
    Himeshima T,Hatakeyama T,Yamasak N. Amino acid sequenee of a lectin from the seacucumber, Stichopus japonicus, and its structural relationship to the C-type animal lectinfamily. J. Bioehem,1994,115:689-692.
    HoEbaus E. Coelomocytes in normal and pathologically altered body walls of sea urchins [A].Proceedings of The European Colloquium on Echinoderms [C]. Rotterdam, The Netherlands:Balkema A A,1979,247-249.
    Isaeva V V, Korenbaun E S. Defense functions of coelomocytes and immunity of echinoderms.Soviet Journal of Marine Biology,1990,(15):353-363.
    Ito T., Matsutani T., Mori K., et al. phagocytosis and hydrogen peroxide production by phagocytesof the sea urchin Strongylocentrorus nudus. Dev.Comp.Immunol.1992,16(4):287-294.
    Jonathan P R, Smith L C, Mariano L C, et al. Genomic insights into the immune system of the seaurchin. Science,2006,314:952-956.
    Karp R D, Hiloernann W H. Specific allograft reactivity in the sea star Dermasterias imbricate.Transplantation,1976,22:434-439.
    Kudriavtsev I, Polevshchikov A. Comparative immunological analysis of echinodern cellular andhumoral defense factors [J].Zh Obshch Biol,2004,65(3):218-231.
    Leonard LA., Strandberg JD., Winkelstein JA. Complement-like activity in the sea star Asteriasforbesi. Dev. Comp. Immunol,1990,14:19-30.
    Liao, Y.. The aspidochirote holothurians of China with erection of a new genus in echinoderms,present and past. In: Jangoux, M.(Ed.), Proceeding of European Colloquium on Echinoderm.A.A. Balkema Publishers, Rotterdam, Netherlands,1980,115-120.
    Liao, Y.. Fauna Sinica: Phylum Echinodermata Class Holothuroidea. Science Press, Beijing.1997,148-150.
    Marzinzig M, Nussler A, Stadler J, et al. Improved methods to measureend products of nitricoxide in biological fluids: nitrite, nitrate, and S-nitrosothiols[J]. Nitric Oxide1997,1:177-189.
    Matsui T, Ozeli Y, Suzuli M, Hino A, Titani K. Purification and characterization of two Ca2+dependent lectins from coelomic plasma of sea cucumber, Stichopus japonicus. J. Biochem,1994,116(5):1127-1133.
    Pagliara P, Canicatti C. Isolation of cytolytic granules from sea urchin amoebocytes. Eur J CellBiol,1993,60(1):179-184.
    Pagliara P, Canicatti C. Isolation of cytolytic granules from sea urchin amoebocytes[J]. Eur J CellBiol,1993,60(1):179-184.
    Pickering, A.D.,1989. Environmental stress and the survival of brown trout, Salmo trutta[J].Freshwater Biol.,21:47-55.
    Ratcliffe N A, RowleyA F. Ivertebrate blood cells. NewYork: Academic Press NewYork,1980:513-526.
    Roch P, Canicatti C, Sammarco S. Tetrameric structure of the active phenoloxidase evidenced inthe coelomocytes of the echinoderm Holothuria tubulosa. Comp Biochem Physiol,1992,102B (2):349-355.
    Ryoyama K. Studies on the biological Properties of coelomic fluid of sea urchin: Ⅱ.Naturallyoccurring hemagglutinin in sea urchin. Biol.Bull,1974,146:404-414.
    Smith V J..The eehinoderms[M].In: NA Rafcliffe., AF Rowley,(eds). Invertebrate blood cells,1981, London: Academic Press513-562.
    Smith LC., Britten RJ., Davidson EH.. Lipopolysaeeharide activates the sea urchin immunesystem. Dev.Comp.Immunol,1995,19:217-224.
    Smith VJ., Soderhall K.. A comparison of phenoloxidase activity in the blood of marineinvertebrates. Dev. Comp. Immunol.,1991,15:251-261.
    Smith L C. The sea urchin immune system [J]. J Immunol,2006,3(1):25-39.
    Smith L C, Britten R J, Davidson E H. SpCoel1: A sea urchin profilin gene expressed specificallyin coelomocytes in response to injury. Molecular Biology of the Cell,1992,3:403-414.
    Smith L C, Britten R J, Davidson E H. Sea urchin genes expressed in activated coelomocytes areidentified by expressed sequence tags. Complement homologues and other putative immuneresponse genes suggest immune system homology within the deuterostomes. Journal ofImmunology.1996,156:593-602.
    SoE derhaEⅡK, Smith V J. Prophenoloxidaes-activating cascade as a recognition and defensesystem in arthropods. In: Gupta AP, ed.Hemolytic and Humoral Immunity in Arthropods[M].New York: John Wiley,1986,251-285.
    Stabli L., Pagliara R, Roeh P. Antibaeterial activity in the coelomoeytes of the sea urchinParaeenlrotus lividus. Comp. Biochem. Physiol,1996,113B:639-644.
    Stabili L., Pagliara P., Metrangolo M., et al. Comparative aspects of Echinoidea cytolysins:thecytolytic activity of Spherechinus granularis (Eehinoidea) coelomic fluid. Comp. Biochem.Physiol.,1992,10lA:553-556.
    Tania Zenteno-Savín, Ricardo Saldierna, Mauricio Ahuejote-Sandoval. Superoxide radicalproduction in response to environmental hypoxia in cultured shrimp[J]. Comp BiochemPhysiol,2005,142C(3-4):301-308.
    Wang, Y.G., Zhang, C.Y., Rong, X.J., Chen, J.J., Shi, C.Y., Diseases of cultured sea cucumber,Apostichicus japonicus, in China. In: Advances in sea cucumber aquaculture andmanagement. A. Lovatelli, C., Conand, S. Purcell, S., Uthicke, J.-F. Hamel and A.Mercier(eds.),2004, pp.25-38. FAO, Rome.
    Xing J,Leung M F, Chia F S.Quantitative analysis of Phagcytosis by amoebocytes in a seacucumber Hdlothuria leucosPilota. Invert.Biol.,1998,117:67-74.
    Xing J, chia F S. Opsonin-like molecule found in coelomic fluid of sea cucumber, Holothurialeucospilota. Marine Biology,2000,136:979-986.
    廖玉麟.中国动物志:棘皮动物门海参纲.1997.北京:科学出版社.
    袁秀堂.刺参Apostichopus japonicus (Selenka)生理生态学及其生物修复作用的研究:[博士学位论文].青岛:中国科学院海洋研究所,2005.
    季婷婷.刺参(Apostichopus japonicus)对温度变化的生理生态学响应机制:[博士学位论文].青岛:中国海洋大学,2009.
    周峰,林雨霖,向近敏.分子生态学(第二版).武汉:湖北科学技术出版社,2001.
    王吉桥,靳晓明,张剑诚.密度和水温对仿刺参(Apostichopus japonicus Selenka)幼参运输成活和排脏的影响,现代渔业信息,2007,22:3-6.
    张其中,邱马银,吴信忠,等.热休克诱导近江牡蛎对高温的耐受性.生态科学,2005,24(1):35-37.
    Basu N, Todgham A E, Ackerman P A, et al. Heat shock protein genes and their functionalsignificance in fish. Gene,2002,295:173-183.
    Bayne, B.L.. Aspects of physiological conditions in Mytilus edulis L., with special reference to theeffects of oxygen tension and salinity. In: Gray, J.S., Christiansen, M.E.(Eds.), Proc.9thEurop Mar. Biol. Symp.,1975, John Wiley and Sons Ltd., Chichester, pp.331-349.
    Boone A N, Vijayan M M. Glucocorticoid-mediated attenuation of the Hsp70response in trouthepatocytes involves the proteasome. Am J Physiol Regul Integr Comp Physiol,2002,283:R680-687.
    Cara J B, Aluru N, Moyano F J, et al. Food-deprivation induces Hsp70and Hsp90proteinexpression in fry gilthead sea bream and rainbow trout. Comp Biochem Physiol B,2005,142:426-431.
    Chen, J.X.. Present status and prospects of sea cucumber industry in China.2004.
    Clegg JS, Uhlinger KR, Jackson SA, Cherr GN, Rifkin E, Friedman CS. Induced thermotoleranceand the heat shock protein-70family in the Pacific oyster Crassostrea gigas. Mol. Mar. Biol.Biotechnol.,1998,7:21-30.
    Currie S, Tufts B L, Moyes C D. Influence of bioenergetic stress on heat shock protein geneexpression in nucleated red blood cells of fish. Am J Physiol,1999,276:990-996.
    Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiologicalperformance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008,275:329-334.
    Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth,osmoregulation and Hsp70in sea cucumber (Apostichopus japonicus Selenka). Aquaculture2008,276:179-186.
    Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in seacucumber Apostichopus japonicus Selenka. Fish Sci,2008,74:573-578.
    Dong YW, Dong SL. Growth and oxygen consumption of the juvenile sea cucumber Apostichopusjaponicus (Selenka) at constant and fluctuating water temperatures. Aquac. Res.,2006;37:1327-1333.
    Dong YW, Dong SL, Tian XL, Wang F, Zhang MZ. Effects of diel temperature fluctuations ongrowth, oxygen consumption and proximate body composition in the sea cucumberApostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Dong, Y., Ji, T., Dong, S.. Stress responses to rapid temperature changes of the juvenile seacucumber (Apostichopus japonicus Selenka). J. Ocean Univ. China,2007,6,275-280.
    Drouin, G.., Himmelman, J.H., Beland, P. Impact of tidal salinity fluctuations on echinoderm andmollusk populations. Can. J. Zool.,1985,63:1377-1387.
    Feige U, Morimoto RI, Yahara I, Polla BS. Stress-Inducible Cellular Responses. Birkh user-Verlag, Berlin.1996.
    Feder J H, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annual Review of Physiology,1999,61:243-282.
    Frydman J, H hfeld J. Chaperones get in touch: the hip-hop connection. Trends Biochem. Sci.1997,22:87-92.
    Gehring W J, Wehner R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an antfrom the Sahara desert. Proc Natl Acad Sci,1995,92:2994-2998.
    Greenwood, P.J., Bennett, T.. Some effects of temperature-salinity combinations on the earlydevelopment of the sea urchin Parechinus angulosus(Leske.). Fertilization. J. Exp. Mar.Biol.Ecol.,1981,51:119-131.
    Guerin, J.L., Stickle, W.B.. Effects of salinity gradients on the tolerance and bioenergetics ofjuvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities.Mar. Biol.,1992,114:391-396.
    Hartl F U, Hayer-Hartl M. Protein folding-molecular chaperones in the cytosol: from nascentchain to folded protein. Science,2002,295:1852-1858.
    Krebs, R.A., Loeschcke, V.,1994. Effects of exposure to short-term heat stress on fitnesscomponents in Drosophila melanogaster. J. Evol. Biol.7,39-49.
    Landry J, Zbernier D, Chretien P, Nicole LM, Tanguay RM, Marceau N. Synthesis anddegradation of heat shock proteins during development and decay of thermotolerance. CancerRes.1982,42:2457-2461.
    Lawrence, J.M.. The effect of temperature-salinity combinations on functional well-being of adultLytechinus variegates(Lamark)(Echinodermata, Echinoidea). J. Mar. Exp. Biol. Ecol.,1975,18:271-275.
    Lindquist S. The heat-shock response. Annu. Rev. Biochem.,1986,55:1151-1191.
    Lovatelli, A., Conand, C., Purcell, S., Uthicke, S., Hamel, J.F., Mercier, A.(Eds.). Advances in seacucumber aquaculture and management, FAO, Rome, pp.25-38.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L.. Protein measurement with the folin phenol reagent.The Journal of Biological Chemistry,1951,193:265-275.
    Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation andreactivation of damaged proteins. Annu Rev Genet,1993,27:437-496.
    Petersen R B; S Lindquist. The Drosophila Hsp70message is rapidly degraded at normaltemperatures and stabilized by heat shock Gene,1988,72:161-168.
    Petersen R B; S Lindquist. Differential mRNA stability: A regulatory strategy for Hsp70synthesis.In: posttranscriptional Control of Gene Expression. McCarthy J.E.G. and M.F.Tuite eds.,Springer-Verlag, New York,1990,83-91.
    Piano A, Asirelli C, Caselli F. Hsp70expression in thermally stressed Ostrea edulis, acommercially important oyster in Europe. Cell Stress Chaperones,2002,7(3):250-257.
    Roller, R.A., Stickle, W.B. Effects of temperature and salinity acclimation of adults on larvalsurvival, physiology, and early development of Lytechinus variegates (Lamark)(Echinodermata, Echinoidea). Mar. Biol.,1993,116:583-591.
    Sabourin, T.D., Stickle, W.B.. Effects of salinity on respiration and nitrogen excretion in twospecies of echinoderms. Mar. Biol.,1981,65:91-99.
    Schottler, U., Wienhausen, G., Zebe, E.. The mode of energy production in the lugworm Arenicolamarina at different oxygen concentrations. J. Comp. Physiol.,1983,149:547-555.
    Shirley, T.C., Stickle, W.B.. Responses of Leptasterias hexactis(Echinodermata, Asteroidea) tolow salinity.Ⅰ. Survival, activity, feeding growth, and absorption efficiency. Mar. Biol.69,1982:147-154.
    Somero, G.N.. Thermal physiology and vertical zonation in intertidal animals: optima, limits, andcosts of living. Integr. Comp. Biol.,2002,42:780-789.
    Stickle,W.B.,Bayne,B.L.. Effects of temperature and salinity on oxygen consumption and nitrogenexcretion in Thais (Nucella) lapillus (L.). J.Exp.Mar.Biol.Ecol.,1982,58:1-17.
    Stickle, W.B., Diehl, W.J. Effects of salinity on echinoderms. Echin. Studies.,1987,2:235-285.
    Tadashi, K., Takao, K., Hiroshi, A., Shin, E., Masaaki, N., Hideaki, T., Tadashi, Y., Seiji, K.,Ryuichi, T.. Mild heat shock induces autophagic growth arrest, but not apoptosis inU251-MG and U87-MG human malignant glioma cells. J. Neuro-Oncol.,2004,68(2):101-111.
    Tomanek L, Somero GN. Time course and magnitude of synthesis of heat-shock proteins incongeneric marine snails (genus Tegula) from different tidal heights. Physiol. Biochem. Zool.2000,73:249-256.
    Yang, H.S., Yuan, X.T., Yi, Z., Mao, Y.Z., Zhang, T., Liu, Y.. Effects of body size and watertemperature on food consumption and growth in the sea cucumber Apositchopus japonicus(Selenka) with special reference to aestivation. Aquacult. Res.,2005,36:1085-1092.
    Yost, H, R.B. Petersen, S. Lindquist. RNA metabo1ism: strategies for regulation in the heat shockresponse. Trends Genet.1990,6:223-227..
    常杰,牛化欣,张文兵.刺参免疫系统及其免疫增强剂评价指标的研究进展[J].中国饲料,2011,06:08-12.
    陈昌生,王淑红,纪德华,等.贾锡伟.氨氮对九孔鲍过氧化氢酶和超氧化物歧化酶活性的影响[J].上海水产大学学报,2001,10(3):218-222.
    樊甄姣,刘志鸿,杨爱国.氨氮对栉孔扇贝血淋巴活性氧含量和抗氧化酶活性的影响[J].海洋水产研究,2005,26(1):23-27.
    国家环境保护局.GB11607-1989渔业水质标准.1989.
    季健平;吴再彬;刘歧山;张运生;叶铭;李明举.超氧化物岐化酶超微量快速测定法.东南大学学报,1991,10:27-30.
    江晓路,杜以帅,王鹏.褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J].中国海洋大学学报,2009,39(6):1188-1192.
    李继业.养殖刺参免疫学特征与病害研究[D].青岛:中国海洋大学,2007.
    聂竹兰,李霞,辛涛.仿刺参体壁的组织学和组织化学[J].大连水产学院学报,2007,22(3):184-187.
    曲凌云,孙修勤,相建海,等.热休克蛋白研究进展[J]海洋科学进展,2004a.22(3):387-391.
    曲凌云,孙修勤,相建海,等.栉孔扇贝血淋巴细胞Hsp70表达变化的FCM法检测[J].高技术通讯,2004b,14(4):94.
    沈鸣.海参的化学成分和药理研究进展[J].中成药,2001,23(10):758-761.
    石俊艳,刘中,丁茂昌,等.亚硝酸盐、硫化物与氨对河蟹幼体的急性毒性实验[J].辽宁大学学报,1999,26(1):92-96.
    隋锡林.海参增养殖[M].北京:农业出版社,1988,15-59.
    孙永欣.黄芪多糖促进刺参免疫力和生长性能的研究[D]大连:大连理工大学,2008.
    庞军辉,韩家波,高象贤,等.氨对刺参的毒性影响[J].水产科学,1993,12(9):8-11.
    臧维玲,江敏,张建达,等.亚硝酸盐和氨对罗氏沼虾幼体的毒性[J].上海水产大学学报,1996,5(1):15-22.
    张春丹,黄福勇,李明云,等.镉胁迫条件下大弹涂鱼(Boleophthalmus pectinirostris)外周血微核标记及肝脏过氧化物酶标记的变化[J].海洋与湖沼,2006,37(1):7-13.
    周进,宋晓玲,黄健,等.A3a肽聚糖对牙鲆不同组织中超氧化物歧化酶及磷酸酶活性的影响[J].中国水产科学,2004,11(4):296-301.
    Barrett, A. J.. Lysosomal enzymes. In: Dingle JT (Ed.), Lysosomes: A Laboratory Handbook.North-Holland, Amsterdam.,1972,46-135.
    Clegg J,Jackson S A,Chert G N,et a1.Induced thermotolerance and the heat shock protein-70family in the Pacific oyster Crassostreagigas[J].Mol Mar Biol Biotechnol,1998,7(1):21.
    Dong Y W,Ji T T,Dong S L. Stress responses to rapid temperature changes of the juvenile seacucumber (Apostichopus japonicus)[J],Periodical of Ocean University of China,2007,6(3):275-280.
    Fridovich I.Superoxide dismutases:An adaptation to a parmagnetic gas[J].Journal of BiologicalChemistry,1989,264:7761-7764.
    Góth, L.. A simple method for determination of serum catalase activity and revision of referencerange. Clinica Chimica Acta,1991,196:143-151.
    Hofmann G E, Somero G N.Evidence for protein damage at environmental temperatures:seasonal changes in levels of ubiquitin conjugates and Hsp70in the intertidal mussel Mytilustrossulus[J].Journal of Experimental Biology,1995,198:1509-1518.
    Lowry O H,Rosebrough N J,Farr A L, et al.Protein measurement with the folin phenol reagent[J].The Journal of Biological Chemistry,1951,193:265-275.
    Moon J H,Ryu H S,Yang H S,et a1.Antimutagenic and anticancer effect of glycoprotein andchondroitin sulfates from sea cucumber(Stichopus japonicus)[J].The Korean Society ofFood Science and Nuitrition,1998,27(2):350-358.
    Stebbing,A R D. Hormesis the stimulation of growth by low levels of inhibitors.Science of theTotal Environment,1982,22(1):213-234.
    Tomanek L,Somero G N.Time course and magnitude of synthesis of heat-shock proteins incongeneric m arine snails (Genus Tegula)from different tidal heights [J].Physiological andBiochemical Zoology,2000,73:249-256.
    Zhang R Q,Chen Q X,Zheng W Z,et a1.Inhibition kinetics of green crab(Scylla serrata)alkalinephosphatase activity by dithiothreitol or2-mercaptoethano1[J]. International Journal ofBiochemistry and Cell Biology,2000,32:865-872.
    董云伟,董双林,田相利,张美昭,王芳.不同水温对刺参幼参生长、呼吸及体组成的影响中国水产科学,2005,12:33-38.
    季健平;吴再彬;刘歧山;张运生;叶铭;李明举.超氧化物岐化酶超微量快速测定法.东南大学学报,1991,10:27-30.
    李馥馨,刘永宏,宋本祥,孙慧玲,顾本学,张榭令.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ—夏眠致因的探讨,1996,中国水产科学3:49-57.
    廖玉麟.中国动物志:棘皮动物门,棘皮动物纲.科学出版社,北京,1997:148-150.
    刘永宏,李馥馨,宋本祥,孙慧玲.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅰ—夏眠生态特点的研究.中国水产科学,1996,3:41-48.
    隋锡林.影响刺参幼体发育与存活率的主要因子.海洋与湖沼,1989,20:314-321.
    隋锡林.海参增养殖.中国农业出版社,北京,1990.
    檀永凯,李霞,段晶晶.仿刺参内脏再生过程的能量代谢及生化组成变化.中国水产科学,2008,15(4):683-688.
    于东祥,宋本祥.池塘养殖刺参幼参的成活率变化和生长特点.中国水产科学,1999.6:109-110.
    郑法新,孙修勤,张进兴.刺参吐脏再生的组织学研究.中国水产科学,2006,13(1):134-139.
    Barrett, A. J.. Lysosomal enzymes. In: Dingle JT (Ed.), Lysosomes: A Laboratory Handbook.North-Holland, Amsterdam.,1972,46-135.
    Campbell, H.A., Fraser, K.P.P., Bishop, C.M., Peck, L.S., and Egginton, S., Hibernation in anAntarctic fish: On ice for winter. PloS ONE,2008,3: el743.
    Chen, J.. Present status and prospects of sea cucumber industry in China. In: Lovatelli A,Conand C, Purcell S, Uthicke S, Hamel J-F, Mercier A eds. Advances in Sea CucumberAquaculture and Management. FAO, Rome, Italy,2004,25-38.
    Choe, S.,. Study of Sea Cucumber: Morphology, Ecology and Propagation of Sea Cucumber.Kaibundo Publishing House, Tokyo.1963.
    Dong, Y.W., and Dong, S.L.. Induced thermotolerance and expression of heat shock protein70insea cucumber Apostichopus japonicus. Fisheries Science,2008a,74:573-578.
    Dong, Y.W., Dong, S.L., and Ji, T.T.. Effect of different thermal regimes on growth andphysiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008b,275:329-334.
    Dong, Y.W., Dong, S.L., and Meng, X.L.. Effects of thermal and osmotic stress on growth,osmoregulation and Hsp70in sea cucumber (Apostichopus japonicus Selenka). Aquaculture,,2008c,276:179-186.
    Dyrynda, E.A., Pipe, R.K., Burt, G.R., and Ratcli, N.A.. Modulations in the immune defences ofmussels (Mytilusedulis) from contaminated sites in the UK. Aquatic Toxicology,1998,42:169-185.
    Feder, J.H., Rossi, J.M., Solomon, J., Solomon, N., and Lindquist, S.. The consequences ofexpressing Hsp70in Drosophila cells at normal temperatures. Genes and Development,1992,6:1402-1413.
    Feder, M.E., and Hofmann, G.E.. Heat-shock proteins, molecular chaperones and the stressresponse: evolutionary and ecological physiology. Annual Review of Physiology,1999,61:243-282.
    Góth, L.. A simple method for determination of serum catalase activity and revision of referencerange. Clinica Chimica Acta,1991,196:143-151.
    Hermes-Lima, and Storey, K.B.. In vitro oxidative inactivation of glutathione S-transferase from afreezing tolerant reptile. Molecular and Cellular Biochemistry,1993,124:149-58.
    Hermes-Lima, Storey, J.M., and Storey, K.B.. Antioxidant defenses and metabolic depression. Thehypothesis of preparation for oxidative stress in land snails. Comparative Biochemistry andPhysiology,1998,120B:437-448.
    Ji, T.T., Dong, Y.W., and Dong, S.L.. Growth and physiological responses in the seacucumber,Apostichopus japonicus Selenka: aestivation and temperature. Aquaculture,2008,283:180-187.
    Joanisse, D.R., and Storey, K.B. Oxidative damage and antioxidants in Rana sylvatica the freezetolerant wood frog. American Journal of Physiology,1996,271:545-553.
    Johanne, M.L., and William, R. D.. Tissue-specific changes in protein synthesis associated withseasonal metabolic depression and recovery in the north temperate labrid, Tautogolabrusadspersus. American Journal of Physiology. Regulatory, Integrative and ComparativePhysiology,2007,293: R474-R481.
    Krebs, R.A., and Feder, M.E.. Deleterious consequences of Hsp70over-expression in Drosophilamelanogaster larvae. Cell Stress Chaperones,1997,2:60-71.
    Leini, S., and Lehtonen, K.K., Seasonal variability in biomarkers in the bivalves Mytilus edulisand Macoma balthica from the northern Baltic Sea. Comparative Biochemistry andPhysiology,2005,140C:408-421.
    Liao, Y.. The aspidochirote holothurians of China with erection of a new genus in echinoderms,present and past. In: Jangoux, M.(Ed.), Proceeding of European Colloquium on Echinoderm.A.A. Balkema Publishers, Rotterdam, Netherlands,,1980,115-120.
    Liu, S.L., Jiang, X.L., Hu, X.K., Gong, J., Hwang, H.M., and Mai, K.S.. Effects of temperature onnon-specific immune parameters in two scallop species: Argopecten irradians (Lamarck1819)and Chlamys farreri (Jones&Preston1904). Aquaculture Research,2004,35:678-682.
    Niedzwiecki, A., Reveillaud, I., and Fleming, J.E.. Changes in superoxide dismutasc and catalasein aging heat-shocked Drosophila. Free Radical Research and Communication,1992,17:355-367.
    Omori, M., and Ikeda, T.. Methods in marine zooplankton ecology. John Wiley and Sons Inc,New York,1984,173-209.
    Ottaviani, E.. Composition of the serum haemolymph of Planorbis corneus (Gastropoda,Pulmonata). Comparative Biochemistry and Physiology,1984,78B:227-239.
    Parsell, D.A., and Lindquist, S.. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annual Review of Genetics,,1993,27:437-496.
    Pipe, R.K., Porte, C., and Livingstone, D.R.. Antioxidant enzymes associated with the blood cellsand hemolymph of the mussels Mytilus edulis. Fish and Shellfish Immunology,1993,3:221-233.
    Randell, D.J., and Perry, S.F.. Catecholamines. In: Hoar, W.S., Randall, D.J.(Eds.), FishPhysiology: the Cardiovascular System, vol. XIIB. Academic Press, New York,1992,255-300.
    Renault, T., Xue, Q.G., and Chilmonczyk, S.. Flow cytometric analysis of European at oyster,Ostrea edulis, haemocytes using a monoclonal antibody specific for granulocytes. Fish andShellfish Immunology,2001,11:269-274.
    Roch, P.. Defense mechanisms and disease prevention in farmed marine invertebrate. Aquaculture,1999,172:125-145.
    Sies, H.. Biochemistry of oxidative stress. Angewandte Chemie International Edition,1986,25:1058-1071.
    Sloan, A.N.M.. Echinoderm fisheries of the world: a review. In: Keegan, B.F., O'Connor, B.D.S.(Eds.), Echinodermata (Proceedings of the Fifth International Echinaoderm Conference.Balkema AA Publishers, Rotterdam,1984,109-124.
    Snyder, K.S., and Nestler, J.R.. Relationships between body temperature, thermal conductance,Q10and energy metabolism during daily torpor and hibernation in rodents. Journal ofComparative Physiology,1990,159B:667-675.
    Somero, G.N.. Thermal physiology and vertical zonation of intertidal animals: optima, limits, andcosts of living. Integrative and Comparative Biology,2002,42:780-789.
    Spector, T.. Refinement of the coomassie blue method of protein quantitation. AnalyticalBiochemistry,1978,86:142-146.
    Strickland, J.D.H., Parsons, T.R.. A practical handbook of seawater analysis. Fisheries ResearchBoard of Canada Bulletin,1968,167:1-11.
    S rensen, J.G., Kristensen, T.N., and Loeschcke, V.. The evolutionary and ecological role of heatshock proteins. Ecology Letters,2003,6:1025-1037.
    Tanikawa, E., Akiba, M., and Yoshitani S.. Studies on the nutritive value of the meat of seacucumber (Stichopus japonicus Selenka)-II. Seasonal changes of chemical components of themeat of Stichopus japonicus. Bulletin of the Faculty of Fisheries Hokkaido University,1955,5:341-345.
    Tomanek, L.. The heat-shock response: its variation, regulation and ecological importance inintertidal gastropods (genus Tegula). Integrative and Comparative Biology,2002,42:797-807.
    Viant, M.R., Werner, I., Rosenblum, E.S., Gantner, A.S., Tjeerdema, R.S., and Johnson, M.L..Correlation between heat-shock protein induction and reduced metabolic condition injuvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature.Fish Physiology and Biochemistry,2003,29:159-171.
    Vincent, A.M., Russell, J.W., Low, P., and Feldman, E.L.. Oxidative stress in the pathogenesis ofdiabetic neuropathy. Endocrine Reviews,2004,25:612-628.
    Wang, F.Y., Yang, H.S., Gabr, H.R., and Gao, F.. Immune condition of Apostichopus japonicusduring aestivation. Aquaculture,2008a,285:238-243.
    Wang, F.Y., Yang, H.S., Gao, F, and Liu, G.B.. Effects of acute temperature or salinity stress onthe immune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistryand Physiology, Part A,2008b,151:491-498.
    Wang, F. Y.,Yang, H.S.,Gao, F.,and Liu, G.B.. Annual changes of immune enzymes in coelomefluid of sea cucumber, Apostichopus japonicus. Marine Science,2009,33:75-80.
    Wilhelm-Filho, D.W., Giulivi, C., and Boveris, A.. Antioxidant defenses in marine fish. I: Teleosts.Comparative Biochemistry and Physiology,1993,106C:409-413.
    Wilhelm-Filho, D., Tribess, T., Gáspari, C., Claudio, F.D., Torres, M.A., and Magalh es, A.R.M..Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Pernaperna). Aquaculture,2001,203:149–158.
    Wootton, E.C., and Pipe, R.K.. Structural and functional characterization of the blood cells of thebivalve mollusc, Scrobicularia plana. Fish and Shellfish Immunology,2003,15:249-262.
    Xing, J., Zhan, W.B., and Zhou, L.. Endoenzymes associated with haemocyte types in the scallop(Chlamys farreri). Fish and Shellfish Immunology,2002,13:271-278.
    Xue, Q., and Renault, T.. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacificoyster, Crassostrea gigas, hemolymph. Journal of Invertebrate Pathology,2000,76:155-163.
    Yang, H.S., Yuan, X.T., Zhou, Y., Mao, Y., Zhang, T., and Liu, Y.. Effects of body size and watertemperature on food consumption and growth in the sea cucumber Apostichopus japonicus(Selenka) with special reference to aestivation. Aquaculture Research,2005,36:1085-1092.
    Yang, H.S., Zhou, Y., Zhang, T., Yuan, X.T., Li, X., Liu, Y., and Zhang, F.,. Metaboliccharacteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. Journalof Experimental Marine Biology and Ecology,2006,330:505-510.
    Zhang, M., Wang, L., Guo, Z.Y., and Wang, B.J.. Effect of lipopolysaccharide and Vibrioanguillarum on the activities of phosphatase, superoxide dismutase and the content ofhemocyanin in the serum of Fenneropenaeus chinensis. Marine Science,2004,28:22-25.
    Zhang, W.Z., Wu, X.Z., Li, D.F., and Sun, J.F.. Immunological functions of blood cells in thescallop Chlamys farreri. Acta Zoologica Sinica,2005,51:669-677.
    李全振.刺参苗种运输方法.河北渔业,2006,147:34.
    雷衍之.养殖水环境化学实验.中国农业出版社,北京,2006.
    曲凌云,孙修勤,相建海.热休克蛋白研究进展.海洋科学进展,2004a,22(3):387-391.
    曲凌云,孙修勤,相建海,等.栉孔扇贝血淋巴细胞Hsp70表达变化的FCM法检测.高技术通讯,2004b,14(4):94.
    沈鸣.海参的化学成分和药理研究进展中成药,2001,23(10):758-761.
    隋锡林.海参增养殖.北京:农业出版社,1988,15-59.
    王吉桥,靳晓明,张剑诚.密度和水温对仿刺参(Apostichopus japonicus Selenka)幼参运输成活和排脏的影响,现代渔业信息,2007,22:3-6.
    Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A.. The use ofbiomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula:a practical approach. Sci. Total Environ.,2000,247:295-311.
    Dance, S.K., Lane, I., Bell, J.D.. Variation in short-term survival of cultured sandfish (Holothuriascabra) released in mangrove-seagrass and coral reef flat habitats in Solomon Islands.Aquaculture,2003.220:495-505.
    Dobson, G.. An improved method of packing to minimize mortality in juvenile trochus duringtransport. SPC Trochus Inf. Bull.,2001,8:22-23.
    Heasman, M., Chick, R., Savva, N., Worthington, D., Brand, C., Gibson, P., Diemar, J..Enhancement of Populations of Abalone in NSW Using Hatchery-produced Seed. NSWFisheries, Cronulla, Australia,2003,262.
    Hermes-Lima, M., Storey, J.M., Storey, K.B.. Antioxidant defenses and metabolic depression. Thehypothesis of preparation for oxidative stress in land snails. Comparative Biochemistry andPhysiology Part B,1998,120:437-448.
    L. C., Wilkie. Autotomy as a prelude to regeneration in echinoderms. Microscopy research andtechnique,2001,55:369-396.
    Lowry, O. H.,Rosebrough, N. J.,Farr, A. L.. Protein measurement with the folin phenol reagent.The Journal of Biological Chemistry,1951,193:265-275.
    Mercier, A., Battaglene, S. C., Hamel, J. F.. Settlement pre-ferences and early migration of thetropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol.,2000,249:89-110.
    Moon, J. H., Ryu, H. S., Yang, H. S., et a1. Antimutagenic and anticancer effect of glycoproteinand chondroitin sulfates from sea cucumber (Stichopus japonicus). The Korean Society ofFood Science and Nuitrition,1998,27(2):350-358.
    Niedzwiecki, A., Reveillaud, I., Fleming, J. E.. Changes in superoxide dismutasc and catalase inaging heat-shocked Drosophila. Free Radical Res Commun,1992,17:355-367.
    Ottaviani, E.. Composition of the serum haemolymph of Planorbis corneus (Gastropoda,Pulmonata). Comparative Biochemistry and Physiology78B,,1984:227-239.
    Pickering, A.D.. Environmental stress and the survival of brown trout, Salmo trutta. FreshwaterBiol.,1989,21:47-55.
    Pipe R.K., Porte C., Livingstone D.R.. Antioxidant enzymes associated with the blood cells andhemolymph of the mussels Mytilus edulis. Fish and Shellfish Immunology,1993,3:221-233.
    Rajalakshmi S., Mohandas A.. Copper-induced changes in tissue enzyme activity in a freshwatermussel. Ecotoxicol. Environ. Saf.,2005,62:140-143.
    Regoli, F., Cerrano, C., Chierici, E.. Seasonal variability of prooxidant pressure and antioxidantadaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis. MarineEcology Progress Series,2004,275:129-137.
    Shepherd, S.A., Preece, P.A., White, R.W.G.. Tired nature’s sweet restorer? Ecology of abalone(Haliotis spp.) stock en-hancement in Australia. In: Campbell, A.(Ed.), Workshop onRebuilding Abalone Stocks in British Columbia. Can. Spec. Publ. Fish. Aquat. Sci.,2000,130:84-97.
    Sies, H. Biochemistry of oxidative stress. Ang Chem Int Ed Engl,1986,25:1058-1062.
    Steven, W., Purcell, Bernard, F., Blockmans, Natacha, N.S., Agudo. Transportation methods forrestocking of juvenile sea cucumber, Holothuria scabra, Aquaculture,2006,251:238-244.
    Uthicke, S., Purcell, S.. Preservation of genetic diversity in restocking of the sea cucumberHolothuria scabra planned through allozyme electrophoresis. Can. J. Fish. Aquat. Sci.,2004,61:519-528.
    Van der Meeren, G.I.. Out-of-water transportation effects on behaviour in newly released juvenileatlantic lobsters Homarus gammarus. Aquac. Eng.,1991,10:55-64.
    Wang, F.Y., Yang, H.S., Gao, F, Liu, G.B.. Effects of acute temperature or salinity stress on theimmune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistry andPhysiology, Part A.2008,151:491-498.
    Xue, Q., Renault, T.. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacificoyster, Crassostrea gigas, hemolymph. Journal of Invertebrate Pathology2000,76:155-163.
    Zhang, M., Wang, L., Guo, Z. Y., Wang, B. J.. Effect of lipopolysaccharide and Vibrioanguillarum on the activities of phosphatase, superoxide dismutase and the content ofhemocyanin in the serum of Fenneropenaeus chinensis. Mar. Sci.,,2004,28:22-25.
    樊廷俊,杜玉堂,从日山.棘皮动物再生研究进展,中国海洋大学学报,2007,37(4):563-568.
    农业部,渔业局,中国渔业统计年鉴,2011,北京,中国农业出版社
    江晓路,杜以帅,王鹏,刘瑞志,杨学宋.褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响中国海洋大学学报,2009,39(6):1188-1192.
    季健平;吴再彬;刘歧山;张运生;叶铭;李明举.1991.超氧化物岐化酶超微量快速测定法.东南大学学报,1991,10:27-30.
    刘云,孔伟丽,姜国良,吴志强.2种免疫多糖对刺参组织主要免疫酶活性的影响,2008,l5(5):787-793.
    孙修勤,郑法新.海参纲动物的吐脏再生.中国海洋大学学报,2005,35(5):719-725.
    檀永凯,李霞,段晶晶.仿刺参内脏再生过程的能量代谢及生化组成变化.中国水产科学,2008,15(4):683-688.
    袁秀堂,杨红生,王丽丽,周毅,张涛,刘鹰.夏眠对刺参(Apostichopus japonicus (Selenka))能量收支的影响.生态学报,2007,08,31:55-07.
    张明,王雷,郭振宇,王宝杰.脂多糖和弧菌对中国对虾血清磷酸酶、超氧化物歧化酶和血蓝蛋白的影响.海洋科学,2004,28:22-25
    郑法新,孙修勤,张进兴.刺参吐脏再生的组织学研究.中国水产科学,2006,13(1):134-139.
    Barrett, A. J.,1972. Lysosomal enzymes. In: Dingle JT (Ed.), Lysosomes: A LaboratoryHandbook. North-Holland, Amsterdam. pp.46-135.
    Bertolini, F.,1930. Rigenerazione dell’apparato digerente nello Stichopus regalus. Pubb. Staz.Zool. Napoli10,439-448.
    Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A.,2000. Theuse of biomarkers to assess the impact of pollution in coastal environments of the IberianPeninsula: a practical approach. Sci. Total Environ.,247:295-311.
    Choe, Sang,1963. Biology of the Japanese common sea cucumber Stichopus japonicus Selenka.Pussan, Pusan Natl. Univ.
    Dawbin, W.H.,1949. Auto-evisceration and the regeneration of viscera in the holothurianStichopus mollis (Hutton). Trans. R. Soc. New Zealand77,497-523.
    Dyrynda, E.A., Pipe, R.K., Burt, G.R., Ratcli, N.A.,1998. Modulations in the immune defences ofmussels (Mytilusedulis) from contaminated sites in the UK. Aquat. Toxicol.42,169-185.
    Emson, R.H, Wilkie, I.C.,1980, Fission and autotomy in echinoderms. Oceanogr. Mar. Biol.Annu. Rev.18,155-250.
    Esterbauer, H., Cheeseman, K. H.,1990. Determination of aldehydic lipid peroxidation products:malonaldehyde and4-hydroxynonenal. Meth. Enzymol.,186:407-421.
    Gibson, A.W., Burke, R.D.,1983. Gut regeneration by morphallaxis in the sea cucumberLeptosynapta clarki (Heding,1928). Can. J. Zool.61,2720-2732.
    Glinski, Z., Jarosz, J.,2000. Immune Phenomena in Echinoderms. Arch. Immunol. Ther. Ex.48,189-193.
    Góth, L.,1991. A simple method for determination of serum catalase activity and revision ofreference range. Clin. Chim. Acta,196,143-151.
    Hermes-Lima, M., Storey, J.M., Storey, K.B.,1998. Antioxidant defenses and metabolicdepression. The hypothesis of preparation for oxidative stress in land snails. Comp. Biochem.Physiol. B120,437-448.
    Hermes-Lima, Storey, K.B.,1993a. Role of antioxidants in the tolerance of freezing and anoxia bygarter snakes. Am. J. Physiol.265, R646-52.
    Hermes-Lima, Storey, K.B.,1993b. In vitro oxidative inactivation of glutathione S-transferasefrom a freezing tolerant reptile. Mol. Cell Biochem.124,149-58.
    Hermes-Lima, Storey, K.B.,1996. Relationship between anoxia exposure and antioxidant status ofthe frog Rana pipiens. Am. J. Physiol.271, R918-25.
    Ji, T.T., Dong, Y.W., Dong, S.L.,2008. Growth and physiological responses in the sea cucumber,Apostichopus japonicus Selenka: Aestivation and temperature. Aquaculture,283(2008),180-187.
    Joanisse, D.R., Storey, K.B.,1996. Oxidative damage and antioxidants in Rana sylvatica thefreeze tolerant wood frog. Am. J. Physiol.271, R545-53
    José E., García-Arrarás, Lourdes, E.R., Roberto, S., Irma, I.T., Lucy, D.M., Ilia, T.A.,1998.Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrlmaSalenka (Holothuroidea: Echinodermata). J. Exp. Zool.281,288-304.
    Kille, F.R.,1942. Regeneration of the reproductive system following binary fission in thesea-cucumber Holothuria parvula (Selenka). Biol Bull.83,55-66.
    Leibson, N.L.,1982, Regenerations of the digestive tract in holothurians [A].Billich G L. ModernProblems of Regeneration. Yoshkar-Ola, Mari. State University,165-170.
    Liao, Y.,1980. The aspidochirote holothurians of China with erection of a new genus inechinoderms, present and past. In: Jangoux, M.(Ed.), Proceeding of European Colloquiumon Echinoderm. A.A. Balkema Publishers, Rotterdam, Netherlands, pp.115-120.
    Miller N. J., Rice-Evans C., Davies M. J., Gopinathan V., Milner A..1993. A novel method formeasuring antioxidant capacity and its application to monitoring the antioxidant status inpremature neonates. Clin. Sci.84:407-412.
    Moon, J.H., Ryu, H.S., Yang, H.S.,1998. Antimutagenic and anticancer effect of glycoprotein andchondroitin sulfates from sea cucumber (Stichopus japonicus) J. Korean Soc. Food Sci. Nutr.27(2),350-358.
    Omori, M., Ikeda, T.,1984. Methods in marine zooplankton ecology. John Wiley and Sons Inc,New York, pp173-209.
    Ottaviani E.,1984. Composition of the serum haemolymph of Planorbis corneus (Gastropoda,Pulmonata). Comp. Biochem. Physiol. B78B,227-239.
    Pipe R.K., Porte C., Livingstone D.R.,1993. Antioxidant enzymes associated with the blood cellsand hemolymph of the mussels Mytilus edulis. Fish Shellfish Immunol.3,221-233.
    Rajalakshmi S., Mohandas A.,2005. Copper-induced changes in tissue enzyme activity in afreshwater mussel. Ecotoxicol. Environ. Saf.,62:140-143.
    Regoli, F., Cerrano, C., Chierici, E.,2004. Seasonal variability of prooxidant pressure andantioxidant adaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis.Mar. Ecol. Prog. Ser.275,129-137.
    Renault, T., Xue, Q.G., Chilmonczyk, S.,2001. Flow cytometric analysis of European at oyster,Ostrea edulis, haemocytes using a monoclonal antibody specific for granulocytes. FishShellfish Immunol.11,269-274.
    Shukalyuk, A.I., Dolmatov, I.Yu.,2001. Regeneration of the Digestive Tube in the HolothurianApostichopus japonicus after Evisceration. Russ. J. Mar. Biol.,27,168-173.
    Santiago, P., Roig Lopez, J. L., Santiago, C.,2000. Serum amyloid A protein in an echinoderm: itsprimary structure and expression during intestinal regeneration in the sea cucumberHolothuria glaberrima. J. Exp. Zool.288(4),335-441.
    Shearer, K.D.,1994. Factors affecting the proximate composition of cultured fishes with emphasison salmonids. Aquaculture119,63-88.
    Sloan, N.A.,1984. Echinoderm fisheries of the world, a review. In: Keegan, B.F., O'Connor,B.D.S.(Eds.), Echinodermata, Proceedings of the Fifth International Echinoderm Conference.A.A. Balkema Publishers, Rotterdam, pp109-124.
    Smith, G.N.,1971a. Regeneration in the sea cucumber Leptosynapla. I. The process ofregeneration. J. Exp. Zool.177,319-330.
    Smith, G.N.,1971b. Regeneration in the sea cucumber Leptosynapla. II. The regenerative capacity.J. Exp Zool.177,331-342.
    Song, S.J.,1991. The Clinician's Handbook. Shanghai Scientific and Technical Publishers, pp185.
    Spector, T.,1978. Refinement of the coomassie blue method of protein quantitation. Anal.Biochem.86,142-146.
    Strickland, J.D.H., Parsons, T.R.,1968. A practical handbook of seawater analysis. Fish. Res.Board Can. Bull.167,1-11.
    Swan, E. F.,1961. Seasonal evisceration in the sea cucumber Parastichopus Californicus. Science133,1078.
    Wang, F.Y., Yang, H.S., Gabr, H.R., Gao, F.,2008a. Immune condition of Apostichopusjaponicus during aestivation. Aquaculture285,238-243.
    Wang, F.Y., Yang, H.S., Gao, F, Liu, G.B.,2008b. Effects of acute temperature or salinity stresson the immune response in sea cucumber, Apostichopus japonicus. Comp. Biochem. Physiol.A151,491-498
    Wilkie, I.C.,2001. Autotomy as a prelude to regeneration in echinoderms.J. Microsc. Res.Techn.55,369-396.
    Wootton, E.C., Pipe, R.K.,2003. Structural and functional characterization of the blood cells ofthe bivalve mollusc, Scrobicularia plana. Fish Shellfish Immunol.15,249-262.
    Xue, Q., Renault T.2000. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacificoyster, Crassostrea gigas, hemolymph. J. Invertebr. Pathol.76,155-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700