用户名: 密码: 验证码:
用光合细菌生物降解岩溶水中硫酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶水是一类具有高矿化度、高硬度、高硫酸盐含量的特殊水质,其中主要含有Ca2+、Mg2+、Na+、K+、SO42-等离子,可溶性固体总含量大于1g/L,多呈中性或偏碱性,且带苦涩味。高矿化度、高硬度及高硫酸盐含量的地下岩溶水不经过处理直接排放,就会给生态环境带来一定的危害,同时也影响分布地区的工业生产。
     小店区位于山西省太原市的南边,属于干旱或半干旱地区,水资源严重缺乏。其地下水质属于岩溶水,其中矿化度、总硬度、S042-三项指标均高于饮用水标准,不可以直接用于生产和生活。近些年来,由于工业与城市化的迅速发展,所排出的污水和废水较多,地表以及地下水资源污染严重。因此,小店区严重缺水的形势己严重影响到人畜饮用和经济发展。必须处理岩溶水以达到用水要求,不但可以提供丰富的生产和生活用水,而且避免地下水资源的浪费。
     常规的降低岩溶水含盐量的水处理方法主要是利用物理化学方法。①投加化学药剂法;②离子交换法;③电渗析法;④反渗透法等。但这些方法投资运行成本较高。采用生物方法来降解处理岩溶水的矿化度、硬度和SO42-,具有高效率、低成本、见效快,无二次污染的特点,同时也可以解决传统高矿化度、高硬度及高硫酸盐含量的岩溶水处理中遇到的问题,同时符合当前对环境保护的要求。
     传统的硫酸盐还原菌处理水中高浓度硫酸盐,硫被还原成为H2S,对反应系统中菌群有一定的抑制作用,且H2S有恶臭且有毒,严重污染大气,若不能妥善处理,将造成二次污染。而光合细菌可以利用多种有机物作为碳源,利用光能进行高产的能量代谢,是处理有机废水常用的微生物之一,应用前景非常广阔。光合细菌适宜的生长温度范围较广,10℃-40℃内均可,且易培养。本身无毒无害,无需稀释,可处理高浓度有机废水,适用于缺水地区,不会在处理水域对人、畜造成毒副作用。光合细菌法以其见效快,前期投资少,可操作性强,无二次污染的特点成为21世纪水处理领域中最耀眼、最具前景的微生物处理法之一,将综合应用于农业、水产、畜牧及新能源的开发和食品工业等领域。
     本项目主要对太原市小店区地下岩溶水的矿化度、总硬度、硫酸盐进行生物降解处理,从而达到饮用水的标准(250-900mg/L),即:矿化度降低到1000mg/L以下,总硬度降低到450mg/L以下,硫酸盐降低到250-900mg/L以下。本论文通过选用光合细菌(沼泽红假单胞菌,Rhodopseudanonas palustris;球形红假单胞菌,Rhodopseudomonas sphaeroides以及沼泽红假单胞菌和球形红假单胞菌的混合菌),分别采用单独使用光合细菌处理、加入光合细菌生长所需营养成分处理、用聚合氯化铝絮凝光合细菌处理三种处理方法,对小店区地下岩溶水中的硫酸盐进行厌氧和好氧处理,旨在降低硫酸盐含量,达到饮用水标准。主要内容分为三部分:第一,沼泽红假单胞菌的培养及处理岩溶水;第二,球形红假单胞菌的培养及处理岩溶水;第三,沼泽红假单胞菌和球形红假单胞菌混合菌的培养及处理岩溶水。结果显示:
     用沼泽红假单胞菌处理岩溶水可以降解岩溶水的硫酸盐,且用聚合氯化铝絮凝沼泽红假单胞菌后在厌氧光照条件下处理效果更好,可以使硫酸盐含量由原来的1999.6mg/L降为720.24mg/L。单独使用沼泽红假单胞菌处理时,当菌液体积比岩溶水体积为1:3,处理4d时,岩溶水中硫酸盐含量降到最低,且菌密度呈下降趋势;加入沼泽红假单胞菌生长所需的营养成分后,其菌密度随处理时间的延长而增大,水中硫酸盐含量降低;用浓度为0.010mol/L的聚合氯化铝絮凝沼泽红假单胞菌,60min菌体絮凝效果最佳,同时用其处理岩溶水中的硫酸盐效果更好。
     用球形红假单胞菌处理岩溶水,球形红假单胞菌经培养96h后可以进入对数生长期,培养6天后可用;球形红假单胞菌厌氧和好氧处理岩溶水,测得岩溶水中硫酸盐含量变化不明显;与对照组相比,岩溶水中球形红假单胞菌的菌密度会随着处理时间的增加而增大。
     用沼泽红假单胞菌和球形红假单胞菌的混合菌处理岩溶水,混合菌厌氧光照条件下可以降解岩溶水的硫酸盐,但未达到饮用水标准,可以使硫酸盐含量由原来的2021.64mg/L降为1211.75mg/L;处理组A组(添加营养成分和絮凝剂絮凝的混合菌)硫酸盐含量值在4d时降到最低值,效果最好。
     综上所述,选用沼泽红假单胞菌处理岩溶水,效果较好,处理后硫酸盐含量可达到饮用水标准。
Underground karst water is a kind of special water, characterized by having of high salinity, high hardness and high sulphate content. It mainly contains large amounts ions such as Ca2+、Mg2+、Na+、K+、and SO42-. The total content of soluble solids can reach1g/L. And most of them are neutral or meta-acid, with a bitter taste. Nevertheless the karst water would bring some harm to the ecological environment if it is not treated, and the industrial production of districts where this water in distribution will be affected simultaneously.
     XiaoDian District is located in the south Taiyuan, Shanxi Province. It is arid or semi-arid areas where water shortage is severe. The underground water is the karst water and could not be used directly in living and production because the degree of mineralization, the total hardness and sulphate content are all higher than the standards of drinking water. In recent year, with the rapid development of industrialization and urbanization, there are a lot of sewage and waste water discharge. The surface and groundwater resources are polluted seriously. So severe water shortages of XiaoDian District have seriously affected people and livestock drinking and economic development. In this paper, the authors devised some treatment to in order to reduce the sulphate content in the Karst water in Xiao dian, Taiyuan, Shanxi Province, and to meet the drinking water standards. Thus we can get abundant water for production and life, avoid the waste of groundwater resources, and improve XiaoDian district ecological environment.
     The conventional water treatment methods mainly use physical and chemical methods. Currently, the methods of reducing the salt content in karst water include chemical dosing, ion exchange, electrodialysis and reverse osmosis. But no matter what method of desalination, the cost of investment operation is larger, which is also the biggest problem in the treatment of karst water with high salinity, high hardness and high sulphate. However, the biological method is highly efficienct, low cost, fast effects and has no secondary pollution, which can degradate the salinity, hardness and SO42-of karst water, and also accord with the requirements of environment protection.
     The project is mainly about degrading the salinity, hardness and sulphate of underground karst water in xiaodian district, Taiyuan city, in order to make the content of salinity, hardness and sulphate reach the standard of drinking water. That is to say, salinity degradation below1000mg/L, total hardness degradation below450mg/L, sulfate degradation below250~900mg/L. However, this thesis is mainly to degradae sulfate in the karst water, make its content lower and up to the standard of drinking water.
     The traditional sulfate reducing bacteria (SRB) will reduct the sulfur into H2S in the processing of treatment with high concentrations sulfate. H2S will produce certain inhibitory action on the microbes in the reaction system. And the H2S is malodorous and toxic. Without proper treatment, it will pollute the air and cause the second pollution. Yet the Photosynthetic bacteria (PSB) can take many kind of organic matters as the carbon sources and act high yield of energy metabolism with the help of light energy. PSB is one of the common microbes used to treat the organic wastewater, and the application of PSB will be very wide. The suitable environment temperature range for PSB is wide (10-40℃). PSB is avirulent and harmless, and can deal with high concentration organic wastewater without dilution. This method is suited for the water-deficient area and elicits no toxic action. PSB method will become one of the most promising microbe treatment method for its dazzling characteristics such as fast effects, less investment, strong maneuverability and no secondary pollution. It can also be used for agriculture, aquatic products industry, animal husbandry, food industry and development of new energy fields etc.
     In this degree paper, we chose PSB (Rhodopseudanonas palustris, Rhodopseudomonas sphaeroides, and the mixture of R. palustris and R. sphaeroides) to treat the karst water with three kinds of methods in order to reduce the sulphate content in Xiao dian, Taiyuan, Shanxi Province and to meet drinking water standards. One way uses only R. palustris. The second way is adding growth nutrients that R. palustris required. And the last way is polymerization aluminium chlorination (PAC) flocculation R. palustris. This paper mainly include three parts:the cultivating of R. palustris and treatment of karst water, the cultivating of R. sphaeroides and treatment of karst water, the cultivating of the mixture of R. palustris and R. sphaeroides and treatment of karst water.
     The results showed that treating karst water with R. palustris can cause sulfate to be degraded. Moreover, after flocculated R. palustris by PAC and kept under anaerobic light conditions, the sulfate concentration dropped from1999.6mg/L to720.24mg/L. While processing karst water via R. palustris only, and when the volume ratio of bacterial solution and karst water was1:3, after4days of treatment, the sulfate concentration was lowest and the density of bacterial community tends to decrease. After adding necessary nutrients for bacterial growth, the density of community increase with treatment time, sulfate concentration in water was decreased; while using flocculated R. palustris by PAC, which concentration is0.010mol/L, after60minutes, the bacterial gained best effect of flocculation, and it has the best effect to degrade sulfate solution.
     Treating karst water with spherical R. sphaeroides and after cultivattion for96h,the bacterial entered logarithmic phase, after6days of culture, the bacterial was available. Under anaerobic and aerobic condition, using spherical R. sphaeroides to treat the karst water, there is little difference of sulfate concentration between the two conditions. Compared with the control group, the density of R. sphaeroides in the karst water increased with increasing processing time.
     Treating the karst water with a mixture of R. palustris and R. sphaeroides can decrease the sulfate contect in anaerobic light condition. This can reduce the sulphate content from2021.64mg/L to1211.75mg/L But it cannot meet the drinking water standard. The sulfate content in the krast water was reduced to a minimum value at4days when added the nutrients and flocculation of mixed bacterium needed.
     In conclusion, using R. palustris to treat the karst water, the effect is better. And the contect of sulfate can meet the standards for drinking water after treatment.
引文
[1]唐健生,韩行瑞,李庆松,等.山西岩溶大泉水文地球化学研究[J].中国岩溶,1991,10(4):262-276.
    [2]王秀云,王晓敏.太原市晋祠泉域岩溶水水质现状及对策[J].地下水,2005,27(3):179-180.
    [3]乔小娟,李国敏,都洁,等.太原市西山岩溶水系统水文地球化学特征分析[J].中国岩溶,2008,27(4):353-358.
    [4]王爱杰,王丽燕,任南琪,等.硫酸盐废水生物处理工艺研究进展[J].哈尔滨工业大学学报,2004,36(11):1446-1449.
    [5]李亚新,苏冰琴.硫酸盐还原菌和酸矿废水生物处理技术[J].环境污染控制技术,2000,1(5):1-11.
    [6]POSTGATE J R. The Sulfate Reducing Bacteria [M]. UK:Cambridge University Press,1984.
    [7]赵志怀,尹秀贞,杨军耀,等.脱硫酸菌去除煤矿酸性废水中硫酸盐的初步研究[J].太原理工大学学报,2007,38(2):112-115.
    [8]曾宇,秦松.光合细菌法在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31.
    [9]HASSAN M A,SHIRAI Y,KUSUBAYASHI N,et al. The Production of Polyhydroxyalkanoate from Anaerobically Treated Palm Oil Mill Effluent by Rhodobacter sphaeroides[J], Journal of Fermentation and Bioengineering,1997,83 (5):485-488.
    [10]SASAKI K,NOPARATNARAPORN N,NAGAI S. Use of Photosynthetic Bacteria for the Production of SCP and Chemicals from Organic Wastes,in Bioeonversion of Waste Materials to Industrial Products[M]. New York, London,Tokyo:Elsevier Applied Science Publishers,1991,223-262.
    [11]郑耀通,胡开辉.固定化光合细菌净化养鱼水质的试验[J].中国水产科学,1999,6(4):55-58.
    [12]毛雪慧,徐明芳,刘辉,等.光合细菌固定化及其处理含油废水的研究[J].农业环境 科学学报,2009,28(7):1494-1499.
    [13]丁成.生物硫化床固定化光合细菌处理含酚废水试验[J].四川师范大学学报(自然科学版),2009,32(4):513-517.
    [14]曾宇,廖问陶.光合细菌固定化及净化城市污水的研究[J].重庆环境科学,2000,22(4):42-43.
    [15]闫海,马翠杰,孙旭东.铝絮凝剂絮凝沼泽红假单胞菌的研究[J].化学与生物工程,2008,25(6):53-55.
    [16]OMELIA C R. The Scientific Basis of Flocculation [M]. Netherlands :Sijthoff and Noordhoff,1978 :219-269.
    [17]夏兵兵,康建平,苏波.沼泽红假单胞菌发酵条件的响应面优化研究[J].食品与发酵科技,2010,46(4):29-35.
    [18]许洁.光合细菌的某些生物学性状[J].水产科学,1993,12(2):27-30.
    [19]AKIRA H. Effects of Organic Nutrient Strength on Purple Nonsulfur Bacterial Content and Metablic Activity of Photo Synthetic Sludge for Waste Water Treatment [J]. Journal of Fermentation and Bioengineering, 1989,8 (4):269-276.
    [20]SAWADA H. Photosynthetic Bacteria in Waste Treatment[J]. Ferment Technology, 1997,55:311-316.
    [21]VAN NIEL C B. Techniques for the Enrichnmnt, Isolation, and Maintenance of the Photosynthetic Bacteria[J]. Methods in Enzymology, 1971,23:3-28.
    [22]蔡慧农,倪辉,苏文金.沼泽红假单胞菌培养基的优化及降氨氮作用的研究[J].集美大学学报(白然科学版),2007.12(3):198-203.
    [23]杜冰,杨公明,刘长海.等.沼泽红假单胞菌发酵培养的研究[J].饲料工业,2007,28(24):38-40.
    [24]刘琳娟,张琪.除水中硫酸盐测定干扰的方法[J].环境监测管理与技术,2007,19(3):52-53.
    [25]孙承志,麦锦欢,魏艳.改良铬酸钡比色法测定水中硫酸盐[J].广东微量元素科学,2001,8(3):55-56.
    [26]NAGADOMI H,TAKAHASI T,SASKI K,et al. Simultaneous Removal of Chemical Oxygen Demand and Nitrate in Aerobic Treatment of Sewage Wastewater Using an Immobilized Photosynthetic Bacterium of Porous Ceramic Plates[J]. World Journal of Microbiology and Biotechnology, 2000,16 (1):57-62.
    [27]曾宇,秦松,梁明山.光合细菌综合应用新进展[J].水产科学,2000,19(5):34-36.
    [28]何萍,陈育如,杨启银.光合细菌处理有机污水的方法[J].南京师范大学学报(工程技术版),2002,2(1):56-59.
    [29]李东风.光合细菌的开发应用动态[J].微生物学杂志,1998,18(2):44-50.
    [30]朱章玉,俞吉安,林志新.光合细菌的研究及应用[M].上海:上海交通大学出版社,1991,40-50,242-292.
    [31]谢磊,杨润昌,胡勇有.PSB在有机废水处理中的应用[J].环境污染与防治,2000,22(4):36-38.
    [32]王兰,廖丽华.光合细菌固定化及对养殖水净化的研究[J].微生物学杂志,2005,25(3):50-53.
    [33]MADUKASI E I,CHUNHUA H,ZHANG G. Isolation and Application of a Wild Strain Photosynthetic Bacterium to Environmental Waste Management[J]. International Journal of Environmental Science and Technology, 2011,8 (3):512-533.
    [34]黄翔峰,李春鞠,章非娟.光合细菌的特性及其在废水处理中的应用[J].中国沼气,2005,23(1):29-35.
    [35]LU H F,ZHANG GM,DAI X,et al. Photosynthetic Bacteria Treatment of Synthetic Soybean Wastewater Direct Degradation of Macromolecules[J]. Bioresourse technology, 2010,101 (19):7672-7674.
    [36]KODAYASI M. Utilization and Disposal of Water by Photosynthetic Bacteria[M]. Peramanpress, 1997,39-45.
    [37]TAKENO K,YAMAOKA Y.SASAKI K. Treatment of Oil-containing Sewage Wastewater Using Immobilized Photosynthetic Bacteria[J]. World Journal of Microbilogy and Biotechnology, 2005,21:1385-1391.
    [38]白晓慧.采用固定化光合细菌应用SBR法处理生活污水的试验研究[J].四川环境,1998,17(3):11-18.
    [39]吴国庆,张琳,牛志卿.固定化PSB细胞技术研究及应用[J].环境科学研究,1994,7(6):51-54.
    [40]孔秀琴,赵峰,石小锋,等.光合细菌处理高含盐有机废水研究[J].水处理技术,2010,36(9):90-92,105.
    [41]陈世阳.光合细菌的特性及其开发利用[J].海洋通报,1991,10(1):24-31.
    [42]黄宁宇,来琦芳.三种光合细菌不同生态环境下的生长试验[J].海洋渔业,2004,26(3):199-204.
    [43]张道南,乔振国.红螺菌科光合细菌的分离、培养及其作为鱼虾类饵料添加剂的初步研究[J].水产学报,1988,12(4):367-369.
    [44]HOLT J G, KRIEG N R. Bergey's Manual of Determinative Bacteriology (9th ed) [M]. USA:Williams& WilkinsCompany,1994.
    [45]李勤生,卫翔.混合培养对光合细菌生长量的影响[J].水生生物学报,1998,22(2):101-105.
    [46]武书彬,梁文芷.无机含硫化合物对光合细菌生物处理过程抑制作用的研究[J].中国造纸学报,1996,11(增刊):57-60.
    [47]ORMEROD J G. The Phototrophic Bacteria:Anaerobic Life in the light [M].USA:University of Calfornia Press,1983.
    [48]BERGSTEIN T, CAVARI B Z. Sulfide Utilization by the Photosynthetic Bacterium Chlorobium phaeobacteroides[J]. Hydrobiologia. 1983,106:241-246.
    [49]周德庆.微生物学教程[M].北京:高等教育出版社,1996.
    [50]MICHIHARU K.Microbial Energy Conversion (Edited bySchlegel H.G.& BarneaJ.) [M]. New York:Pergam on Press, 1977:443-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700