用户名: 密码: 验证码:
内燃机燃烧的可视化建模及其在WD615柴油机数字样机中的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,数字样机技术已经成为产品开发的一种主要方法,它以计算机仿真模型为基础,为相关产品建立合适的数字化模型。本文通过研究内燃机场景中,液体燃料从喷油到雾化到燃烧的一系列物理过程,结合了计算机图形学领域对不规则物体真实感模型的相关研究,分别为以上物理过程建立起相关的数学模型。粒子系统以及细胞自动机模型是描述不规则物体的有效手段,本文将粒子系统以及细胞自动机应用到那内燃机场景中,并在WD615内燃机的数字样机环境中实现了喷油、雾化以及燃烧的可视化效果。
     第一章概述了当前数字样机技术的发展趋向,提出了在数字样机中建立可视化模型的现实意义。同时对计算机图形学中对不规则物体的描述方法进行了研究,比较了通过研究物质运动规律建立数据模型和通过预运算建立伪随机效果的区别,并以粒子系统和细胞自动机为例概述了通过建立数据模型对不规则物体进行描述的建模方法。最后给出了全文的研究方向以及结构组织。
     第二章描述了内燃机的喷油效果,并对喷油过程的物理模型进行数学建模。通过应用粒子系统对油雾粒子的物理运动模型进行描述,定义了粒子系统中粒子的特征属性以及运动规律,同时结合喷油装置的参数定义场景的喷油周期以及每次的喷油量。同时阐述了在场景实现中使用的的基于广告板技术的纹理映射方法。
     第三章描述燃料粒子在点燃以前受热蒸发并且与空气混合的雾化效果。通过建立场景中随机产生的扰动效果与雾化现象之间的关系,定义了液体燃料蒸气及其相邻粒子之间的相互作用规律。利用细胞自动机建立了与场景对应的细胞空间,同时基于粒子相互作用的机制建立细胞自动机的演化规律,并对雾化过程的扩散趋向性的可视化实现了控制。最后阐述了如何通过应用元球的思想实现了粒子密度的可视化连续分布。
     第四章根据内燃机气缸中的燃烧过程的物理模型,描述了火焰传播的方式以及气缸中燃烧模型的分类。基于气缸内粒子数量守恒同时体积不断变化的特点,提出了变体积的细胞自动机模型。变体积的细胞自动机模型根据体积的变化需要,进行细胞空间的重新划分,并且在细胞空间重新划分以后对新老细胞进行状态的转移。最后根据火焰传播模型建立该细胞自动机的转换规则,实现了燃烧效果的可视化模型。
     第五章实现了将内燃机喷油、雾化以及燃烧现象的相关数据模型以及可视化效果集成到WD615数字样机环境中。将通过OpenGL函数实现的喷油、雾化以及燃烧等不规则的视觉效果嵌入到基于WTK(WorldToolKit)开发的数字样机场景中去,为该场景提供了可视化的研究模型。
     第六章中对全文研究内容进行了总结并对今后的技术发展方向进行展望。
Lately, the technology of virtual prototype has become a main method to develop products. It is a digitalized model based on computer simulation model. This paper has studied a series of burning physical processes and used mathematical models to simulate the scenes, from fuel injection to fog effect in engine scenario, leveraging the relevant researches of irregular objects realistic image in the field of computer graphics. Besides, particle system and cellular automaton are effective methods to describe irregular objects and both of them are implemented in the simulation models to realize irregular objects visualized effects in WD516 engine scenario.
     The chapter 1 summarizes the development trend of the virtual prototype technology, pointing out the significance of constructing a visualize model in virtual prototype scenario. It compares the computer graphic method to describe irregular objects the mathematical model based on rules of object movement and stochastic effect based on pre-calculation. A mathematical model of irregular objects for particle system and cellular automaton is given as an example. At the end of this chapter, the research direction and structure of the whole paper is laid out.
     The chapter 2 mainly describes the physics characteristics of fuel injection in the engine scenario. Particle system, oil fog physical movement model, the corresponding particle characteristics and rules of movement and the index for fuel injection equipment are used to define the fuel injecting cycle and volume. A method of texture mapping, which is broadly used in advertisement board technology, is also introduced here.
     The chapter 3 focuses on the fog effect of evaporation of fuel particles and mixture with air before ignition. The interaction rules between liquid fuel steam and its particle "neighbors" are constructed by studying the relation between the stochastical perturbation effect and foggy effect. According to the cellular automaton and its corresponding space and interactions among particles, the diffusion of foggy process has been controlled. Lastly, it is described that how to use metaball to visualize continuous distribution of particle density.
     The chapter 4 concentrates on the research on burning model in engine gas cylinder, including the transmission of flames and the categorization of burning models. Due to the truth that the number of particles stays the same within cylinder while the volume is changing all the time, it is necessary to re-divide space for cellular and take into consideration the change of condition from mother cells to new cells. That's the underlying rationale of a volume-changing cellular automaton. Finally, I visualize the burning effect via flame transmission model and cellular automaton generating rules.
     The chapter 5 integrate the relative data module and visual effect into the vitual prototype environment of WD615. The fuel injection effect, fog effect and burning effect is realized via OpenGL functions. And they're embeded into the vitual prototype environment to provide a visualization research module of the scenario.
     At last, the chapter 6 makes a summary of the whole thesis, and looks forward to the future development of the corresponding technique.
引文
[1] Bachalo W D. Spray diagnostics for the twenty-first century[J]. Atomization and Sprays,2000,10:439-474
    [2] Reuss D L,Felition P G, France M L el al. Velocicy, vorticity and strain-rate ahead of a flame measured in an engine using particle image velocimetry[A]. SEA Paper[C]. 1999,900053.
    [3] Rajalingam B V, Farrell P V. The effect of injection pressure on air entrainment into transient diesel sprays[A]. SEA Paper[C]. 1999,1999-01-0523.
    [4] Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J].Joumal of Physical Fluids, 1982,25:1730-1742.
    [5] 袁永先,尹天佐,马维忍.柴油机喷油装置及喷油技术的发展动态[J].小型内燃机与摩托车,2006,6:51-55
    [6] 成晓北,黄荣华.柴油机燃油喷射雾化的测量试验研究[J].燃烧科学与技术,2003,9(3):224-228
    [7] 董尧清,王志华,顾萌君,翁立克,赵瑜.柴油机双弹簧喷油器喷油系统的模拟计算与分析[J].内燃机工程,2005,26(5):54-58
    [8] 龚金科,翟立谦,谭理刚,鄂加强,刘孟祥,袁文华.电控摩托车发动机喷油及点火控制建模与仿真[J].内燃机工程,2005,26(5):50-53
    [9] 马忠杰,于秀敏,李国良,关兵.电控喷油器喷射过程的计算模型[J].内燃机学报,1997,15(2):232-236
    [10] 叶彩霞,刘全清.工业炉燃油喷雾燃烧过程的特征分析[J].热能工程,1999,3:5-7
    [11] 黄勇成,周龙保.用特征时间燃烧模型模拟直喷式柴油机的燃烧[J].西安交通大学学报,2005,39(1):26-30
    [12] Christopher S Weaver, et al. Dual Fuel Natural Gas/Diesel Engines: Technology, Performance, and Emissions. SAE Paper 940548, 1994.
    [13] Stare Jos. Interacting with smoke and fire in real time: [J] Communications of the Association for Computing Machinery 2000. 43(7): 76—83
    [14] Lju Youjun, Jia Gangyi. A high compression engine running on lowoctane gasoline[A]. Proceedings ofXXI FI SITA Congress 885035 [c]. Belgrade: 1986
    [15] 林建生.5个待定系数的修正韦伯函数在发动机多火焰区燃烧模型中的应用[J].燃烧科学与技术,2002,8(5):457-460
    [16] 姚春德,刘增勇,高昌卿,孙家峰.柴油引燃天然气的双燃料燃烧机理的研究[J].工程热物理学报,2002,23(6):761-763
    [17] 金英爱,高青,玄哲浩.点燃式发动机燃烧过程模拟分析及临界爆震预测[J].燃烧科学与技术,2003,9(6):521-524
    [18] 毕明树,尹旺华,丁信伟,王淑兰.管道内可燃气体爆燃的一维数值模拟[J].天然气工业,2003,23(4):89-92
    [19] 刘德新,刘书亮,王天友,于吉超,赵新顺,赵振武.火花点火发动机燃烧室内温度场的实验研究[J].天津大学学报,2002,35(5):559-562
    [20] Law C K The Elements of Combustion Physics. BerkeLey; Berkeley, Univ of CaLifornia, 1980
    [21] MANSOUR C, BOUNIF A, ARIS A, et al. G-Diesel(dual-fuel) Modeling in Diesel Engine Environment[J]. Int. J. Therm. Sci. (2001)40: 409—424.
    [22] ABD ALI. A G H, SOLIMAN H A, BADR O A, et al. Combustion Quasi-two Zone Predictive Model for Dual Fuel Engines[J]. Energy Conversion and Management 42(2001): 1477—1498.
    [23] 费少梅,彭艳莹,陆国栋,刘震涛.基于粒子系统的湍流燃烧火焰的可视化研究[J].计算机辅助设计与图形学学报,2005,17(3):461-466
    [24] 彭艳莹 基于粒子系统的内燃机燃烧可视化研究[D].杭州:浙江大学机械与能源工程学院2003
    [25] 邢志祥.密闭容器内液化石油气燃爆特性的计算[J].石油化工消防,2000,5(2):61-62
    [26] 王静秋.面向对象的通用参数化粒子系统架构设计[J].软件天地,2004,8:10-11
    [27] 李绍安,苏万华.内燃机燃烧模型的研究现状与展望[J].车用发动机,1998,2(114):1-6
    [28] 李绍安.内燃机准维燃烧模型的研究动态[J].内燃机工程,1999,2:52-58
    [29] 李岳林,张雨,万力,沈文,郭晓汾.汽油机多区燃烧模型的建立及应用研究[J].内燃机工程,200.2,23(3):65-70
    [30] 朱圣柳,张冰怡.汽油机工作过程的多区模型[J].洛阳工学院学报,2001,22(6):41-43
    [31] 林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报,2002,31(1):6-9
    [32] 徐胜利,糜仲春,汤明钧.稳定传播火焰在可燃云雾中产生的压力波[J].燃烧学与技术,1995,1(2):176-184
    [33] 宿春慧,张雪兰,李彦辉.虚拟战场中不规则物体的实时显示研究[J].微机发展,2004,14(5):47-49
    [34] HOUNTATASDT, PAPAGIANNAKIS R G. A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source[J]. SAE 2001-01-1245, 2001
    [35] ZHANG D, FRANKEL S H. ANumerical Study of Nature Gas Combustion in a lean burn Engines[J]. Fuel Vol 77, No 12 PP. 339—1347, 1998.
    [24] 胡正权,汤东,罗福强,陈上伟.压燃式双燃料柴油机燃烧模型的研究[J].拖拉机与农用运输车,2006,33(1):67-70
    [36] 费少梅,严兆大.压燃式双燃料发动机燃烧模型的新进展[J].燃烧科学与技术,1996,2(4):349-356
    [37] 谢隽毅,张芹,吴慧中.个基于粒子系统的战场火焰模型及其实现[J].系统仿真学报,2001,13(5):596-598
    [38] 毕小平,韩树.一个直喷式柴油机的准维燃烧模型[J].内燃机学报,1995,13(3):231-236
    [39] Non masa I. Premixel flame propagating into a narrow channel at a high speed: part 1. flame behaviors in the channel[J]. Combustion and F/ame.1983.60:161-168
    [40] 詹荣开,罗世彬,贺汉根.用粒子系统理论模拟虚拟场景中的火焰和爆炸过程[J].计算机工程与应用,2001,5:91,128
    [41] 林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2),104-107
    [42] 宋卫国,范维澄,汪秉宏.整数型森林火灾模型及其自组织临界性[J].火灾科学,2001,10(1):53-56
    [43] 闻建龙,王军锋,张军,罗惕乾.柴油高压静电雾化燃烧的研究[J].内燃机学报,2003,21(1):31-34
    [44] 何宏舟,H.Koehn.利用冷焰现象实现轻油的预蒸发燃烧[J].热能动力工程,2002,17(3):264-267
    [45] 舒宝万,毛羽.雾化效果对液雾燃烧过程影响的数值模拟[J].Industrial Furnace,2004,26(4):27-32
    [46] 张先檩,尹丹模,白皓.液体燃料的雾化[J].冶金能源,1998,17(3):42-47
    [47] GAO Jian, JIANG De-ruing, LIAO Shi-yong, Zeng ke. Modeling Atomization and Evaporation Processes Hollow-Cone Fuel Sprays for GDI Engine[J].燃烧科学与技术,2004,10(3):212-218
    [48] ROBERT R R. Digital engineering., functional virtual prototyping(Part Ⅰ)[J]. Time CompressionTechnologies, 2001, 5(4): 26—31.
    [49] CHARLES L, LEE H W, JACK H. Variation simulation for deformable sheet metal assemblies using mechanistic models [J]. Transactions ofNAMRI/SAE, 1995, 23(5): 235—240.
    [50] M A Siqun, ZHAO Wenzhong, XIE Suming, et al. Research on key technology of data collaboration supporting railway vehicles virtual prototyping[J]. Computer Integrated Manufacturing Systems, 2003, 9(3): 242—246(in Chinese).
    [51] 潍柴动力 WD615 客车用柴油机外形尺寸[EB]http://www.weichai.com/products/channel/1585.shtml
    [52] 雷良育.基于虚拟现实的汽车平顺性仿真试验系统设计[J].传感技术学报,2006,19(4):1065-1069
    [53] 马俊福,周晓军,徐志农.路面不平度模拟及其可视化系统的研究[J].机床与液压,2006,4:187-192
    [54] 张烨,宁汝新,刘检华.面向虚拟装配的装配序列规划技术研究[J].计算机集成制造系统,2006,12(1):90-94
    [55] 龚飘,刘子建,曾晓梅.虚拟环境中基于多体动力学的实时仿真[J].计算机仿真,2004,21(6):96-99
    [56] Maeda J, Novianto S, Saga S, etal. Rough and accurate segmentation of natural images using fuzzy region-growing algorithm[J]. IEEE Trans. PAMI, 1999: 227-231.
    [57] Junji Maeda,Vo V Anh, Tohru. Integration of location fractal dimension and boundary edge in segmenting natural images[J1. IEEE Trans. PAMI, 1996: 845—848
    [58] 张清宇等.分形理论在火焰稳定性诊断中的应用[J].中国电机工程学报,2004,24(12):248-252
    [59] 刘双喜,王海.建立汽油机燃烧模型的新方法——分形几何[J].小型内燃机,1999,28(4):18-21
    [60] 孟艳玲,杜青,刘欣,朱棣.内燃机燃烧火焰的分形特征研究[J].小型内燃机与摩托车,2007,36(1):83-88
    [61] Jos Stam, Eugene Flume. Depicting fire and other gaseous phenomena using diffusion processes. ACM Computer Graphics (SIGGRAPH' 95), 1995, 29(4) 129-135
    [62] Pakeshi Agui, Yuzo Kohno, Masayuki Nakajima. Generating 2 -Dimension at flame images in computer graphics The Institute of Electronics.Information and CommunicationEngineers, 1991, 74(2): 457—463
    [63] 张芹,谢隽毅,吴慧中,张正军.火焰、烟、云等不规则物体的建模方法研究综述[J].中国图象图形学报,2000,5(3):186-190
    [64] 张芹,吴慧中,谢隽毅,张正军.基于粒子系统的火焰模型及其生成方法研究[J].计算机辅助设计与图形学学报,2001,13(1):78-82
    [65] 管宇,邹林灿,陈为,彭群生.基于粒子系统的实时瀑布模拟[J].系统仿真学报,2004,16(11):2471-2474,2478
    [66] 鄢晓彬.粒子系统技术在计算机图像绘制特技制作中的应用[J].青海大学学报(自然科学版),2006,24(5):83-85
    [67] Pal S K, King R A. On edge detection of X-ray images using fuzzy sets. IEEE Trans. Pattern Analysis and Machine Intelligence, 1983
    [68] 吴薇.图像处理中的模糊技术[J].现代电子技术,2001,3:28-30
    [69] D. Blythe, "Advanced Graphics Programming Techniques Using OpenGL," Course Note #29 of SIGGRAPH 99, 1999. Animation and Simulation Workshop'97, 1997, pp. 113-124.
    [70] Y. Dobashi, T. Nishita, K. Kaneda, H. Yamashita, "A Fast Display Method of Sky Color Using Basis Functions," The Journal of Visualization and Computer Graphics, Vol. 8, No.2, 1997, pp. 115-127. 303-310.
    [71] Y. Dobashi, T. Nishita, T. Okita, "Animation of Clouds Using Cellular Automaton," Proc. of Computer Graphics and Imaging'98, 1998, pp. 251-256.
    [72] Y. Dobashi, T. Nishita, H. Yamashita, T. Okita, "Using Metaballs to Modeling and Animate Clouds from Satellite Images," The Visual Computer, Vol. 15, No. 9, 1998, pp. 471-482.
    [73] D. S. Ebert, R. E. Parent, "Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-Buffer Techniques," Computer Graphics, Vol. 24, No. 4, 1990, pp. 357-366.
    [74] D. S. Ebert, W. E. Carlson, R. E. Parent, "Solid Spaces and Inverse Particle Systems for Controlling the Animation of Gases and Fluids," The Visual Computer, 10, 1990, pp. 471-483.
    [75] D. S. Ebert, "Volumetric Modeling with Implicit Functions: A Cloud is Born," Visual Proc. of SIGGRAPH'97, 1997, pp. 147.
    [76] D. S. Ebert, "Simulating Nature: From Theory to Application," Course Note #26 of SIGGRAPH 99, 1999, pp. 5.1-5.52.
    [77] N. Foster, D. Metaxas, "Modeling the Motion of a Hot, Turbulent Gas," Proc. of SIGGRAPH'97, 1997, pp. 181-188.
    [78] G. Y. Gardner, "Visual Simulation of Clouds," Computer Graphics, Vol. 19, No. 3, 1985, pp. 279-303.
    [79] 王鹏,杨明,靳祯.细胞自动MATLAB仿真[J].中北大学学报(自然科学版)2006,27(5):388-391
    [80] 李才伟,胡瑞安,杨叔子.自组织过程的随机元胞自动机模拟[J].华中理工大学学报,1996,24(9):64-67
    [81] KUJUMGIERA, TsVETKOVAI, SERKEDJIEVAY, etal. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin [J]. Joumal ofEthnopharmacology, 1 999, 64: 235—240.
    [82] KUDI A C, MYINT S H. Antiviral activity of some Nigerian medicinal plants extracts[J]. Joumal ofEthnopha-Rmacology, 1999, 68: 289—294.
    [83] 李凌丰,谭建荣,张谦.Metaball势函数的若干性质研究[J].浙江大学学报(理学版),2004,31(4):404-408,415
    [84] 李凌丰,谭建荣,赵海霞.Metaball重叠区域作用效果混合[J].中国图象图形学报,2006,11(5):695-699
    [85] 韦有双,王飞,冯允成.虚拟现实与系统仿真[J].计算机仿真,1999,16(2):63-66
    [86] 熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117
    [87] 皮学贤,李思昆,宋君强.一种新的离散格子气模型及其在自然场景仿真中的应用[J].计算机工程与科学,2006,28(10):57-60
    [88] 孙少军,周裕干.WD615系列柴油机的发展和结构特点[J].山东柴油机,2001,3:22-27
    [89] 徐华勋,赵龙,肖全初.云的动态实时仿真技术研究与实现[J].计算机仿真,2006,23(7):202-206
    [90] Self-organizing criticality in cloud formation K Nagel, E Raschke Physica A, 1992
    [91] 毕明树,李志义,丁信伟,贺匡国.可燃气体爆炸强度的计算[J].化工机械,1991,18(4):217-221
    [92] 刘检华,姚瑁,宁汝新.CAD系统与虚拟装配系统问的信息集成技术研究[J].计算机集成制造系统,2005,11(1):44—47
    [93] 张毅,刘琳娟等.虚拟数字样机(VPD)支持技术的研究[J].现代制造工程,2002,10:25—26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700