用户名: 密码: 验证码:
红树林生境中互花米草的生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互花米草(Spartina alterniflora Loisel)为禾本科米草属(Spartina Schreb)多年生草本植物。由于互花米草具有耐盐、耐潮汐淹没、根系发达、繁殖力强等特点,被许多沿海国家引种,用于保滩护堤、改良土壤、绿化海滩以及改善海滩生态环境。然而,由于互花米草特殊的生物学特性,其生长的速度远超过人们的控制能力,致使潮间带的生态系统遭受严重破坏。
     红树林是海岸潮间带重要的初级生产者,有较大的生物量和较多的凋落物产生,具有高度开放和高度复杂的能量流动和物质循环特征,是河口海岸重要的食物源和能量源。广西于1979年在合浦山口红树林保护区引种互花米草,当时对当地海域曾起到一定的防风消浪、保滩促淤等积极作用。但是,近年来互花米草在山口红树林保护区迅速扩散和蔓延,已经对该区生态系统的结构造成了一定程度的破坏。为了分析互花米草在红树林生境中的生长规律和繁殖特性,正确评估互花米草对红树林入侵的生态后果及在红树林区域开展合理防控措施,本文通过野外动态监测和室内栽培试验,对生长在该区红树林不同生境(淤泥质、泥沙质、沙质)中的互花米草的形态因子、生物量动态、光合作用、繁殖期的生物量动态和繁殖器官的特征进行了较为系统研究。结果如下:
     1、生境条件对互花米草的形态因子和生物量的生长有显著影响。如在生长旺盛期6月,淤泥质、泥沙质和沙质三种生境中互花米草的密度分别为95株/m2、87株/m2和63株/m2,生物量分别为578.823g/m2、475.316g/ m2和219.541g/ m2,以淤泥质中生长的互花米草的单位面积株数和生物量最高;对比单株的形态因子,则以泥沙质中的互花米草长势最佳,并与淤泥质、沙质相差显著;在淤泥质与沙质中,除地下生物量外,其它形态因子与生物量之间没有显著差异;在不同的生境中互花米草生物量的分配存在一定的差异。结合其它各月的实验结果发现,土壤透气性及养分含量可能是影响互花米草形态因子和生物量差异的主要因素。
     2、有性繁殖期(6~11月)的生物量动态变化初步研究表明:在繁殖初期,不同营养器官间的生物量随时间的增加均有不同程度的增加;但在繁殖后期,根、茎、叶的生物量的增长率均出现负值,其中,根生物量和叶生物量的负增长共同导致茎生物量出现负增长;除6月份外,生物量分配模式在各器官的顺序均为:茎>叶>根>繁殖器官;根生物量占总生物量比率有下降趋势,从6月份的28.9%下降到11月份的14.0%;茎生物量占总生物量比率随年龄增加呈上升趋势,由6月份的21.7%上升到11月份的44.0%;叶生物量随时间增长由于生理老化缓慢下降;小穗在7月和9月的时候占的比例分别为6.4%和7.0%,到了种子成熟期,种子占总生物量的比例分别为3.0%和9.7%。总的来说,繁殖器官生物量占总生物量的比例不大。
     3、互花米草净光合速率日变化呈双峰型,具有明显的午休现象,气孔导度和蒸腾速率的日变化均呈单峰曲线,胞间CO2浓度与光合速率呈极显著负相关,光合午休现象主要由非气孔因素影响。光强、温度、气孔导度和蒸腾速率的峰值均出现在12:00时,各种环境因素均影响互花米草的光合速率,互花米草光合作用受气孔因素与非气孔因素的共同影响。对其午间退潮到天黑前这一特定时间段互花米草叶片气孔导度及相应环境因子的变化测定和分析表明:互花米草不同叶位的叶片气孔导度是不同的,在垂直方向上,其排序大致呈现中上部>顶部>中下部>下部的趋势;叶片气孔导度与光强、叶温呈幂函数关系,与时间、相对湿度呈负指数函数关系;在相对湿度为50%~60%时,气孔导度最大,随着湿度的增加,气孔有关闭的趋势,气孔导度也变小;互花米草植株中部的叶片对整个植株光合产物积累的贡献较大。各种环境因子对互花米草气孔的开闭存在交互作用,因此,互花米草叶片的气孔导度是对环境因子的综合反应。
     4、经统计不同生境条件(淤泥质、泥沙质、沙质)下互花米草种子成熟期结实器官的形态、数量特征及饱满种子的百粒重发现:单株互花米草形态因子以泥沙质中的长势最好,沙质中生长的互花米草结实器官各形态因子均大于淤泥质和泥沙质,其中穗前总长达到了53.59cm,穗颈长为26.50cm,穗长为27.09cm,平均每穗长13.35cm,除了穗长和淤泥质无差异外,其余各形态因子均与其它两个生境中的有显著差异,三种生境中第二小穗的长度均大于第一小穗;在淤泥质中的小穗数最大值为13枝.泥沙质的为12枝,沙质中的最少,只有9枝;淤泥质、泥沙质、沙质中平均每穗种子数分布范围分别为14~42粒、15~35粒、21~43粒;第一小穗种子数的分别为4~48粒、3~34粒、8~46粒;第二小穗种子数分别为8~50粒、6~38粒、18~48粒。三种生境中小穗顶端的种子饱满程度远高于小穗底部。
     5、互花米草已经对山口国家级红树林保护区生态系统的结构造成了一定程度的破坏,必须高度重视互花米草对广西近岸海域及红树林国家级自然保护区的生物入侵问题,建议采取多种方法对互花米草入侵进行综合防治。
Spartina alterniflora Loisel., a perennial grass, belongs to Spartina Schreb. in Gramineae. The originally purpose of introducing this species to many ocean countries and regions was to protect the beach environment, to improve soil properties and to make beach green due to its high tolerate ability to salinity and flooding, strong reproductive capacity and developmental root system. But now it is growing out of control and causes serious damages to the intertidal zone system.
     Mangroves are one of the most important primary producer in intertidal marine system, they have high biomass, litter production and high rate of energy flow and material circulation,and thus mangroves are an important food and energy sources in the estuarine and coastal systems. In Guangxi, S. alterniflora was first introduced in National Shankou Mangrove Nature Reserve in 1979, and has played an important role in preventing wind and wave, protecting beach erosion and promoting siltation. But in the last few years, S. alterniflora has gradually spread into neighboring mangrove communities and caused a large quantity of damage to the ecological system in the National Shankou Mangrove Nature Reserve. In this paper, the growth rules and reproductive characteristics of S. alterniflora in mangrove habitat were studied in order to provide some strategies to control its invasion. For this purpose, field dynamic monitoring investigation and indoor cultivation experiment were employed to make a systematic research on the morphological factor, biomass dynamics, photosynthesis, biomass dynamics in reproductive period and characteristics of reproductive organs of S. altemiflora in different mangrove habitats (clay, loam, and sand). The results obtained are as follows:
     1. Mangrove habitat has a significant effect on the biomass and morphological characteristics of S. alterniflora. Among the three habitats, individuals of S. alterniflora growing in clay habitat had the highest density and biomass. But in terms of morphological factors, the individuals of S. alterniflora grows best in the loam habitat than that of other two habitats. There was no significant difference between clay and sand habitats except for the under-ground biomass. Difference was exsited in biomass allocation among the three habitats. Soil porosity and nutrient content might be account to the difference of biomass and other morphological factos of S. alterniflora in three habitats.
     2. The biomass dynamics of S. alterniflora during the sexual propagation period were also studied in this paper. The results showed that: at the beginning of reproduction,the biomass of different organs increased respectively in various degrees with the time; but in the late of reproductive stage,the growth rates of root、stem and leaf biomass are negative, the negative biomass of stem was induced by the negative biomass growth rate of root and stem. The order of organs biomass is: stem> leaf>root>reproductive organ except in june; With the time goes by, the rate of root biomass decreased from 28.9% in June to 14.0% in November, while the ratio of stem biomass : total biomass was increased with the time goes by. The leaf biomass decrease slowly due to the physiologic aging. In a word, the biomass of reproductive organs only take a few part in the total biomass.
     3. The diurnal variation of net photosynthetic rate of S. alterniflora was a double peak curves and had a significant depression in the midday. Stomatal conductance(Gs) and transpiration rate (E) of S. alterniflora displayed single-apex curves. An significant negative correlation was exsited between intercellular CO2 concentration(Ci) and net photosynthetic rate. It was suggested that non-stomatal factors were the major causes of midday depression. The peak value of light intensity, temperature, stomatal conductance and transpiration rate appeared at 12:00, all environment factors could influence the net photosynthetic rate of S. alterniflora, and photosynthesis was controlled by stomatal factor and non - stomatal factor. The stomatal conductance dynamics of S. alterniflora growing in loamy mangrove habitat, was studied from noon to evening (ebb tide), and meanwhile, the relevant environmental factors were measured and analyzed. The results showed that: the stomatal conductance in different part of the plant varied vertically, i.e., the opening of leaf stomatal conductance was upper part>top>lower-middle part>under part. The leaf stomatal conductance had a relationship of power function to the light intensity and leaf temperature, but a negative exponential function with the time and relative humidity (RH). The stomatal conductance opening was biggest with humidity at 50%~60%, but with the increase of humidity the stomatal conductance became smaller. The leaves located at the middle part had the largest contribution to accumulation of photosynthate in the whole plant. The interaction of diverse environmental factors affected the stomatal opening and closure, and thus, its dynamic change can be viewed as a comprehensive response to environmental parameters.
     4. The morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage of S. alterniflora in three different habitats were studied in this paper. The results showed that: S. alterniflora had the best grow patterns in the loam habitat,the morphological factors of fructification of S. alterniflora grown in sand were larger than other habitats;The order of quantitative characteristics of fructification in the three habitats were clay>sand>loam; The variance analysis results showed that: In sand habitats, except length there were significant difference in all morphological factors to the other two habitats; length of second spikelet were longer than length of first spikelet in three habitats; the plumpness of seed at spikelet apical were higher than the button.
     5. The invation of S. alterniflora has caused large quantity of damage to the ecology system in the National Shankou Mangrove Nature Reserve. It’s necessary to pay high attention to the problems caused by the invasion of S. alterniflora in this area and comprehensive preventing methods should be applied to prohibiting its invasion.
引文
[1] Mobberley,D.G.Taxonomy and distribution of the genus Spartina.Iowa State College Journal of science,1956,30:471~574.
    [2] Baumel A,Ainouche M L,Misset M T,Gourret J-P,Bayer R J. Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora(Poaceae) in South-West France:Spartina×neyrautii re-examined.Plant Systematics and Evolution , 2003,237:87~97.
    [3] Landin,M.C.Growth habits and other considerations of smooth cordgrass Spartina alterniflora Loisel.In:Mumford,T.F.Jr.,Peyton,P.,Sayce,J.R.andHarbell,S.(eds.),Spartina workshop Record.Washington Sea Grant Program,University of Washington,Seattle, 1991.
    [4] Daehler,C.C. Spartina invasions in paeific estuaries:biology,impact and management.In:Sytsma, M.D. (ed.),Proceedings of the Symposium on Non~indigenous Species in West Aquatic Ecosystems. Portland State University Lakes and Reservoirs Program Publieation, 1996.
    [5]陈中义,李博,陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性.2004,12(2):280~289.
    [6]张亦默,王卿,卢蒙,贾昕,耿宇鹏,李博.中国东部沿海互花米草种群生活史特征的纬度变异与可塑性[J].生物多样性,2008,16(5):462~469.
    [7]李加林.互花米草海滩生态系统及其综合效益——以江浙沿海为例[J].宁波大学学报(理工版),2004,17(1) :38~42.
    [8]陈中义,付萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学, 2005,3(1): 1~7.
    [9]周晓,王天厚,葛振鸣,施施施,周立晨.长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J].生物多样性, 2006,14(2): 165~171.
    [10]徐国万,卓荣宗,仲崇信.互花米草群落对东台边滩促淤效果的研究[J].南京大学学报,1993,3(2):228~231.
    [11]杜文琴,马丽娜,刘建,张秋芳,郑雪芳.红树林区内互花米草防除技术研究[J].中国生态农业学报,2006,14(3):154~156.
    [12]唐国玲,沈禄恒,翁伟花,章家恩,廖宝文,刘金苓,滕兴顺.无瓣海桑对互花米草的生态控制效果[J].华南农业大学学报,2007,1(1):10~13.
    [13]陈玉军,郑松发,廖宝文,谢德兴,苏润鸿,郑德璋.珠海市淇澳岛红树林引种扩种问题的探讨[J].广东林业科技,2002,18(2):31~36.
    [14]洪荣标,吕小梅,陈岚,方少华.九龙江口红树林湿地与米草湿地的底栖生物[J].台湾海峡,2005,24(2):189~195.
    [15]陈一宁,高抒,贾建军,王爱军.米草属植物Spartina angilica和Spartina alterniflora引种后江苏海岸湿地生态演化的初步探讨[J].海洋与湖沼,2005,36(5):394~403.
    [16]沈永明.江苏沿海互花米草盐沼湿地的经济、生态功能[J].生态经济,2001,9:72~74.
    [17]王爱军,高抒,贾建军.互花米草对江苏潮滩沉积和地貌演化的影响[J].海洋学报,2006,28(1):92~99.
    [18]李加林,杨晓平,亿勤,张殿发,沈永明,张忍顺.互花米草入侵对潮滩生态系统服务功能的影响及其管理[J],海洋通报,2005,24(5):33~39.
    [19]庄树宏,陈利学,曲复宁,李丕鹏.建立黄河三角洲滩涂大米草生态系统与滩涂盐生植物资源农业[J].维普资讯.
    [20]徐国万,卓荣宗,曹豪,李相敢.互花米草生物量年动态及其与滩涂生境的关系[J].植物生态学与地植物学学报,1989,1(3):230~235.
    [21]李瑞利,石福臣,张秀玲,诸明.天津沿海滩涂互花米草种群生殖分株数量特征及生殖分配研究[J].植物研究,2007,27(1):99~107.
    [22]苑泽宁,石福臣,李君剑,郭世宜.天津滨海滩涂互花米草有性繁殖特性[J].生态学杂志,2008,27(9):1537~1542.
    [23]李武峥.山口红树林保护区互花米草分布调查与评价[J].南方国土资源,2008,7:39~41.
    [24]覃盈盈,蒋潇潇,李峰,韦锋,梁士楚.山口红树林区互花米草有性繁殖期的生物量动态[J].生态学杂志,2008,27(12):2083~2086.
    [25] Chung,C.H.1993.Thirty years of ecological engineering with Spartina plantations in China.Ecological Engineering,2:261~289.
    [26] Qin,P.,Xie,M.and Jiang,Y.S.1998.Spartina green food ecological eneering[J].Ecological egneering, 11:147~156.
    [27] Qin,P.,Xie,M.,Jiang,Y.S,and Chung,C.H.1997.Estimation of the ecologieal~economic benefits of two Spartina alternniflora Plantations in northern Jiangsu[J].China.Ecological Engineering,8(l):5~17.
    [28]徐炳声.上海植物志[M].上海:上海科技文献出版社.1998.
    [29] Daehler C C,Strong D R. Variable reproductive output among clones of Spartina alterniflora(Poaceae) invading San Francisco Bay,California:The influence of herbivory,pollination,and establishment site. American Journal of Botany .1994,81:307~313.
    [30] Smart R M. Distribution and Environmental Control of Productivity and Growth Form of Spartinaalterniflora(Loisel.).In:Sen D N,Rajpurohit K S eds.Tasks for Vegetation Science.The Hague:Dr W.Junk Publishers. 1982,2:127~142.
    [31] Fang X. Reproductive Biology of Smooth Cordgrass(Spartina alterniflora).Master’s dissertation.Baton Rouge,Louisiana,USA:Louisiana State University. 2002.
    [32] Somers G F,Grant D. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel.and the likelihood of cross pollination.American Journal of Botany .1981,68:6~9.
    [33] Bertness M D,Shumway S W. Consumer driven pollen limitation of seed production in marsh grasses.American Journal of Botany.1992,79:288~293.
    [34] Sayce K,Mumford T F. Identifying the Spartina species.In:Mumford T F,Peyton P,Sayce J R,Harbells S eds.Spartina Workshop Record.Washington Sea Grant Program,University of Washington,Seattle. 1990:9~14.
    [35]徐国万,卓荣宗.互花米草在中国初探[J].南京大学学报(自然科学专刊),1985,40:212~225.
    [36]王卿,安树青,马志军,赵斌,陈家宽,李博.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报,2006,44(5):559~588.
    [37]张东,杨明明,李俊祥,陈小勇.崇明东滩互花米草的无性扩散能力[J].华东师范大学学报(自然科学版),2006,3(2):130~135.
    [38]苑泽宁,石福臣,李君剑,郭世宜.天津滨海滩涂互花米草有性繁殖特性[J].生态学杂志,2008,27(9):1537~1542.
    [39]王智晨,张亦默,潘晓云,马志,陈家宽,李博.冬季火烧与收割对互花米草地上部分生长与繁殖的影响[J].生物多样性2006,14(4):275~283.
    [40] Davis H G, Taylor C M, Lambrinos J G, Strong D R. Pollen limitation causes an Allee effect in a wind~pollinated invasive grass (Spartina alterniflora) [J]. Proceedings of the National Academy of Sciences, USA, 2001, 101:13804~13807.
    [41] Daehler C C. Inbreeding depression in smooth cordgrass (Spartina alterniflora, Poaceae) invading San FranciscoBay[J]. American Journal of Botany,1999, 86: 131~139.
    [42] Davis H G, Taylor C M, Civille J C, et al. An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary[J]. Journal of Ecology, 2004 , 92: 321~327.
    [43]陈琳,邓自发,安树青,赵聪蛟,周长芳,智颖飙.淡咸水轮换浇灌抑制互花米草的克隆生长和繁殖[J].植物生态学报,2007,31(4):645~651.
    [44]傅宗甫.互花米草消浪效果试验研究[J].水利水电科技进展,1997,10(5):45~47.
    [45]陈宏友.苏北潮问带米草资源及其利用[J].自然资源,1990,(6):56~59.
    [46]仲崇信等.大米草在我国的22年[J].南京大学学报,米草专辑,1985.
    [47]卢小良,何清,吴万春.互生花大米草引种利用研究初报[J].广东农业科学,1993,2:42~43.
    [48]吴绍镇,彭培相.互花米草试种及其在江堤闸浦护岸防塌中的应用[J].东海海洋,1994,12(3):70~72.
    [49]孙卫东.减少泥沙沿岸搬运延缓拦门沙的淤积速度[J].灾害学,1995,3:28~31.
    [50]卢声明,吴绍镇,林孝悌.互花米草对海岸的保护[J].浙江水利科技,1996,2:40~43.
    [51]宋连清.互花米草及其对海岸的防护作用[J].东海海洋, 1997,15(1):11~20.
    [52]沈永明.江苏沿海互花米草盐沼湿地的经济、生态功能[J].生态经济,2001,9:72~74.
    [53]王爱军,高抒,贾建军.互花米草对江苏潮滩沉积和地貌演化的影响[J].海洋学报, 2006, 28(1):92~99.
    [54]曹大正,王银生,张冬然,顾立军,唐廷贵.互花米草在吹填筑挡工程上的试验与应用[J].中国工程科学,2005,7(7):14~23.
    [55]卢小良,何清,吴万春.互生花大米草引种利用研究初报[J].广东农业科学,1993,2:42~43.
    [56]钦佩,安树青,颜京松.生态工程学(第二版)[M].南京:南京大学出版社,2002.
    [57]张康宣,钦佩,钱红美,谢民.互花米草总黄酮对小鼠免疫功能的影响[J].海洋科学,1996,5:51~54.
    [58]蔡鸣,钦佩,张康宣,谢民.互花米草总黄酮(TFS)与生物矿质液(BML)对小鼠血糖的影响[J].海洋科学,1996.
    [59]胡芝华,钦佩,蔡鸣,谢民,张康宣.互花米草总黄酮降血脂作用研究[J].海洋科学,1997,16~18.
    [60]胡芝华,钦佩,蔡鸣,谢民,张康宣.互花米草总黄酮局部用药的抗炎作用[J].植物资源与环境1998,7(2):6~11.
    [61]姜允申,钦佩,谢民,等.一种生物矿质食品添加剂的保健作用[J].中华预防医学杂志, 1995,29(1): 24~26.
    [62]刘丹,张学全.我国成功提取大米草多糖“害人草”成“宝草”.新华每日电讯.2003.1.7第006版.
    [63]吕立志.我国对3种外来入侵植物的利用[J].生物学通报,2005,40(10):11~12.
    [64]钦佩,谢民,周爱堂.互花米草的初级生产与类黄酮的生成[J].生态学报,1991,11(4):293~298.
    [65]杨晓梅,钦佩,谢民,徐国万.人工海水环境中互花米草总黄酮等生理成分与盐浓度的相关性研究[J].生态学杂志1997,16(3):7~10.
    [66]马永建,李莉,袁宝君,冯芳,高志胜,韩洪波.互花米草成分研究I.GC-MS法研究叶片中脂肪酸[J].中国生化药物杂志,2001,22(4):184~186.
    [67]马永建,李莉,袁宝君,冯芳,高志胜,韩洪波.互花米草成分研究Ⅱ. GC-MS法研究挥发性成分[J].中国生化药物杂志,2002,(1):36~37.
    [68]陈瑶,郑海雷,肖强,黄伟滨,朱珠.盐度对互花米草氧化和抗氧化系统的影响[J].厦门大学学报(自然科学版),2005,44(1):576~579.
    [69]陈建群,仲崇信.三种类型互花米草抗盐生态型的分化[J].植物生态学与地植物学学报,1990,14(1):33~39.
    [70]吕芝香,刘珍奇,仲崇信.互花米草幼苗在不同浓度NaCl溶液中的生长和溶质的积累[J].武汉植物学研究,1992,10(1):117~122.
    [71]肖强,郑海雷,陈瑶,黄伟滨,朱珠.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志, 2005,24(4):373~376.
    [72]石福臣,鲍芳.盐和温度胁迫对外来种互花米草(Spartina alterniflora)生理生态特性的影响[J].生态学报,2007,27(7):2733~2741.
    [73]胡恭任,于瑞莲.泉州湾互花米草中重金属富集程度分析[J].华侨大学学报(自然科学版) ,2008,29(2):250~255.
    [74]王爱军,陈坚,李东义.互花米草对福建泉州湾海岸湿地沉积环境影响[J].海洋工程,2008,26(4):60~69.
    [75]刘军普,田志坤,翟金双.互花米草净化污水的研究,维普资讯.
    [76]赵大昌,刘勋,陈树培,等.中国海岸带植被[M].北京:海洋出版社, 1996. 214~221.
    [77]王伯诚,杨泉灿,戴均灿.互花米草作水稻基肥和喂兔试验[J].浙江农业科学, 1996, 1: 37~38.
    [78]秦学秋,郑贵荣,黄位康,朱国记,郑孟炯.互花米草做饲料的开发与利用,维普资讯.
    [79]齐国祥,程辉.大米草粉饲养肉猪试验.维普资讯.
    [80]程辉,齐国祥.大力开发利用大米草资源[J].资源开发利用:21~22.
    [81]郑贵荣,张如.互花米草粉饲养肉猪试验研究,维普资讯.
    [82]郑贵荣,徐开亩,张如.互花米草粉饲养肉鸡试验研究,维普资讯.
    [83]王伯诚,杨泉灿,戴均灿,潘效良,林立志,叶荣华.互花米草作水稻基肥和喂免试验[J].浙江农业科技,1996,1:37~38.
    [84]林国梁,张瑞光,李德椿.圈养山羊饲喂米草试验[J].福建畜牧兽医,1999,21(4):4.
    [85]林少秋.用美国互花米草圈养山羊效果试验[J].福建畜牧兽医,2005,5(27):8~9.
    [86]陈成枝,王玉华.米草栽培香菇试验总结[J].中国食用菌,1994, 13(1):27~28.
    [87]曹洪麟,陈树培,丘向宇.发展互花米草开发华南热带海滩[J].热带地理,1997,17(1):41~46.
    [88]清华,姚懿函,李红丽,安树青.互花米草生物质能利用潜力[J].生态学杂志,2008,27(7):1216~1220.
    [89]杨世关,李继红,郑正,孟卓.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,2008,24(5):196~199.
    [90]高志强.福建滨海滩地米草资源开发利用问题[J].福建农业太学学报, 1996 ,26(1):72~77.
    [91]仲维畅.大米草和互花米草种植功效的利弊[J].科技导报,2006,10(7):72~78.
    [92]钦佩,谢民,陈素玲,仲崇信.苏北滨海废黄河口互花米草人工植被贮能动态[J].南京大学学报,1994,7(3):488~493.
    [93] LuitingVT, Cordell JR, OlsonAM,etal. Does exotic Spartina alterniflora change benthic invertebrate as-semblages?[A].Pattern K.Proceedings of the Second Interational Spartina Conference[C].Washington StateUniversity, Olympia,1997.48~50.
    [94]朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群[J].动物学研究, 2003,24(5): 355~361.
    [95]徐晓军,王华,由文辉,刘宝兴.崇明东滩互花米草群落中底栖动物群落动态的初步研究[J].海洋湖沼通报,2006,2:89~95.
    [96]高慧,彭筱葳,李博,吴千红,董慧琴.互花米草入侵九段沙河口湿地对当地昆虫多样性的影响[J].生物多样性2006,14(5):400~409.
    [97] Dumbauld B R, PeoplesM, Holcomb L,etal. The potential influence of the aquatic weed Spartina alterniflora and control practices on clam resources in Willapa Bay, Washington[A]. Pattern K.Proceedings of the Second Interational SpartinaConference[C].Washington State University, Olympia,1997.51~57.
    [98] Hedge P, Kriwoken L K. Evidence for effects of Spartina anglica invasion on benthicmacrofauna in Little Swanport estuary[J].Tasm ania Austral Eco logy,2000,25:150~159.
    [99]周晓,王天厚,葛振鸣,施施施,周立晨.长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J].生物多样性, 2006,14(2): 165~171.
    [100]谢志发,何文珊,刘文亮,陆健健.不同发育时间的互花米草盐沼对大型底栖动物群落的影响[J].生态学杂志, 2008,27(1):63~67.
    [101]徐晓军,曹新,由文辉.中国北方大米草属植被中大型底栖动物群落的初步研究[J].江苏环境科技,2006,19(3):6~9.
    [102]孙炳寅,朱长生.互花米草(Spartina alterniflora)草场土壤微生物生态分布及某些酶活性的研究[J].生态学报,1989,9(3):240~244.
    [103]叶温乐,何雪青,赵平芝,孙书存,王睿勇.江苏盐城新洋港互花米草盐沼的微生物区系调查[J].中国农学通报,2007,23(8):420~424.
    [104]周虹霞,刘金娥,钦佩.外来种互花米草对盐沼土壤微生物多样性的影响[J].生态学杂志,2005,25(9):2304~2311.
    [105]周虹霞,刘金娥,钦佩.外来种互花米草盐沼土壤微生物16SrRNA特征分析[J].云南农业大学学报,2006,21(6):799~805.
    [106]沈永明,张忍顺,王艳红.互花米草盐沼潮沟地貌特征[J].地理研究,2003,22(4):520~527.
    [107]王爱军,高抒,贾建军.互花米草对江苏潮滩沉积和地貌演化的影响[J].海洋学报,2006,28(1):92~99.
    [108]刘永学,李满春,张忍顺.江苏沿海互花米草盐沼动态变化及影响因素研究[J].湿地科学,2004,2(2):116~121.
    [109]徐国万,卓荣宗,曹豪,李相敢.互花米草生物量年动态及其与滩涂生境的关系[J].植物生态学与地植物学学报,1989,1(3):230~235.
    [110]孙炳寅,经美德.废黄河口盐沼土硫酸盐还原速率的研究[J].应用生态学报,1990,1(3):248~253.
    [111]钦佩,谢民,仲崇信.福建罗源湾海滩互花米草盐沼中18种金属元素的分布[J].海洋科学,1989,11(6):23~27.
    [112]钦佩,马连坤,谢民,仲崇信. Fe、Cu、Mn、Zn在互花米草(Spartina alterniflora)初级生产中的动态研究[J].生态学报,I993,13(1):64~67.
    [113]钦佩,谢民,仲崇信.互花米草盐沼矿质元素的迁移变化[J].南京大学学报,1995,31(1):90~98.
    [114]张祥霖,石盛莉,潘根兴,李恋卿,张旭辉,李志鹏.互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J].地球科学进展, 2008,23(9):974~981.
    [115]沈永明,刘咏梅,陈全站.互花米草盐沼土壤有机质分布特征[J].海洋通报,2003,22(6):43~48.
    [116]沈永明,杨劲松,曾华,刘咏梅,陈子玉.互花米草盐沼湿地土壤腐殖质的空间分布特征[J].农业环境科学学报2008,27(6):2279~2284.
    [117] Carey J R. The incipient Mediterranea fruit fly population in California: implications for invasion biology[J].Ecology, 1996, 77(6): 1690~1697 .
    [118] Suarez AV, Holway D A, Case T J. Patterns of spread in biological invasions dominated by longdistance jump dispersal: Insights from Argentine ants. Proc. Natl. Acad. Sci. USA, 2001, 98(3): 1095~1100.
    [119] Cohen AN, Carlton J T. Accelerating invasion rate in a highly invaded estuary[J]. Science, 1998, 279: 555~558.
    [120]徐承远,张文驹,卢宝荣等.生物入侵机制研究进展[J].生物多样性, 2001, 9(4):430~438.
    [121]高增祥,季荣,徐汝梅等.外来种入侵的过程、机理和预测[J].生态学报, 2003, 23(3): 559~570..
    [122] Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science,2000,290: 521~523.
    [123]陈中义,李博,陈家宽.长江口崇明东滩土壤盐度和潮间带高程对外来种互花米草生长的影响[J].长江大学学报(自科版),2005,2(2):6~11.
    [124]邓自发,安树青,智颖飙,周长芳,陈琳,赵聪蛟,方淑波,李红丽.外来种互花米草入侵模式与爆发机制[J].生态学报,2006,26(8):2678~2688.
    [125]陈中义,李博,陈家宽.互花米草与海三棱藨草的生长特征和相对竞争能力[J].生物多样性,2005,13(2): 130~136.
    [126]陈中义,高慧,吴涵,李博.模拟遮荫对互花米草和海三棱藨草种子萌发及幼苗生长的影响[J].湖北农业科学,2005,2;82~84.
    [127]赵聪蛟,邓自发,周长芳,关保华,安树青,陈琳,陆霞梅.氮水平和竞争对互花米草与芦苇叶特征的影响[J].植物生态学报,2008,32(2)392~401.
    [128]赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较[J].生态学报,2005, (07):1604~1611.
    [129]梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较[J].生态学报, 2006,(03):842~848.
    [130]肖强,郑海雷,叶文景等.水淹对互花米草生长及生理的影响[J].生态学杂志, 2005,24(9):1025~1028.
    [131]陈琳,邓自发,安树青,赵聪蛟,周长芳,智颖飙.淡咸水轮换浇灌抑制互花米草的克隆生长和繁殖[J].植物生态学报,2007,31(4):645~651.
    [132]苑泽宁,石福臣.盐胁迫对互花米草种子萌发及胚生长的影响[J].云南植物研究,2008,30(2):227~231
    [133]王长永,仲崇信,钦佩.米草光合作用速率季节变化及其对初级生产的影响[J].农村生态环境(学报),1994,10(3):14~17.
    [134]钦佩,谢民,陈素玲,仲崇信.苏北滨海废黄河口互花米草人工植被贮能动态[J].南京大学学报,1994,7(3):488~493.
    [135]赵秀勤.互花米草盐胁迫应答基因的相关序列扩增多态性分离研究[J].西北农业学报,2008,17(3):191~194.
    [136]傅力腾.互花米草盐碱地种植基因适应试验.科技天地.
    [137]杨坚.互花米草对红树植物化感作用的初步研究[D].厦门:厦门大学,2007.
    [138]张利权.“刈割+水位调控”综合治理互花米草[J].园林,2008,2:25~26.
    [139]袁琳,张利权,肖德荣,张杰,王睿照,袁连奇,古志钦,陈曦,平原,祝振昌.刈割与水位调节集成技术控制互花米草(Spartina alterniflora) [J].生态学报,2008,28(11): 5723~5730.
    [140]谭芳林.机械法治理互花米草效果及其对滩涂土壤性状影响研究[J].湿地科学,2008,6(4): 526~530.
    [141] Miller G., Crothers K. Controlling invasive Spartina: The New Zealand success story.Third International Conference on Invasive Spartina, San Francisco, California. 2004.
    [142]李贺鹏,张利权,王东辉.上海地区外来种互花米草的分布现状[J].生物多样性,2006,14(2):114~120.
    [143]刘建,庄志鸿,蔡宣梅.互花米草人工败育技术[J].植物保护,2005,31(1): 70~72.
    [144]张倩.“滩涂米草除控剂”破解湿地生态难题[J].福建质量管理,2007:56~57.
    [145] Grevstad, F. S, Strong D. R., Garcia~Rossi, D., Switzer, R. W., Weckere, M. S. Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata, agent specificity and early results. Biological Control, 2003,27(1): 32~42.
    [146] Sillman, B. R., Zieman J. C. Top~down control of production by Spartina alterniflora periwinkle grazing in a Virginia marsh. Ecology, 2001,82(10): 2830~2843.
    [147] Gray, A. J., Marshall, D. F., Raybould, A. F. A century of evolution in Spartina alterniflora. Advances in Ecological Research, 1991,21:1~62.
    [148]王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J].海洋科学. 2003,27(7):38~42.
    [149]李元跃,吴文林.福建漳江口红树林湿地自然保护区的生物多样性及其保护[J].生态科学, 2004, 23(2): 134~136.
    [150]张宜辉,王文卿.入侵植物互花米草和红树植物的相对竞争能力[A].第五届中国青年生态学工作者学术研讨会论文集[C],广州,2008.
    [151]乌云斯琴.大米草威胁广西红树林保护区[N],人民政协报.2004,07(15).
    [152]覃盈盈,蒋潇潇,李峰,韦锋,梁士楚.山口红树林区互花米草有性繁殖期的生物量动态[J].生态学杂志,2008,27(12):2083~2086.
    [153]覃盈盈,梁士楚.外来种互花米草在广西海岸的入侵现状及防治对策.湿地科学与管理, 2008(6):47~50.
    [154]洪荣标,吕小梅,陈岚,方少华.九龙江口红树林湿地与米草湿地的底栖生物[J].台湾海峡,2005,24(2):189~195.
    [155]黄丽.互花米草切割迹地红树林恢复效果试验[J].防护林科技,2007,9:26~28.
    [156]陈玉军,郑松发,廖宝文,谢德兴,苏润鸿,郑德璋.珠海市淇澳岛红树林引种扩种问题的探讨[J].广东林业科技,2002,18(2):31~36.
    [1]蓝福生,李瑞棠,陈平,等.广西海滩红树林与土壤的关系[J].广西植物, 1994,14 (1):54~59.
    [2]范航清,陈光华,何斌原,等.山口红树林滨海湿地与管理[M].北京:海洋出版社: 2005.
    [3]徐炳声.上海植物志[M].上海:上海科技文献出版社.1998.
    [4] Daehler C C,Strong D R. Variable reproductive output among clones of Spartina alterniflora(Poaceae) invading San Francisco Bay,California:The influence of herbivory,pollination,and establishment site. American Journal of Botany .1994,81:307~313.
    [5] Smart R M. Distribution and Environmental Control of Productivity and Growth Form of Spartinaalterniflora(Loisel.).In:Sen D N,Rajpurohit K S eds.Tasks for Vegetation Science.The Hague:Dr W.Junk Publishers. 1982,2:127~142.
    [6] Fang X. Reproductive Biology of Smooth Cordgrass(Spartina alterniflora).Master’s dissertation.Baton Rouge,Louisiana,USA:Louisiana State University. 2002.
    [7] Somers G F,Grant D. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel.and the likelihood of cross pollination.American Journal of Botany .1981,68:6~9.
    [8] Bertness M D,Shumway S W. Consumer driven pollen limitation of seed production in marsh grasses.American Journal of Botany.1992,79:288~293.
    [9] Sayce K,Mumford T F. Identifying the Spartina species.In:Mumford T F,Peyton P,Sayce J R,Harbells S eds.Spartina Workshop Record.Washington Sea Grant Program,University of Washington,Seattle. 1990:9~14.
    [10]徐国万,卓荣宗.互花米草在中国初探[J].南京大学学报(自然科学专刊),1985,40:212~225.
    [11]王卿,安树青,马志军,赵斌,陈家宽,李博.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报,2006,44(5):559~588.
    [12]李武峥.山口红树林保护区互花米草分布调查与评价[J].南方国土资源,2008,7:39~41.
    [13]覃盈盈,蒋潇潇,李峰,韦锋,梁士楚.山口红树林区互花米草有性繁殖期的生物量动态[J].生态学杂志,2008,27(12):2083~2086.
    [14]覃盈盈,梁士楚.外来种互花米草在广西海岸的入侵现状及防治对策.湿地科学与管理, 2008(6):47~50.
    [1] AgrawalAA.Phenotypic plasticity in the interactions and evolution of species.Science, 2001,294:321~326.
    [2] Grime JP. Plant Strategies and Vegetation Processes.Chichester: JohnW iley and Sons, 1979.
    [3]武高林,杜国祯.植物形态因子研究进展状况[J].世界科技研究与发展, 2007,29(4): 47~51.
    [4] PintadoA,Valladares F, Sancho LG. Exploring phenotypic plasticity in the lichenRamalina capitata: Morphology, water relations and chlorophyll content in north and south facing populations.Annals of Botany,1997,80: 345~353.
    [5] Sultan SE. Whathas survived of Darwin’s theory Phenotypic plasticity and the Neo-Darwinian legacy. EvolutionaryTrends in Plants Science, 1992,6: 61~71.
    [6]汤景明,翟明普.木荷幼苗在林窗不同生境中的形态响应与生物量分配[J].华中农业大学学报,2006,25(5): 559~563.
    [7] Scott W T, Stephen W W. Application of fractal mathematics to soil water retension estimation[J]. Soil Sci Soc Am J.,1989,53:987~996.
    [8]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征[J].土壤学报,1999, 36(2):162~167.
    [9]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896~1899.
    [10]梁士楚,王伯荪.广西英罗港红树林区木榄群落土壤粒径分布的分形特征[J].热带海洋学报2003,1(22) :17~22.
    [11]仲崇信等.大米草在我国的22年[J].南京大学学报,米草专辑,1985.
    [12]王长永,仲崇信,钦佩.米草光合作用速率季节变化及其对初级生产的影响[J].农村生态环境(学报),1994,10(3):14~17.
    [13]张亦默,王卿,卢蒙,贾昕,耿宇鹏,李博.中国东部沿海互花米草种群生活史特征的纬度变异与可塑性[J].生物多样性2008,16(5):462~469.
    [14]李瑞利,石福臣,张秀玲,诸明.天津沿海滩涂互花米草种群生殖分株数量特征及生殖分配研究[J].植物研究,2007,27(1):99~107.
    [15]李武峥.山口红树林保护区互花米草分布调查与评价[J].南方国土资源,2008,7:39~41.
    [16]覃盈盈,蒋潇潇,李峰,韦锋,梁士楚.山口红树林区互花米草有性繁殖期的生物量动态[J].生态学杂志,2008,27(12):2083~2086.
    [17]武高林,陈敏,杜国祯.营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响[J].应用生态学报,2008,19(8): 1708~1713.
    [18]潘晓云,耿宇鹏,张文驹,李博,陈家宽.喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性[J].植物生态学报,2006,30(5):835~843.
    [19]李爱芳,高贤明,党伟光,王瑾芳.不同生境条件下紫茎泽兰幼苗生长动态[J].生物多样性, 2007,15(5):479~485.
    [1] Abrahamson WG. On the comparative allocation of biomass, energy and nutrients in plant. Ecol, 1982,63(4):982~991.
    [2] Delph LF. Sex-differential resource allocation patterns in the subdioecious shrub Iiebe subalpina. Ecol, 1990,71(4): 1342~1351.
    [3] WangY H,WangK,Xing F. Advances of studies on themorphological plasticity, integration and foraging behavior of stoloniferous herbaceous plants. Chinese Journal of Ecology, 2005, 24 (1): 70~74.
    [4] Cheplick G P. Life history trade offs in Aphibromus scabrivalvis(Poaceac): Allocation to clonal growth, storage, and cleistogamous reproduction.American Journal of Botany, 1995, 82: 621~629.
    [5] Zhao L,ZhiY B, LiH L, An SQ,etal. Effects of initial clone number on morphological plasticity and biomass allocation of the invasive Spartina anglica.Journal of Plant Ecology,2007,31(4):607~61.
    [6]汤景明,翟明普.木荷幼苗在林窗不同生境中的形态响应与生物量分配[J].华中农业大学学报,2006,25(5): 559~563.
    [7]王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J].应用生态学报.2005,6(2):316~2320.
    [8] Wang Renzhong ,Gao Qiong ,Chen Quansheng.Effects of climatic change on biomass and biomass allocation in Leymus chinensis (Poaceae) along the North~east China Transect (NECT)[J].Journal of Arid Environments. 2003, 54: 653~665.
    [9] Karel Mokany, R. John Raison and Anatoly S. Prokushkin. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 2006, 12: 84~96.
    [10]文金花.三江源区青海草地早熟禾人工草地植物量动态及抗寒性研究[D].甘肃:甘肃农业大学,2006.
    [11]许志信,曲永全,白飞.草甸草原12种牧草生长发育规律和草群地上生物量变化动态研究[J].内蒙古农业大学学报,2001,22(2):28~32.
    [12]张宏.毛乌素沙地禾草杂类草草地根系生物量动态及能量效率研究[J].中国沙漠,1999,19(2):151~155.
    [13]钦佩,马连琨,谢民等.Fe、Cu、Mn、Zn在互花米草(Spartina alterniflora)初级生产中的动态研究[J].生态学报,1993,3(1):67~74.
    [14]王正方.长江口和浙江沿岸表层沉积物中Cu,Pb和Zn化学形态研究[A].浙江省海岸带资源综合调查论文集[C],浙江省海岸资源综合调查队,杭州,1986:97~103.
    [15]何兴元,陈玮,徐文铎,刘常富,李海梅,孙雨,张粤.沈阳城区绿地生态系统景观结构与异质性分析[J].应用生态学报,2003,14(12): 2095~2102.
    [1]沈允钢,许大全.光合机构对环境的响应与适应.见:余叔文主编.植物生理与分子生物学[M].北京:科学出版社,1992:225~235.
    [2]吴彦琼,胡玉佳.外来植物南美蟛蜞菊、裂叶牵牛和五爪金龙的光合特性[J].生态学报,2004,24(10):2334~2339.
    [3]王俊峰,冯玉龙.光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J].植物生态学报,2004,28(6):781~786.
    [4]王俊峰,冯玉龙,梁红柱.紫茎泽兰光合特性对生长环境光强的适应[J].应用生态学报, 2004,15(8): 1373~1377.
    [5]李雪华,蒋德明,骆永明,等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究[J].生态学杂志, 2003,22(6):17~20.
    [6]郑凤英,彭少麟.不同尺度上植物叶片气孔导度对升高CO2的响应[J].生态学杂志, 2003, 22(1):26~30.
    [7] Coombs J,等主编.邱国维,等译.生物生产力和光合作用测定技术[M].北京:科学出版社, 1986. 63~96.
    [8] Hatton T J,Walker J,Dawes W R,et al.Simulations of hydroecological responses to elevated CO2 at the catchment scale[J].Australian Journal of Botany,1992,40:679~696.
    [9] Dawson TE,Broyer TC. Effect of aeration,water supply and nitrogen source on growth and development of Tupalo gumand Bald cypress.Ecology, 1993,53:626~634.
    [10]阎秀峰,孙国荣,李敬兰,等.羊草和星星草光合蒸腾日变化的比较研究[J].植物研究,1994,14(3): 287~291.
    [11]王玉辉,周广胜.松嫩平原盐碱化草地羊草叶片生理生态特性分析[J].应用生态学报,2000,11(3): 12~19.
    [12]范航清,陈光华,何斌原,等.山口红树林滨海湿地与管理[M].北京:海洋出版社,2005:26~27.
    [13]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [14]宋庆安,方平,易霭琴,喻武,刘秀.虎杖光合生理生态特性研究[J].中国农学通报, 2006,22(12):71~76.
    [15]舒英杰,周玉丽,郁继华.茄子Pn日变化及光合“午休”的生理生态因子分析[J].中国农学通报,2006,22(9):225~228.
    [16]张治安,杨福,陈展宇,等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学, 2006, 39 (3):502~509.
    [17]舒志明,梁宗锁,孙群,等.薏苡拔节期光合作用日变化特征研究[J].农艺科学,2007,23(3):164~170.
    [18] Claude Spino,Marco Dodier,Subramaniam Sotheeswaran.Anti-HIV coumarins from Calophyllum seedoil. Bioorganic&Medicinal Chemistry Letters,1998,(8):3475~3478.
    [19]许大全,沈允钢.植物光合作用效率的日变化.植物生理学报,1997,23(4):410~416.
    [20] FRANQUAR G D.SHARKEY T D.Stomatal conductance and photosynthesis[J]. Ann.Rev.Plant Physiol., 1982, 33: 317~345.
    [21]吴家兵,关德新,张弥,等.长白山地区蒙古栎光合特性[J].中国科学院研究生院学报,2006,23(4):548~554.
    [22]王淼,代力民,姬兰柱,等.干旱胁迫对蒙古柞表观资源利用率的影响[J].应用生态学报,2002,13(3):275~280.
    [23]赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较[J].生态学报,2005,25(7):1604~1611.
    [24]梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较[J].生态学报, 2006, 26(3): 842~848.
    [25]徐惠风,刘兴土,徐克章.乌拉苔草光合速率日变化及日同化量[J].湿地科学,2004,2(2):128~132.
    [26]何晖.日光温室番茄气孔导度变化规律研究[J].河南农业科学, 2008, (8):104~108.
    [27]徐惠风,刘兴土,金研铭,等.沼泽植物泽泻气孔导度日变化的研究[J].生态科学,2003,22(3): 218~221.
    [28]彭致功.日光温室滴灌条件下小气候变化和植株蒸腾规律的研究.北京:中国农业科学院.2002.
    [29] Krauss K W, Allen J A. Factors influencing the regeneration of the mangrove Bruguiera gymnorrhiza(L.) Lamk. on a tropical Pacific island[J]. Forest Ecology and Management, 2003,176(1-3):49~60.
    [30]闫中正,王文卿,黄伟滨.红树胎生现象及其对潮间带生境适应性研究进展[J].生态学报,2004,24(10):2317~2323.
    [31] Clarke P J, Kerrigan R A. Do forest gaps influence the population structure and species composition of mangrove stands in northern Australia Biotropica, 2000,32(4):642~652.
    [32]蓝福生,李瑞棠,陈平,等.广西海滩红树林与土攘的关系[J].广西植物,1994, 14 (1):54~59.
    [1] Willson M F.plant reproductive ecology[M]..New York:A-Willey inter science Publication,1983:64~79.
    [2]张大勇.植物生活史进化与繁殖生态学[M].科学出版社,2004:97~148.
    [3]李瑞利,石福臣,张秀玲,等.天津沿海滩涂互花米草种群生殖分株数量特征及生殖分配研究[J].植物研究, 2007,27(1):99~106.
    [4]沈栋伟.互花米草基因型多样性及其与入侵能力的关系[D].上海:华东师范大学,2007.
    [5]张文辉,李红,李景侠,等.秦岭独叶草种群个体和器官生物量动态研究[J].应用生态学报,2003:14(4):530~534.
    [6] Karel Mokany, R. John Raison and Anatoly S. Prokushkin. Critical analysis of root: shoot ratios in terrestrial biomes. [J].Global Change Biology, 2006, 12: 84~96.
    [7]文金花.三江源区青海草地早熟禾人工草地植物量动态及抗寒性研究[D].甘肃:甘肃农业大学,2006.
    [8] Harper J L. The population biology of plants[M]. London: Academic, Press, 1977: 283~297.
    [9]董宽虎,米佳.2006.白羊草种群繁殖的数量特征[J].草地学报,4(3):210~213.
    [10] An SQ, Gu B H, Zhou C F, et al. Spartina invasion in China implications for invasive species management and future reseach.[J]. Weed Research, 2007,47: 183~191.
    [11]蓝福生,李瑞棠,陈平,等.广西海滩红树林与土壤的关系[J].广西植物,1994,14(1):54~59.
    [12]邓自发,安树青,智颖飙,等.外来种互花米草入侵模式与爆发机制[J].生态学报, 2006,26(8):2678~2686.
    [13]韩碧文.植物生长与分化[M].北京:中国农业大学出版社.2003,267~275.
    [14]米佳,董宽虎.白羊草种群生殖分蘖株数量特征分析[J].草地学报,2007(1):55~59.
    [15]田青松.锡林郭勒典型草原四种禾草植物繁殖生态学[D].内蒙古:内蒙古农业大学,2002.
    [1]仲崇信.近年来米草研究概况.米草的应用研究[M].北京:海洋出版社.1992:1~13.
    [2]邓自发,安树青,智颖飙,周长芳,陈琳,赵聪蛟,方淑波,李红丽.外来种互花米草入侵模式与爆发机制[J].生态学报. 2006,(8):2678~2686.
    [3]钦佩,马连琨,谢民,仲崇信. Fe、Cu、Mn、Zn在互花米草(Spartina alterniflora)初级生产中的动态研究[J].生态学报. 1993, 3(1):67~74.
    [4]钦佩,仲崇信.米草的应用研究[M].北京:海洋出版社. 1992.
    [5]钦佩,安树青,颜京松.生态工程学(第二版) [M].南京:南京大学出版社.2002.
    [6]范航清,陈光华,何斌原,莫竹承.山口红树林滨海湿地与管理[M].北京:海洋出版社.2005: 26~27.
    [7]吴敏兰,方志亮.米草与外来生物入侵[J].福建水产. 2005,3(1):56~59.
    [8]肖强,郑海雷,叶文景,陈瑶,朱珠.水淹对互花米草生长及生理的影响[J].生态学杂志. 2005,24(9):1025~1028.
    [9]王智晨,张亦默,潘晓云,马志军,陈家宽,李博.冬季火烧与收割对互花米草地上部分生长与繁殖的影响[J].生物多样性. 2006,14(4):275~283.
    [10] Scott W T,Stephen W W. Application of fractal mathematics to soil water retension estimation. soil Sci. Soc.Am.J. 1989,53:987~996.
    [11] Miller, G., Crothers K. Controlling invasive Spartina: The New Zealand success story.Third International Conference on Invasive Spartina, San Francisco, California. 2004.
    [12]李贺鹏,张利权,王东辉.上海地区外来种互花米草的分布现状[J].生物多样性. 2006,14(2):114~120.
    [13]苏伟,赖春苗,李凤华.广西合浦儒艮国家级自然保护区大米草入侵现状及防治对策[J].中国环境科学学会学术年会优秀论文集. 2006:1032~1034.
    [14] Grevstad, F. S, Strong D. R., Garcia-Rossi, D., Switzer, R. W., Weckere, M. S. Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata, agent specificity and early results. Biological Control, 2003,27(1): 32~42.
    [15] Sillman, B. R., Zieman J. C. Top-down control of production by Spartina alterniflora periwinkle grazing in a Virginia marsh. Ecology, 2001,82(10): 2830~2843.
    [16] Gray, A. J., Marshall, D. F., Raybould, A. F. A century of evolution in Spartina alterniflora[J].. Advances in Ecological Research, 1991,21:1~62.
    [17]王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J].海洋科学. 2003,27(7):38~42.
    [18]钦佩.海滨湿地生态系统的热点研究[J].湿地科学与管理. 2006,3(2):7~11.
    [19]仲祟信.米草简史及国内外研究概况[J].南京大学学报(米草研究论文集). 1985:133~140.
    [20]仲崇信.采用米草生态工程开发黄河三角洲[J].生命世界.1992,(02).
    [21]张敏,厉仁安,陆宏.米草对我国海涂生态环境的影响[J].浙江林业科技. 2003,23(3):86~89.
    [22]唐廷贵,张万均.论中国海岸带米草生态工程效益与“生态入侵”[J].中国工程科学. 2003,5(3):15~20.
    [23]彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报. 1999,(04):560~568.
    [24]陈中义,付萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学. 2005, (01):1~7.
    [25]宋连清.互花米草及其对海岸的防护作用[J].东海海洋. 1997, (3):11~19.
    [26]何斌源,莫竹承.红海揽人工苗光滩造林的生长及胁迫因子研究[J].广西科学院学报. 1995, (21):37~42.
    [27]李加林.互花米草海滩生态系统及其综合效益[J].宁波大学学报(理工版). 2004,3(17) :38~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700