用户名: 密码: 验证码:
T型微通道内液滴及气泡生成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微液滴及微气泡在生物医学、化工、石油等领域具有极其广泛的应用。而且微尺度下的流体流动呈现出许多不同于宏观流动的现象,使得这一课题的研究具有重要的现实意义和科学价值。本文利用激光影像放大技术,采用数值模拟、理论分析和实验研究相结合的方法,考察了液滴/气泡生成有效直径及生成频率的各影响因素,探讨了T型微通道内液滴及气泡生成的基本规律。
     首先基于流体流动连续介质模型,考虑壁面润湿性影响,采用Level Set界面追踪方式,建立了液液两相流三维数学模型,利用CFD软件对多种工况下T型微通道内液滴生成过程进行了数值模拟。通过数值模拟得出以下主要结论:(1)流率变化影响:在保持分散相流率不变的前提下,随着连续相流率的增加,液滴的生成体积呈减小趋势;(2)界面张力影响:液滴生成有效直径随着界面张力的增大逐渐增大;(3)粘度影响:随着连续相粘度的增大,液滴的有效直径相应减小;(4)接触角影响:随着微通道壁面对分散相接触角的增大,通道内所形成的液滴体积有变大的趋势。在相同通道几何条件下,欲得到较大的液滴,可通过选择接触角大的材料表面或通过表面改性增大接触角的措施来达到此效果。(5)毛细数影响:所生成液滴的有效直径随着毛细数的增大而变小。
     在理论分析和数值模拟的基础上,利用高速摄像仪进行可视化实验,研究了T型微通道内液滴的生成过程及机理。主要分析了流率比、连续相粘度、界面张力及毛细数对液滴生成大小及生成频率的影响规律。实验研究表明,分散相与连续相流率比对液滴生成有着重要的影响,当流率比值保持不变时,随着连续相粘度的逐渐增加,导致生成液滴体积明显减小,生成频率增大,连续相粘度的持续增大使连续相粘性剪切力成为液滴生成过程中的主导力;并且无论固定分散相还是连续相流率,在其他流体物性参数保持不变的前提下,液滴生成有效直径及生成频率随着流率比的增加而变大;在毛细数值较小的情况下,液滴的长宽比与流率比呈良好的线性关系,并总结给出了二者的关联式;通过对实验结果的分析,建立了微液滴的体积、有效直径与微通道宽度和深度的关联式,可根据微通道尺寸可对生成液滴的体积及有效直径进行较为准确的计算;界面张力在微米级通道内流体流动中的作用不可忽视,液滴生成的有效直径随着界面张力的增加而增大,主要由于界面张力引起的杨-拉普拉斯压力及界面张力梯度导致的Marangoni效应作用增大。
     本文进一步对约束T型微通道内气泡生成的机理进行了实验研究,结果表明:连续相流率和其它流体物性参数保持不变时,生成气泡的有效直径随着分散相压力的增加而变大;在相同的分散相压力下,气泡生成有效直径随着连续相流率的增加而减小;当连续相流率增大时,剪切力和液体惯性力作用增大,加速了气泡的颈部夹断速度,即气泡颈部夹断阶段的时间缩短,生成的气泡体积变小;在相同的分散相压力下,气泡生成有效直径随着连续相粘度的增加而逐渐下降,气泡的生成有效直径随着气液界面界面张力的增加而增大,这与液滴生成机理相同,这种趋势主要由杨-拉普拉斯压力和界面Marangoni效应的影响导致。
     通过对约束T型微通道内液滴及气泡的生成规律的研究,分析了流体物性参数和通道壁表面湿润性以及毛细数对液滴及气泡生成的影响规律,研究对该类微液滴/微气泡发生器设计优化具有深广的应用价值,为进一步数值模拟和实验研究提供一定理论基础。
Micro-droplets and micro-bubbles find many applications in various fields, such as biological, medical, chemical and petroleum industry. Fluid flow at micro scale is with some new phenomena. This study aims to investigate the formation of droplets and bubbles in T-shaped microchannels through numerical, analytical and experimental methods.
     Firstly, a three-dimensional (3D) two-phase (fluid/fluid) flow model is developed using the Level Set surface-tracking method, based on the continuum model and taking the surface wettability into consideration. This model is then solved by a CFD software for droplet formation in T-shaped microchannels. It is found that:(1) droplet size decreases with the flow rate increasing of continuous phase for fixed flow rate of the dispersed phase; (2) the effective diameter of droplets increases as the surface tension force increases; (3) the effective diameter of droplets decreases as viscosity of the continuous phase increases; (4) the droplets size increases as the contact angle between the channel wall and the dispersed phase increases. Therefore, wall material with bigger contact angle can be used to obtain bigger droplets under the same microchannel geometry; (5) the effective diameter of droplet decreases with increasing of capillary number.
     For the experimental part, high-speed camera is used to study the formation process and mechanism of droplets in T-junction microchannels. A scaling law correlating droplet volume and microchannel wide and depth is obtained. Flow rate ratio between the dispersed phase and continuous phase has an important effect on the droplet formation process. Under fixed physical properties of the two phase fluids, both the effective diameter and generation frequency of droplets increase as the flow rate ratio increases. When the Capillary number is relatively small, a good linear relationship governs the droplet aspect ratio and the flow rate ratio. The specific correlation equation is also obtained. When the flow rate ratio remains constant, the gradual increasing of continuous phase viscosity decreases droplet size significantly, and increases the generation frequency. The main reason is that with the gradual increasing of continuous phase viscosity, the viscous shear stress becomes the dominant force during drop formation. A good agreement between numerical and analytical results is obtained. Surface tension can not be ignored in microchannels. Increasing of surface tension will increase the droplet effective diameter, due to the increasing of the Laplace force and Marangoni effect.
     Finally bubble formation mechanism is experimentally studied in a confined T-shaped microchannel. With fixed continuous-phase flow rate and fluid properties, the effective diameter of bubbles becomes larger as the dispersed-phase pressure increases, while the effective diameter of bubbles decreases as the continuous-phase flow rate increases under the same dispersed-phase pressure. The reason is that when continuous-phase flow rate increases, the shear force and inertia force increase, which accelerates the pinch-off speed of the bubble neck. When the continuous-phase viscosity increases under fixed dispersed-phase pressure, effective diameter of bubbles gradually decreases. With the gradual increasing of surface tension, the effective diameter of bubbles increases. Laplace and Marangoni effect cased by surface tension gradient plays an important role during bubble formation, similar to that for the droplet formation.
     In this work droplet/bubble formation in T-shaped mircochannels is studied. The effect of fluid properties and surface wettability of microchannel wall is investigated. The results obtained will benefit the designing of micro-droplet and micro-bubble generator and provide analytical basis for further numerical simulation and experimental study.
引文
[1]孙厚钧.水体增氧技术是改善城市河流湖泊水质的有效措施.北京水利,2002,4:35-436.
    [2]王银川.城市污水混凝强化处理中污泥的特性探讨.工业安全与环保,2005,31(10):23-25.
    [3]李民.好氧颗粒污泥处理实际污(废)水的研究与工程化应用进展.中国给水排水,2010,26(4):10-14.
    [4]阮晓博,杨芳,顾宁.微纳气泡制备及其应用于医学超声影像增强与药物载运的发展.东南大学学报(医学版),2011,30(1):208-214.
    [5]朱学功.微气泡超声造影剂工作原理及其临床应用.中国医学装备,2011.8(1):52-53.
    [6]G.B.Zhen, L.S.Roach, R.F.Ismagilov. Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets. Am Chem Soc, 2003,125(37):11170-11171.
    [7]V.Srinvasan, V.Pamula; M.Pollack. A Digital Microfluidic Biosensor for Multianalyte Detection. The 16th IEEE Annual International Conference on Micro Electro Mechanical Systems.Kyoto, Japan,2003:327-330.
    [8]郭德等.压强预处理对煤泥浮选效果的影响.煤炭学报,2011,36(8):1365-1369.
    [9]N.K.Madavan, S.Deutsch, C.L.Merkle. Reduction of Turbulent Skin Friction by Micro-Bubbles. Physics Fluid,1984,7:356-363.
    [10]杨余旺,孙思诚,王增刚.微气泡降阻研究进展.南京理工大学学报,2001,25(2):220-224.
    [11]J.H.Xu, G.S.Luo, S.W.Li. Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties. Lab on a chip.2006, 6:121-131.
    [12]J.H.Xu, S.W.Li, J.Tan, Y.J.Wang, et al. Preparation of Highly Monodisperse Droplet in a T-Junction Microfluidic Device. AICHE Journal,2006, 52:3005-3010.
    [13]J.H.Xu, S.W.Li, J.Tan, Y.J.Wang, et al.. Controllable Preparation of Monodisperse O/W aAnd W/O Emulsions in the Same Microfluidic Device. The ACS journal of surface and colloids,2006,22:7943-7946.
    [14]徐振华,赵红卫,方为茂等.金属微孔管制造微气泡的研究及气浮效果测试.四川化工,2006,9(3):1-3.10.
    [15]肖琦.T型微通道气泡生成实验研究,山东大学,硕士学位论文,2007.
    [16]全晓军,陈钢,郑平.微通道气液同向流动中气泡射流特性.工程热物理学报,2008.29(2):309-312.
    [17]刘志鹏,徐进良,张伟.T型微通道内液滴流型分布及不稳定性分析.微纳电子技术,2008,45(5):275-281
    [18]聂晶尧等.微通道中两相流压降与传质的研究.化学反应工程与工艺,2007.33(4):309-314.
    [19]T.S.Zhao, Q.C.Bi. Co-Current Air-Water Two-Phase Flow Patterns in Vertical Triangular Microchannels. International Journal of Multiphase Flow,2001, 27:765-782.
    [20]马晓东.十字交叉沟通微通道芯片的微液滴生成研究.重庆大学,硕士学位论文,2010.
    [21]刘玮莅.微通道内两相流流型及液滴生成研究.天津大学,硕士学位论文,2010.
    [22]王文坦,刘喆,金涌等.微通道中液滴内部速度场的LBM模拟.中国科技论文在线,第2010.12(5):911-918.
    [23]Taotao Fu, Youguang Ma, Denis Funfschilling, et al. Dynamics of Bubble Breakup in a Microfluidic T-Junction Divergence. Chemical Engineering Science, 2011,66:4184-4195.
    [24]董立春,吴纪周,任桂香等.T-型微流控通道中微液滴形成机制的CFD模拟.重庆大学学报,2011,34(1):134-139.
    [25]F.Bashforth, J.C.Adams. An Attempt to Test the Theories of Capillary Action. Cambridge:Cambridge University Press,1883.
    [26]P.C.Lee, F G.Tseng, Pan Chin. Bubble Dynamics in Microchannels.Part Ⅰ:Single Microchannel. International Journal of Heat and Mass Transfer,2004, 47(25)5575-5589.
    [27]T.Nisisako, T.Torii, T.Higuehi. Droplet Formation in a MicroChannel Network. Lab on a chip,2002,24(2):24-26.
    [28]P.Garstecki, M.J.Fuerstman, H.A.Stone, G.M.Whitesides. Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up. Lab on a Chip,2006,6 (3):437-446.
    [29]A.M.Ganan-Calvo, J.M.Gordillo, Perfectly Monodisperse Microbubbling by Capillary Flow Focusing. Physical review letters,2001,87(27):4501-4514.
    [30]A.M.Ganan-Calvo, J.M.Gordillo, Perfectly Monodisperse Microbubbling by Capillary Flow Focusing:An Alternate Physical Description And Universal Sealing. Physical review,2004,69(22):027301-1-027301-3.
    [31]J.Tong, M.Nakajima, H.Nabetani, Y.Kikueh. Surfactant Effect on Production of Monodispersed Microspheres by Microchannel Emulsification Method. Journal of Surfactants and Detergents,2000,3:285.
    [32]S.Sugiura, M.Nakajima, J.Tong, et al. Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. Journal of Colloid and interface Science,2000,227(1):95-103.
    [33]S.Sugiura, M.Nakajima, S.Iwamoto, M.Seki. Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array. Langmuir,2001,17(18):5562-5566.
    [34]S.Sugiura, M.Nakajima, M.Seki, Prediction of Droplet Diameter for Microchannel Emulsification. Langmuir,2002,18(10):3854-3859.
    [35]M.Yasun, S.Sugiura, S.Iwamoto, et al. Monodispersed Microbubble Formation Using Microchannel Technique. AICHE Journal,2004,50(12):3227-3234.
    [36]J. Husny, J.J.Copper-White. The Effete Of Elasticity on Drop Creation in T-Shaped Microehannels. No-Newtonian Fluid Mech.2006,137(1-3):121-136.
    [37]P. B.Umbanhowar, V.Prasad, D.A.Weitz. Monodisperse Emulsion Generation via Drop Break off in A Coflowing Stream. Langmuir.2000,16 (2):347-351.
    [38]C.Cramer, P.Fischer, E.J.Windhab. Drop Formation in A Co-Flowing Ambient Fluid. Chemical Engineering Science,2004,9(15):3045-3058.
    [39]J.D.Tice, A.D.Lyon, R.F. Ismagilov. Effects of Viscosity on Droplet Formation and Mixing in Microfluidic Channels. Analytica Chemica Acta,2004, 507(1):73-77.
    [40]J.L.Liow.15th Australasian Fluid Mechanics Conference,2004:13-17.
    [41]Qian Dongying, Lawal Adeniyi. Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-Junction Microchannel. Chemical Engineering Science,2006, 61(23):7609-7625.
    [42]Amit Gupta, S.M.Sohel Murshed, Ranganathan Kumara. Droplet Formation and Stability of Flows in a Microfluidic T-Junction. Applied Physics Letters,2009, 94(16):164107-3.
    [43]Haihu Liu, Yonghao Zhang. Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics,2009,106(3):034906.
    [44]S.Van der Graaf, T.Nisisako, C.Schroen, et al. Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel. Langmuir,2006,22 (9):4144-4152.
    [45]范菁.微通道内流体流动传热的数值模拟,山东大学,硕士学位论文,2007.
    [46]K.A.Triplett. S.M.Ghiaassiaan, S.I.Abdel-Khalik, etal. Gas-Liquid Two-Phase Flow in Microchannels:Part I Two-Phase Flow Patterns. International Journal of Multiphase Flow,1999,25(3):377-394.
    [47]T.Thorsen, R.W.Roberts, F.H Arnold, et al. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters,2001, 86:4163-4166.
    [48]Cubaud Thomas, Ho Chihming. Transport of Bubbles in Square Microchannels. Physics of Fluids,2004,16(12):4575-4585.
    [49]P.Garstecki, A.M.Ganan-Calvo, G.M.Whitesides. Formation of Bubbles and Droplets in Microfluidic Systems. Bulletin of the Polish Academy of Sciences: Technical Sciences,2005,53:361-372.
    [50]Cubaud Thomas, Tatineni Mahidhar, Zhong Xiaolin, et al. Bubble Dispenser in Microfluidic Devices. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2005,72(3):037302.
    [51]P.Garstecki, M.J.Fuerstman, H.A.Stone, et al. Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up. Lab on a Chip,2006,6 (3):437-446.
    [52]M.De.Menech, P.Garstecki, F.Jousse, et al. Transition from Squeezing to Dripping in a Microfluidic T-Shaped Junction. Journal of Fluid Mechanics,2008, 595:141-161.
    [53]A.Ganan-Calvo, J.M Gordillo. Perfectly Monodisperse Microbubbling by Capillary Flow Focusing, Physical Review Letters,2001,87(27):4501-45014.
    [54]S.L.Anna, N.Bontoux, H.A.Stone. Formation of Dispersions Using "Flow Focusing" in Microchannels. Applied Physics Letters,2003,82 (3):364-366.
    [55]K.Liu, H.J.Ding, Y.Chen, X.Z.Zhao. Droplet-Based Synthetic Method Using Microflow Focusing and Droplet Fusion. Microfluidics and Nanofluidics,2007,3 (2):239-243.
    [56]M.Seo, C.Paquet, Z.H.Nie, S.Q.Xu, et al. Microfluidic Consecutive Flow-Focusing Droplet Generators. Soft Matter,2007,3 (8):986-992.
    [57]Taotao Fu, Youguang Ma, Denis Funfschilling, et al. Bubble Formation and Breakup Mechanism in a Microfluidic Flow-Focusing Device. Chemical Engineering Science,2009,64:2392-2400.
    [58]Renqiang Xiong, N.Jacob Chung. Bubble Generation and Transport in a Microfluidic Device with High Aspect Ratio. Experimental Thermal and Fluid Science,2009,33:1156-1162.
    [59]陶然,权晓波,徐建中.微尺度流动研究中的几个问题.工程热物理学报,2001.22(5):575-577.
    [60]Mehendale. Fluid Flow and Heat Transfer at Micro- and Meso-Scales with Application to Heat Exchanger Design. Applied Mechanics Reviews - Bound Volume,2000,53(7):175-194.
    [61]S.G.Kandlikar. Fundamental Issues Related to Flow Boiling in Mini-Channels and Micro-Channels. Exp Therm Fluid Sci,2002,26(2-4):389-408.
    [62]M.Flik, B.I.Choi, K.E.Goodson. Heat Transfer Regimes in Microchannels. ASME J. of Heat Transfer,1992,114:666.
    [63]刘静.微米/纳米尺度传热学,北京,科学出版社,2006.
    [64]章维一,候丽雅.微系统领域的关键技术.中国接卸工程,2000,11:1305-1312.
    [65]凌志勇等.微流动的研究现状及影响因素.江苏大学学报,2002,23(6):1-5.
    [66]G.E.Karniadakis, A.Beskok. Micro Flows-fundamentals and Simulation. New York:Springer-Verlag Press,2002.
    [67]卡尼亚达克斯.柏斯考克.微流动基础与模拟,北京,化学工业出版社,2006.
    [68]B.J.Alder, T.E.Wainwright. Studies in Molecular Dynamics I:General Method.J Chem.Phys.,1959,31:459-466.
    [69]M.P.Allen, D.J.TIldesley. Computer Simulation of Liquids. Oxford University Press, New York,1989.
    [70]D.C.Rapaport. The Art of Molecular Dynamics Simulation, Cambridge,United Kingdom:Cambridge University Press.2004.
    [71]E.Oran, C.Oh, B.Cybyk. Direct Simulation Monte Carlo:Recent Advances and Applications. Annu. Rev.Fluid Mech,1998,30:403-441.
    [72]张海强.微喷管内流场DSMC模拟计算与分析,哈尔滨工业大学,硕士学位论文.2006.
    [73]C.Cercignani, M.Lampis. Kinetic Models for Gas-Surface Interactions. Transport Theory and Statistical Physics,1971,1(2):101-114.
    [74]R.GLord. Application of the C-L Scattering Kernel to DSMC Calculation. Rarefied Gas Dynamics,1991:1427-1433.
    [75]李战华,周兴贝,朱善农.非极性小分子有机液体在微管道中的流量特性.力学进展,2002.34(3):432-437.
    [76]凌智勇,刘勇,丁建宁等.亲水性和疏水性微管道中流动滑移特性的实验研究.中国机械工程,2006.17(22):2326-2329.
    [77]凌智勇等.硅油在微圆管道内流动特性的实验研究.液压与气动,2005,3:19-20.
    [78]H.Y.Wu, P.Cheng. An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions. International Journal of Heat and Mass Transfer,2003.46(14):2547-2556.
    [79]H.Y.Wu, P.Cheng. Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios. International Journal of Heat and Mass Transfer, 2003.46(14):2519-2525.
    [80]W.Owhaib, B.Palm. Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels. Experimental Thermal and Fluid Science, 2004.28(2-3):105-110.
    [81]V.S.Ajaev, GM.Homs. Modeling Shapes and Dynamics of Confined Bubbles. Annu. Rev. Fluid Mech.2006,38:277-308.
    [82]C.W.Hirt, B.D.Nichols. Volume of Fluids (VOF) Method for the Dynamics of Free Boundaries. Comput.Phys,1981,39:201-225.
    [83]J.H.Spurk, Fluid Mechanics. Springer-Verlag & World Publishing Company, 1997.
    [84]M.J.Jensen. Bubbles in Microchannels, Technical University of Denmark, Master Project,2002.
    [85]M.J.Jensen. Numerical Simulations of Interface Dynamics in Mmicrochannels, Technical University of Denmark, PHD thesis,2005.
    [86]Lee Chi Young, Lee Sang Yong. Influence of Surface Wettability on Transition of Two Phase Flow Pattern in Round Minichannels. International Journal of Multiphase Flow,2008,34(7):706-711.
    [87]Cubaud Thomas, Ho Chih-Ming, Physics of Fluids Transport of bubbles in Square Microchannels,2004,16(12):4575-4585.
    [88]M.K.Akbar, D.A.Plummer, S.M.Ghiaasiaan. On Gas-Liquid Two-Phase Flow Regimes in Microchannels. International Journal of Multiphase Flow,2003, 29(5):855-865.
    [89]S.Osher, J.A.Setian. Fronts Propagating With Curvature Dependent Speed: Algorithms Based On Hamilton-Jacobi Formulations. Journal of Computational Physics,1988,79:12-49.
    [90]J.U.Brackbill, C.Kothe, D.B.Zemach. A Continuum Method For Modeling Surface Tension. Journal of Computational Physics,1992,100 (2):335-354.
    [91]R.Pember, J.B.Bell, P.Colella. An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Complex Geometries. Journal of Computational Physics, 1995,120:278-304.
    [92]R.W.Anderson, N. S.Elliott, R.B.Pember. An Arbitrary Lagrangian-Euler Method with Adaptive Mesh Refinement for The Solution of Euler Equations. Journal of Computational Physics,2004,199:598-617.
    [93]A.Tomiyama, I.Zun, A.Sou, T.Sakaguchi. Numerical Analysis of Bubble Motion with the Vof Method. Nuclear Engineering and Design,1993,141:69-82.
    [94]J.Pilliot, E.Puckett. Second Order Accurate Volume-Of-Fluid Algorithms for Tracking Material Interfaces. Journal of Computational Physics,2004, 199:465-502.
    [95]M.Sussman, P.Smereka, S.A.Osher. Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics,1994, 114:146-159.
    [96]M.Sussman, E.Fatemi, P.Smereka, S.Osher. An Improved Level Set Method for Incompressible Two-Phase Flows. Computers & Fluids,1998,27:663-680.
    [97]M.Sussman, A.S.Almgren, J.Bell, et al. An Adaptive Level Set Approach for Incompressible Two-Phase Flows. Journal of Computational Physics,1999, 148:81-124.
    [98]R.M.Furzeland. A Comparative Study of Numerical Method for Moving Boundary Problems. Journal of international mathematics Application,1980, 20:411-429.
    [99]N.Ashghz, J.Y.Poo. FLAIR:Flux Line-Segment Model for Advection and Interface Reconstruction. Journal of Computational Physics,1991,93:273-285.
    [100]D.L. Youngs. Time-Dependent Multi-Material Flow with Large Fluid Distortion Numerical Method for Fluid Dynamics. Academic New York,1982.
    [101]S.Chen, B.Merriman, S.Osher et al. A Simple Level Set Method for Solving Stefan Problems. Journal of Computational Physics,1997,135:8-29.
    [102]陶文铨.数值传热学.第二版,西安,西安交通大学出版社,2001.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700