用户名: 密码: 验证码:
金荞麦和荞麦对增强UV-B辐射及干旱胁迫的生理生态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球干旱、半干旱地区约占耕地面积的一半,这些地区水分供应不足,森林植被疏稀,生态环境恶化,水土流失严重,自然灾害频繁。而全球气候变化与局部干旱化将导致越来越多的干旱、半干旱地区受到更为严重的干旱胁迫影响。干旱胁迫对植物的影响是多方面的,其中就包括生物量积累和分配、光合色素、保护物质和保护酶系统。平流层臭氧层的衰减会直接导致到达地表的UV-B辐射(280-315 nm)的增强,对植物的生长发育造成不可避免的影响。因此,增强UV-B辐射势必会影响到植物对干旱胁迫的响应或敏感性。
     金荞麦(Fagopyrum dibotrys (D.Don) Hara)不但是国家Ⅱ级重点保护野生植物,且在药理和临床方面都具有较高的药用价值,由于其药用价值,金荞麦需求量与日俱增。而荞麦(Fagopyrum esculentum Moench.)是一种我国广泛栽培的且具有很高营养价值的作物。本文研究了模拟增强UV-B辐射及干旱胁迫下的金荞麦和荞麦生物量积累与分配、叶光合色素、叶保护物质和保护酶的响应,比较了两种荞麦属植物在上述条件下的可塑性差异,以此探讨增强UV-B辐射对处于干早胁迫下的植物影响,以期为金荞麦的保护利用和荞麦的种植提供理论依据。
     1)干旱胁迫导致了金荞麦和荞麦各营养器官生物量和总生物量积累降低,且随着干旱胁迫程度的加深,这种降低的趋势越明显。荞麦根生物量配置随干旱胁迫的加重显著升高,金荞麦则无明显规律。金荞麦和荞麦茎生物配配置和叶生物量配置有随着干早胁迫程度加深而下降的趋势。大充足水分状况下:增强UV-B辐射显著降低了金荞麦和荞麦根生物量、叶生物量和总生物量积累:增强的UV-B辐射同样降低了金荞麦茎生物量积累,而荞麦茎生物量积累对增强的UV-B辐射却不敏感:增强UV-B辐射还使荞麦花序生物量积累提高了;增强的UV-B辐射降低了金荞麦根生物量配置,而荞麦根生物量配置对增强的UV-B辐射并不敏感;增强的UV-B辐射能提高金荞麦和荞麦茎生物量配置;金荞麦叶生物量配置对增强的UV-B辐射不敏感,而增强UV-B辐射降低了荞麦叶生物量配置;增强的UV-B辐射能提高荞麦花序生物量配置。在中度干旱胁迫下:增强的UV-B辐射提高了金荞麦和荞麦根生物量积累;增强的UV-B辐射能使金荞麦和荞麦茎生物量积累得到提高,但这种影响只在特定的处理时间点上达到显著水平;增强的UV-B辐射能使得金荞麦叶生物量积累先降低后升高,却增加了荞麦叶生物量积累;增强UV-B辐射使荞麦花序生物量积累升高;增强UV-B辐射能提高金荞麦根生物量配置,却降低了荞麦根生物量配置;金荞麦和荞麦茎生物量配置对增强UV-B辐射不敏感;金荞麦叶生物量配置对增强的UV-B辐射不敏感,而增强UV-B辐射大特定时期能提高荞麦叶生物量配置:荞麦花序生物量配置对增强的UV-B辐射不敏感。在重度干旱胁迫下:增强的UV-B辐射也提高了金荞麦和荞麦根生物量积累;增强的UV-B辐射能使金荞麦和荞麦茎生物量积累得到一定提高,但这种影响只在特定的处理时间点上达到显著水平;金荞麦叶生物量对增强的UV-B辐射并不敏感,增强的UV-B辐射却显著增强了荞麦叶生物量积累;增强的UV-B辐射使荞麦花序生物量积累升高了;金荞麦根生物量配置对增强UV-B辐射不敏感,增强的UV-B辐射却提高了荞麦根生物量配置;增强UV-B辐射对金荞麦和荞麦茎生物量配置无显著影响;金荞麦叶生物量配置对增强UV-B的辐射不敏感,而增强UV-B辐射显著提高了荞麦叶生物量配置;增强的UV-B辐射降低了荞麦花序生物量配置。从生物量综合特征可塑性指数来看,UV-B辐射或干旱处理中金荞麦生物量综合特征可塑性比荞麦要高,金荞麦在生物量综合特征方面表现出比荞麦更高的可塑性。
     2)金荞麦和荞麦叶叶绿素a含量、叶绿素b含量和总叶绿素含量都随干旱程度的加重而降低:在充足水分状况下,增强的UV-B辐射降低了金荞麦和荞麦叶绿素a含量、叶绿素b含量和总叶绿素含量;而在干旱胁迫下,除金荞麦叶绿素a含量对增强的UV-B辐射不敏感外,增强的UV-B辐射都能提高荞麦叶绿素a含量、金荞麦和荞麦叶绿素b含量和总叶绿素含量。金荞麦叶绿素a/叶绿素b随干旱胁迫程度的加重而降低,在处理中期最为明显:中度干旱胁迫在处理中期提高了荞麦叶绿素a/叶绿素b;无论是充足水分还是干旱胁迫条件下,叶绿素a/叶绿素b比值对增强的UV-B辐射都不敏感。金荞麦和荞麦叶类胡萝卜素含量都随干早胁迫加重而降低;只有在充足水分状况下,增强的UV-B辐射提高了金荞麦叶类胡萝卜素含量,而其它水分状况下,金荞麦和荞麦叶胡萝卜素含量对增强的UV-B辐射不甚敏感。金荞麦和荞麦类胡萝卜素/叶绿素比值在处理中后期基本有随干旱程度的加深而升高的趋势,到后期达到显著水平;在充足水分状况下,增强的UV-B辐射显著提高了金荞麦类胡萝卜素/叶绿素比值,而其它水分状况下,金荞麦和荞麦类胡萝卜素/叶绿素比值对增强的UV-B辐射不甚敏感。从光合色素可塑性指数来看,UV-B辐射或干旱处理中金荞麦光合色素可塑性比荞麦要高,金荞麦在光合色素方面表现出比荞麦更高的可塑性。
     3)金荞麦和荞麦SOD活性、总黄酮含量、丙二醛含量和可溶性糖含量随干早胁迫的增加而显著上升;POD活性随干旱胁迫的加深而升高,在处理中期达到显著水平,而在处理前期和后期,这种影响似乎有减弱的趋势;在处理前中期游离脯氨酸含量随干旱胁迫的加重而上升,在处理后期则无明显规律;金荞麦可溶性蛋白含量在处理前期随干旱胁迫的加深而升高,而到处理中后期则随干旱胁迫的加深而降低,荞麦可溶性蛋白含量在处理前期随干旱程度的加深而增高,而在处理后期则刚好相反。在充足水分状况下,增强的UV-B辐射处理提高了金荞麦和荞麦叶SOD活性、总黄酮含量、游离脯氨酸含量、丙二醛含量;增强的UV-B辐射在处理前期和后期提高了金荞麦POD活性,荞麦则不同,增强的UV-B辐射在处理后期降低了其POD活性;增强的UV-B辐射在处理前期增加了金荞麦叶可溶性蛋白含量,而在后期则减小了金荞麦和荞麦叶可溶性蛋白含量;增强的UV-B辐射降低了金荞麦和荞麦叶可溶性糖含量。在干早胁迫下,增强的UV-B辐射在处理中期提高了金荞麦SOD活性,而在处理前期和后期却降低了其SOD活性;增强的UV-B辐射在处理后期升高了金荞麦叶P.OD活性,却降低了荞麦叶POD活性;增强的UV-B辐射在处理后期降低了荞麦叶总黄酮含量;增强的UV-B辐射提高了金荞麦叶游离脯氨酸含量,在处理中期降低了荞麦叶游离脯氨酸含量;增强的UV-B辐射提高了金荞麦和荞麦叶丙二醛含量;在中度干旱胁迫下,增强的UV-B辐射提高了金荞麦叶可溶性蛋白含量,而在重度干旱胁迫下,增强的UV-B辐射在处理前中期提高了金荞麦叶可溶性蛋白含量,而在后期则减小了其叶可溶性蛋白含量,而荞麦叶可溶性蛋白含量始终对增强的UV-B辐射不敏感;增强的UV-B辐射显著降低了金荞麦叶可溶性糖含量,而荞麦只在重度干旱胁迫下才有这种影响。在UV-B辐射和干旱处理下,金荞麦在保护酶和保护物质方面表现出比荞麦更高的可塑性。
     总之,在干旱条件下增强的UV-B辐射不会加剧对金荞麦和荞麦的伤害,而在一定程度上有利于提高两者对干旱的抗性。
The world's arid and semi-arid regions account for about half of the arable land. In these areas, there is a shortage of water supply, sparse vegetation and sparse forest, ecological environment deterioratiosn, serious soil erosion, and frequent natural disasters. With global climate changes and local drought, more arid and semi-arid areas will be more seriously affected by drought stress. The influences of drought stress on plants are manifold, including biomass accumulation and allocation, photosynthetic pigments, protective substance and protective enzymes changes. The attenuation of the stratospheric ozone layer will directly lead in the enhancement of UV-B radiation (280-315 nm) onto the earth surface. This will inevitably affect the growth and development of the plants. Therefore, the enhanced UV-B radiation is bound to affect the response or sensitivity of plants toward drought stress.
     Fagopyrum dibotrys (D.Don) Hara is not only a kind of the national key protected wild plants of gradell, but also a plant with high pharmacological and clinical value. For its medicinal value, there is an increasing demand of the F. dibotrys. Fagopyrum esculentum Moench., with a high nutritional value, is widely cultivated in China. In this paper, the author has observed the influences of enhanced UV-B radiation in simulation and drought stress on the biomass accumulation and allocation, leaf photosynthetic pigments, leaf protective substance and protective enzymes of F. dibotrys and F. esculentum, with a comparison about the plasticity of the two buckwheat species under these conditions, in order to study the impact of the enhanced UV-B radiation on plants under drought stress, and so as to provide a theoretical basis for the protection and use of F. dibotrys and the cultivation of F. esculentum.
     1) Drought stress made the organs'biomass and total biomass accumulation decrease in F. dibotrys and F. esculentum. The decrease became more obvious with the deepening of drought stress. Biomass allocation to root increased significantly with the increasing of drought stress in F. esculentum while showed no obvious regularity in F. dibotrys. There was a trend that biomass allocation to stem and biomass allocation to leaves decreased with the deepening of drought stress in F. dibotrys and F. esculentum. In conditions of adequate water, enhanced UV-B radiation significantly reduced biomass accumulation to root, biomass accumulation to leaves and total biomass accumulation in F. dibotrys and F. esculentum. Enhanced UV-B radiation also reduced biomass accumulation to stem in F. dibotryswhile that of F. esculentum was not sensitive to it. Enhanced UV-B radiation also made biomass accumulation to inflorescence increase in F. esculentum. Enhanced UV-B radiation reduced biomass allocation to root of F. dibotrys while that of F. esculentum was not sensitive to it. Enhanced UV-B radiation could increase biomass allocation to stem in F. dibotrys and F. esculentum. Biomass allocation to leaves of F. dibotrys was not sensitive to enhanced UV-B radiation which reduced that of F. esculentum. Enhanced UV-B radiation could increase biomass allocation to inflorescence of F. esculentum. In conditions of moderate drought stress, enhanced UV-B radiation increased biomass accumulation to root in F. dibotrys and F. esculentum. Enhanced UV-B radiation could improve biomass accumulation to stem in F. dibotrys and F. esculentum, but this improvement reached a significant level only on specific processing time points. Enhanced UV-B radiation made biomass accumulation to leaves of F. dibotrys first decrease and then increase, but increased that of F. esculentum. Enhanced UV-B radiation increased biomass accumulation to inflorescences in F. esculentum. It increased biomass allocation to root in F. dibotrys but decreased that of F. esculentum. Biomass allocation to stem of F. dibotrys and F. esculentum was not sensitive to the enhanced UV-B radiation. Biomass allocation to leaves of F. dibotrys was not sensitive to the enhanced UV-B radiation which could improve biomass allocation to leaves of F. esculentum in a specific period. Biomass allocation to inflorescences of F. esculentum was not sensitive to the enhanced UV-B radiation. In the conditions of severe drought stress, enhanced UV-B radiation also increased biomass accumulation of root in F. dibotrys and F. esculentum. Enhanced UV-B radiation could lead in a certain increase to biomass accumulation to stem in F. dibotrys and F. esculentum, but this effect reached a significant level only on specific points in processing time. Biomass of leaves in F. dibotrys was not sensitive.to enhanced UV-B radiation which significantly increased that of F. esculentum. Enhanced UV-B radiation significantly increased biomass accumulation to inflorescences in F. esculentum. Biomass allocation to root of F. dibotrys was not sensitive to enhanced UV-B radiation which increased that of F. esculentum. Enhanced UV-B radiation had no significant effect on biomass allocation to stem in F. dibotrys and F. esculentum. Biomass allocation to leaves of F. dibotrys was not sensitive to enhanced UV-B radiation which significantly increased that of F. esculentum. Enhanced UV-B radiation reduced biomass allocation to inflorescences in F. esculentum. From the perspective of the phenotypic plasticity index of biomass traits, in UV-B radiation or drought conditions, plasticity of biomass traits of F. esculentum was higher than that of F. dibotrys, and i.e. F. esculentum demonstrated a higher plasticity of biomass traits than F. dibotrys did.
     2) Chlorophyll a, chlorophyll b and total chlorophyll contents in F. dibotrys and F. esculentum reduced with the severity of drought. In conditions of adequate water, enhanced UV-B radiation reduced chlorophyll a, chlorophyll b and total chlorophyll contents in F. dibotrys and F. esculentum. While under drought stress, chlorophyll a contents of F. dibotrys was not sensitive to enhanced UV-B radiation which could increase chlorophyll a in F. esculentum, chlorophyll b and total chlorophyll contents in F. dibotrys and F. esculentum. The ratios chlorophyll a/ chlorophyll b of F. dibotrys decreased with the severity of drought stress and the decrease was most significantly in the medium-term of the dealing process. Under moderate drought stress, in the medium-term of the dealing process, the ratios of chlorophyll a/chlorophyll b F. esculentum was improved. In whether adequate water or drought stress conditions, the ratios of chlorophyll a/ chlorophyll b was not sensitive to enhanced UV-B radiation. Leaf carotenoid concentratiosns both in F. dibotrys and F. esculentum decreased with deepining drought stress. Only in adequate water conditions, enhanced UV-B radiation increased leaf carotenoid concentratiosns of F. dibotrys. In other water conditions, leaf carotenoid concentratiosns in F. dibotrys and F. esculentum were not very sensitive to enhanced UV-B radiation. In the middle and late dealing process, ratioss of carotenoid/chlorophyll in both F. dibotrys and F. esculentum showed a rising trend with the deepening drought and reached a significant level in the late stage of the dealing process. In adequate water conditions, enhanced UV-B radiation significantly increased ratios of carotenoid/ chlorophyll in F. dibotrys, while in other water conditions, ratioss of carotenoid/chlorophyll in F. dibotrys and F. esculentum were not very sensitive to enhanced UV-B radiation. From the perspective of the plasticity index of photosynthetic pigments, in UV-B radiation or drought conditions, plasticity of photosynthetic pigments in F. dibotrys was higher than that of F. esculentum, and i.e. F. dibotrys demonstrated a higher plasticity of photosynthetic pigments than F. esculentum did.
     3) SOD activity, total flavonoids contents, MDA contents and soluble sugar contents in F. dibotrys and F. esculentum increased significantly with the deepening drought stress. POD activity rose with the deepening drought stress, reaching a significant level in the medium-term of the dealing process, while in the early and last stages, this effect seemed to wane. In the early and medium stages of the treatment, free proline contents rose with the deepening drought stress but showed no obvious regularity in the later stage. In the early stage of the treatment, soluble protein contents of F. dibotrys rose with the deepening drought stress, but decreased in the medium and late stages. In the early stage of the treatment, soluble protein contents of F. esculentum increased with the severity of the drought, while it was just the opposite issue in the late stage of the treatment. In conditions of adequate water, enhanced UV-B radiation increased SOD activity, total flavonoids contents, free proline contents and MDA contents of F. dibotrys and F. esculentum. In the early and late stages of the treatment, POD activity of F. dibotrys was increased by enhanced UV-B radiation which decreased POD activity of F. esculentum in late stage of the treatment. In the early and late stages of the treatment, soluble protein contents ofF. dibotrys was increased by enhanced UV-B radiation which decreased that of F. esculentum. Enhanced UV-B radiation reduced soluble sugar contents of F. dibotrys and F. esculentum. In conditions of drought stress, enhanced UV-B radiation increased SOD activity of F. dibotrys in the medium-term of the treatment while decreased it in the early and late stages of the treatment. In the late stage of the treatment, enhanced UV-B radiation increased POD activity of F. dibotrys, while decreased that of F. esculentum. Enhanced UV-B radiation decreased total flavonoids contents of F. esculentum in the late stage of the treatment. Enhanced UV-B radiation increased free proline contents of F. dibotrys, while decreased that of F. esculentum in the medium-term of the treatment. Enhanced UV-B radiation increased MDA contents in F. dibotrys and F. esculentum. In conditions of moderate drought stress, enhanced UV-B radiation increased soluble protein contents of F. dibotrys. In the conditions of severe drought stress, enhanced UV-B radiation increased soluble protein contents of F. dibotrys in the early and medium-term of the treatment, but decreased it in the late stage of the treatment. Soluble protein contents of F. esculentum were consistently not sensitive to enhanced UV-B radiation. Enhanced UV-B radiation significantly reduced soluble sugar contents of F. dibotrys, which of F. esculentum was affected only in severe drought stress. In the UV-B radiation and drought treatment, F. dibotrys showed a higher plasticity in protective enzyme and protective substance than of F. esculentum did.
     In short, enhanced UV-B radiation would not intensify the injury of F. dibotrys and F. emarginatum by drought, but help to improve their resistance to drought to some extent.
引文
[1]邬建国.自然保护与保护生物学:概念和模型.见刘建国.当代生态学博论[M].北京:中国科学技术出版社,1992:2.
    [2]何平.珍稀濒危植物保护生物学[M].重庆:西南师范大学出版社,2005:2.
    [3]Meffe C K, Carroll C R. Principles of conservation biology[M]. Massachusetts: Sinauer Associates Inc Publisher,1994.
    [4]张恩迪,.郑汉臣.中国濒危野生动植物资源的保护[M].上海:第二军医大学出版社,2000:8.
    [5]McNeely J A, Miller K R, Reid W, et a. l. Conserving the World's Biological Diversity[M]. The World Bank, WRI, IUCN, WWF,1990:1-70.
    [6]陈灵芝,马克平.生物多样性科学:原理与实践[M].上海:上海科学技术出版社,2001:2-5.
    [7]丁建,夏燕莉.中国药用植物资源现状[J].资源开发与市场,2005,21(5):453-454.
    [8]王笑尘.中国野生药用植物资源现状与思考[J].中国现代中药,2006,8(3):37-38.
    [9]唐兰.金荞麦(Fagopyrum dibotrys)模拟逆境下的生理和形态适应性及开花物候:西南大学硕士学位论文.重庆:西南大学,2006:1
    [10]杨世林,张昭,张本刚等.珍稀濒危药用植物的保护现状及保护对策[J].中草药,2003,31(6):401-403.
    [11]闫志峰,张本刚,陈士林等.濒危中药资源系统评价保护体系的构建[J].世界科学技术-中药现代化,2006,8(5):16-20.
    [12]黄璐琦,郭兰萍,崔光红等.中药资源可持续利用的基础理论研究[J].中药研究与信息,2005,7(8):4-29.
    [13]汤章程.植物干旱生态生理的研究[J].生态学报,1983,3(3):196-204.
    [14]彭珂珊,徐宣斌,胡晋辉等.干旱是西部地区生态系统受损的关键因素[J].石家庄经济学院学报,2002,25(3):257-262.
    [15]祝廷成,梁存柱,陈敏等.沙尘暴的生态效益[J].干旱区资源与环境,2004,18(1):33-37.
    [16]胡继超,姜东,曹卫星等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,24(1):64-68.
    [17]许振柱,周广胜.不同温度条件下土壤水分对羊草幼苗生长特性的影响[J].生态学杂志,2005,24(3):256-260.
    [18]杨燕,刘庆,林波等.不同施水量对云杉幼苗生长和生理生态特征的影响[J]. 生态学报,2005,25(9):2152-2158.
    [19]刘长利,王文全,魏胜利.干旱胁迫对甘草各营养器官生物量及分配的影响[J].中药材,2005,28(1):7-8.
    [20]李阳,齐曼·尤努斯,祝燕.水分胁迫对大果沙枣光合特性及生物量分配的影响[J].西北植物学报,2006,26(12):2493-2499.
    [21]尉秋实,赵明,李昌龙等.不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征[J].生态学杂志,2006,25(1):7-12.
    [22]朱慧,马瑞君,吴双桃等.干旱胁迫对五爪金龙种子萌发与幼苗生长的影响[J].西北植物学报,2009,29(2):0344-0349.
    [23]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10):5406-5416.
    [24]Karlsson BY P E, Medin E L, Wallin G, et al. Effects of ozone and drought stress on the physiology and growth of two clones of Norway spruce (Picea abies) [J]. New Phytol,1997,136:265-275.
    [25]Pergitzer K S, Dickmann D I, Hendrick R, et al. Whole tree carbon and nitrogen partitioning in young hybrid poplars[J]. Tree Physiol,1990,7:79-93.
    [26]Ibrahim L, Proe M F, Cameron A D. Interactive effects of nitrogen and water availabilities on gas exchange and whole plant carbon allocation in poplar[J], Tree Physiol,1998,18:481-487.
    [27]常红军,秦毓茜.干旱和盐胁迫对草地早熟禾草坪质量及其叶绿素荧光参数的影响[J].西北植物学报,2008,28(9):1850-1855.
    [28]Abraham E M, Huang B R, Bonos S A, et al. Evaluation of drought resistance for Texas bluegrass, Kentucky bluegrass, and their hybrids[J]. Crop Sci,2004,44: 1746-1753.
    [29]Wang Z L, Huang B R. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress[J]. Crop Sci,2004,44:1729-1736.
    [30]Gonzalez-Rodriguez A M, Martin-Olivera A, Morales D, et al. Physiological responses of tagasaste to a progressive drought in its native environment on the Canary Islands[J]. Environmental and Experimental Botany,2005,53(2):195-204.
    [31]Mokhtar G, Olfa B, Dalenda B. et al. Impacts of water stress on gas exchange, water relations, chlorophyll contents and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars[J]. Scientia Horticulturae,2009,119 (3): 257-263.
    [32]夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报, 1993,28(1):26-31.
    [33]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报,2000,29(1):35-39.
    [34]宋丽萍,蔡体久,喻晓丽.水分胁迫对刺五加幼苗光合生理特性的影响[J].中国水土保持科学,2007,5(2):91-95.
    [35]李文娆,张岁岐,山仑.水分胁迫和复水对紫花苜蓿幼苗叶绿素荧光特性的影响[J].草地学报,2007,15(2):129-136.
    [36]曹昀,王国祥.土壤水分含量对菖蒲(Acorus calamus)萌发及幼苗生长发育的影响[J].生态学报,2007,27(5):1748-1755.
    [37]程智慧,孟焕文,Stephen A R等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,30(6):93-96.
    [38]Liu P, Yang Y A. Effects of molybdenum and boron on membrane lipid peroxxdation and endogenous protective sytems of soybeenleaves[J]. Acta Botanica Sinica,2000,42(5):461-466.
    [39]Roden J S, Ball M C. The effect of elevated[CO~2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits[J]. Physiol Planta,1996,111,909-919.
    [40]杨晓光,于沪宁.夏玉米水分胁迫与反冲机制及其应用[J].生态农业研究,1999,7(3):27-31.
    [41]孔艳菊,孙明高,胡学俭等.干旱胁迫对黄栌幼苗几个生理指标的影响[J].中南林学院学报,2006,26(4):42-46.
    [42]Anderson J M, Karo E M. Grana stacking and protection of photosystemllin thylakoidmembranes of higher plant leaves under sustained high irradiance a hypothesis[J]. Photosynthesis Research,1994,41:315-326.
    [43]徐小牛.水分胁迫对三桠生理特性的影响[J].安徽农业大学学报,1995,l:42-47.
    [44]贾利强,李吉跃.水分胁迫对黄连木、清香木幼苗的影响[J].北京林业大学学报,2003,25(3):55-59.
    [45]樊卫国,刘国琴,何嵩涛等.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学,2002,(10):1243-1248.
    [46]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26(2):0266-0275.
    [47]詹妍妮,郁松林,陈培琴.果树水分胁迫反应研究进展[J].中国农学通报,2006(4):239-242.
    [48]张亚黎,罗宏海,张旺锋等.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J].植物生态学报,2008,32(3):681-689.
    [49]许丽颖,赫玉苹,王刚等.水分胁迫对紫叶李叶片色素含量与PAL活性的影响[J].吉林农业大学学报,2007,29(2):168-172.
    [50]Mathews-Roth M M. Carotenoids and photoprotection[J]. Photochem Photobiol, 1997,65S:148-151.
    [51]Demmig-adam S B, Adam S III W W. Xanthophyll cycle and light stress in nature uniform response to excess direct sunlight among higher plant species[J]. Planta, 1996,198:460-470.
    [52]Jiang Y W, Huang B R. Effects of drought or heat stress alone and in combination on Kentucky bluegrass [J]. Crop Sci,2000,40:1358-1362.
    [53]徐兴友,王子华,龙茹等.干旱对6种野生花卉光合色素含量与气体交换的影响[J].经济林研究,2008,26(4):1-6.
    [54]王瑞波.中国特有植物南川百合(Lilium rosthornii Diels)保护生物学研究:西南大学博士学位论文.重庆:西南大学,2009,157.
    [55]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:北京农业出版社,1993,168-183.
    [56]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1999,739-745.
    [57]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850-854.
    [58]蒲丹,李冠,李小飞等.糙草对水分胁迫的生理适应性研究[J].生物技术,2006,16(4):75-77.
    [59]王贺正,马均,李旭毅等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7)11379-1387.
    [60]石进校,易浪波,田艳英.干旱胁迫下淫羊藿总黄酮与保护酶活性[J].吉首大学学报(自然科学版),2004,25(4):80-83.
    [61]谷文众,刘杨,谷振军.干旱胁迫对金盏菊膜脂过氧化及保护酶活性的影响[J].经济林研究,2009,27(3):79-81.
    [62]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30(2):169-174.
    [63]夏新莉,郑彩霞,尹伟伦.土壤干旱胁迫对樟子松针叶膜脂过氧化膜脂成分和乙烯释放的影响[J].林业科学,2000,36(3):8-12.
    [64]张文辉,段宝利,周建云等.不同种源栓皮栎幼苗叶片水分关系和保护酶活性 对干旱胁迫的响应[J].植物生态学报,2004,28(4):483-490.
    [65]刘瑞香,杨劫,高丽.中国沙棘和俄罗斯沙棘在不同土壤水分条件下保护酶系统和丙二醛的变化[J].华北农学报,2006,21(2):87-90.
    [66]罗梦,郭春会,马小卫.水分胁迫对长柄扁桃叶片含水量及保护酶活性的影响[J].干旱地区农业研究,2006,24(6):103-106.
    [67]韩刚,党青,赵忠.干旱胁迫下沙生灌木花棒的抗氧化保护响应研究[J].西北植物学报,2008,28(5):1007-1013.
    [68]Sun C X, Sheng X Y, LiuZ G. Status and advancees in studies on the physicalogy and biochemistry mechanism of crop drought resistance[J]. Rain Fed Crops,2002, 22(5):285-288.
    [69]陈静,万佳,高晓玲等.水稻抗旱生理及抗旱相关基因的研究进展[J].中国农学通报,2006,(2):56-57.
    [70]胡小文,王彦荣,武艳培.荒漠草原植物抗旱生理生态学研究进展[J].草业学报,2004,13(3):7-15.
    [71]彭立新:李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业学报,2002,8(1):40-43.
    [72]刘红云,梁宗锁,刘淑明等.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J].西北林学院学报,2007,22(3):55-59.
    [73]刘世鹏,刘济明,陈宗礼等.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响[J].西北植物学报,2006,26(9):1781-1787.
    [74]赵黎芳,张金政,张启翔等.水分胁迫下扶芳藤幼苗保护酶活性和渗透调节物质的变化[J].植物研究,2003,23(4):437-442.
    [75]郑海燕,王燕凌,廖康等.土壤干旱胁迫对野生樱桃李叶片渗透调节物质的影响[J].新疆农业大学学报,2009,32(1):47-51.
    [76]束怀瑞.果树栽培生理学[M].北京:农业出版社,1993:118-135.
    [77]李天红,李绍华.水分胁迫对苹果苗非结构性碳水化合物组分及含量的影响[J].中国农学通报,2002,18(4):35-39.
    [78]Lith, Lishh. Leaf responses of micropropagated apple plant stowater stress: nonstructural carbohydrate compositi on and regulatory role of metabolic enzyme[J]. Tree Physiol,2005,2(5):495-504.
    [79]刘景辉,赵海超,任永峰等.土壤水分胁迫对燕麦叶片渗透调节物质含量的影响[J].西北植物学报,2009,29(7):1432-1436.
    [80]Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants: Balancing damage and protection[J]. Plant Physiol,2003,133:1420-1428.
    [81]Caldwell M M, Ballare C L, Bornman J F, et al. Terrestrial ecosystems, inereased solar ultraviolet radiation and interaetions with other climatic change factors[J]. Photochem Photobiol Sci,2003,2:29-38.
    [82]何丽莲,祖艳群,李元等.10个小麦品种对增强的UV-B辐射响应的生长生理差异及RAPD分析[J].农业环境科学学报,2005,(4):26-29.
    [83]陈章和,朱素琴,李韶山等.UV-B辐射对南亚热带森林木本植物幼苗生长的影响[J].云南植物研究,2000,22(4):467~474.
    [84]李延红,王生耀,王堃.UV-B辐射对三种常见高原牧草种子萌发及出苗的影响研究[J].草业与畜牧,2008,157(12):19-22.
    [85]冯虎元,安黎哲,谭玲玲等.UV-B辐射对植物花粉萌发率和花粉管生长的累积效应[J].应用生态学报,2002,13(7):814-818.
    [86]张富存,何雨红,郑有飞等.UV-B辐射增加对小麦的影响[J].南京气象学院学报,2003,26(4):545-547.
    [87]曾正明,况浩池,罗俊涛等.UV-B辐射增强对三系杂交水稻恢复系主要经济性状的影响[J].西南农业学报,2009,22(3):550-553.
    [88]袁彬,张文会,苗秀莲.紫外线B辐射增强对长春花幼苗的影响[J].聊城大学学报(自然科学版),2008,21(4):63-65.
    [89]Teramura A H, Sullivan J H, Lydon J. Eeffets of U-VB radiationon soybean yield and seed quality[J]. Physiol.Plant,1990,80:5-11.
    [90]周新明,张振文,惠竹梅等.UV-B辐射增强对葡萄光合作用日变化的影响[J].农,工程学报,2009,25(3):209-212.
    [91]张文会,孙传清,佐藤雅志等.紫外线(UV-B)照射对水稻产量及稻米蛋白质含量的影响[J].作物学报,2003,29(6):908-912.
    [92]侯扶江,李广,贲桂英.增强的UV-B辐射对黄瓜(Cucumis sativus)不同叶位叶片生长、光合作用和呼吸作用的影响[J].应用与环境生物学报,2001,7(4):321-326.
    [93]Vu C V, Allen L H, Garrard D L A. Effects if ebgabced UV-B radiation(280-320 nm)on ribulise-1,5-bisphos-phate carboxylase in pea and soybean[J]. Environ Exp Bot,1983,23:150-156.
    [94]侯扶江,责桂英等。U-VB辐射对大豆和黄瓜幼苗某些生理特性的影响[J].应用与环境生物学报,1999,5(5):45-50。
    [95]Murali N S, Teramura A H. Eeffcts of supplemental U-VB radiation on the growth and physiology of field grown soybean[J]. Environ ExP Bot,1986,6(3):233-237.
    [96]蔡恒江,唐学玺,张培玉等.UV-B辐射对孔石莼生长及其生理生化特征的影 响[J].科学技术与工程,2005,5(5):283-285.
    [97]姚银安,杨爱华,徐刚.日光紫外线B辐射对甜荞苯丙烷代谢的影响[J].热带亚热带植物学报,2009,17(2):152-155.
    [98]张文会,张朋,刘立科等.紫外线B辐射增强对大豆生长及光合作用相关指标的影响[J].大豆科学,2009,28(2):229-238.
    [99]张满效,陈拓,安黎哲等.UV-B和NO对胞壁蛋白的影响[J].兰州大学学报(自然科学版),2005,41(1):39-44.
    [100]王永志,姚银安,陈小荣等.干旱和紫外线辐射对刺梨叶片光合生理的影响[J].贵州农业科学,2009,37(6):36-38.
    [101]冯虎元,安黎哲,陈书燕等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1568.
    [102]贺军民,佘小平,刘成等.增强UV-B辐射和NaCl复合胁迫下绿豆光合作用的气孔和非气孔限制[J].植物生理与分子生物学学报,2004,30(1):53-58.
    [103]赵广琦,王勋陵,岳明等.增强UV-B辐射和C02复合作用对蚕豆幼苗生长和光合作用的影响[J].西北植物学报,2003,23(1):6-10.
    [104]王芳,姬茜茹,邱宗波等.不同玉米品种对增强UV-B辐射与干旱复合胁迫的生理响应[J].农业环境科学学报,2009,28(3):438-442.
    [105]胡正华,索福喜,赵晓莉等.UV-B辐射增加与酸雨复合处理对菠菜种子萌发和幼苗生长的影响[J].园艺园林科学,2005,21(6):284-285.
    [106]强维亚,陈拓,汤红官等.Cd胁迫和增强UV-B辐射对大豆根系分泌物的影响[J].植物生态学报,2003,27(3):293-298.
    [107]刘芸,钟章成,龙云等.NAA及UV-B辐射对栝楼幼苗生长及蒸腾作用的影响[J].植物生态学报,2003,27(4):454-458.
    [108]Laasko K, Sullivan J H, Huttunen S. The effects of UV-B radiation on epidermal anatomy in loblolly pine(Pinus taeda L.) and Scots pine (Pinus sylvestris L.)[J]. Plant Cell Envi-ron,2000,23:461-472.
    [109]王太霞,过治军,孙华等.芦荟蒽醌类物质对紫外线照射下洋葱和大蒜根尖细胞分裂的影响[J].北方园艺,2008,(12):62-64.
    [110]李景原,丁位华,王太霞等.外源芦荟蒽醌类物质对增强UV胁迫下菠菜生长发育的影响[J].西北植物学报,2008,28(7):1404-1409.
    [111]张新永,郭华春,戴华峰等.增强UV-B辐射对彩色马铃薯叶片中相关保护酶活性的影响[J].西北植物学报,2009,29(5):0867-0873.
    [112]Iolanda F, Josep P. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region [J]. Plant Ecol,1999,145:157-165.
    [113]Takayanagi S, Trunk J, Sutherland J C, et al. Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plantsgrown in a UV-free environment chamber [J]. Photochem Photobiol,1994,60:363-367.
    [114]Krizek D, Tgao W. Ultraviolet radiation and teerrstrial eeosystems[J]. photoehemistyr and photobiolog,2004,79(5):379-381.
    [115]Caldwell M M, Bjqrn L O, Bornman J F, et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems[J]. Journal of Photochemistry and Photobiology Biology,1998,46:40-52.
    [116]李元,岳明.2000.紫外辐射生态学[M].北京:环境科学出版社,1-257.
    [117]Mark U, Saile-Mark M, Tevini M. Eeffcts of solar U-VB radiation gorwth, flowering and yield of central and soulth European maize cultivasr (Zea mays L.)[J]. Photoehem Photobiol,1996,64(3):457-463.
    [118]彭少麟主篇.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.218-236.
    [119]吴征镒主编.西藏植物志(第一卷)[M].北京:科学出版社,1983.
    [120]周荣汉著.药用植物分类学[M].中国上海:上海科技出版社,1988,239-259.
    [121]林汝法主编.中国荞麦[M].北京:中国农业出版社,1994.
    [122]李安仁.中国植物志(蓼科)[M].北京:科学出版社,1998,25(1):108-117.
    [123]世界资源研究所等.全球生物多样性策略[M].北京:中国标准出版社,1993,5-7.
    [124]刘祖洞.遗传学(下)[M].北京:高等教育出版社,1991.
    [125]夏铭.生物多样性研究进展[J].东北农业大学学报,1999,30(1):94-100.
    [126]李俊清.植物遗传多样性保护及其分子生物学研究方法[J].生态学杂志,1994,13(6),27-33.
    [127]Solbrig O T. From genes to eeosystems a researeh agenda for biodiversity[J]. IUBS Paris,1991.
    [128]张以忠,陈庆富.荞麦属种质资源的谷草转氨酶同工酶研究[J].种子,2008,27(5):39-46.
    [129]张以忠,陈庆富.荞麦属植物三叶期幼叶酯酶同工酶研究[J].武汉植物学研究,2008,26(4):428-432。
    [130]张以忠,陈庆富.荞麦属植物三叶期幼叶过氧化物酶同工酶研究[J].武汉植物学研究,2008,26(2):213-217.
    [131]张以忠,陈庆富.几种荞麦的过氧化物酶同工酶研究[J].种子,2008,27(1): 17-19.
    [132]张以忠,陈庆富.荞麦属种质资源发芽种子过氧化物酶同工酶研究[J].广西植物,2008,28(4):553-557.
    [133]张以忠,陈庆富.多年生野生荞麦植株盛花期幼叶的酯酶同工酶研究[J].种子,2009,28(9):41-46.
    [134]张以忠,周真燕.荞麦淀粉酶同工酶研究[J].种子,2009,28(6):48-50.
    [135]赵佐成,周明德,王中仁等.中国苦荞麦及其近缘种的遗传多样性研究[J].遗传学报,2002,29(8):723-734.
    [136]Shevchuk T E, Gavrilyuk I P, Konarev V G. Immuno-chemical analysis of the affinities of the genus Fagopyrum and the species of some other genera of the family Polygonaceae[J], Bot Zh SSSR,1981,66:259-267.
    [137]Nikhil K, Chrungoo A. Genetic diversity in aceession soluble Protein extraeted from single seeds and RAPD based DNA fingerprinting[A].Proeeedlng of the 9th international Symposium on Buckwheat[C].2004,326-334.
    [138]Dvoraeek V, CePkova P, Miehalova A, et al. Seed storage Protein Polymorphism of buekwhea vanetie(Fagopyrum eseulentum; Fagopyrum tataricum)[A]. Proeeeding of the 9th international smposium on buekwheat[C].2004,412-418.
    [139]张宏志,管正学,刘湘元等.甜荞和苦荞染色体核型分析[J].内蒙古农业大学学报,2000,21(1):69-74.
    [140]赵佐成,周明德,罗定泽等.中国荞麦属果实形态特征[J].植物分类学报,2000,38(5):486-489.
    [141]陈庆富.五个中国荞麦(Fagopyrum)种的核型分析[J].广西植物,2001,21(2):107-110.
    [142]王健胜,柴岩,赵喜特等.中国荞麦栽培品种的核型比较分析[J].西北植物学报,2005,25(6):1114-1117.
    [143]刘建林,唐宇,邵继荣等.荞麦属2个野生荞麦种的染色体核型研究[J].西北植物学报,2009,29(9):1798-1803.
    [144]李淑久,张惠珍,袁庆军.四种荞麦生殖器官的形态学研究苦[J].贵州农业科学,1992,6:32-36.
    [145]赵丽娟,张宗文.用ISSR标记分析甜荞栽培品种的遗传多样性[J].安徽农业科学,2009,37(7):2878-2882.
    [146]王莉花,殷富有,刘继梅等.利用RAPD分析云南野生荞麦资源的多样性和亲缘关系[J].分子植物育种,2004,2(6):807-815.
    [147]Sharma T R, Jana S. Random amplified polymorphic DNA (RAPD) variation in Fagopyrum tataricum Gaertn accessions from China and the Himalayan region[J]. Euphytica,2002,127:327-333.
    [148]Sharma T R, Jana S. Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting[J]. TAG Theoretical and Applied Genetics,2002,105(2-3): 306-312.
    [149]Kump B, Javornik B. Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat(Fagopyrum tataricum Gaertn.) as revealed by RAPD markers[J]. Genetic Resources and Crop Evolution,2002,49(6): 565-572.
    [150]吴琦,曾子贤,邵继荣等.金荞麦内转录间隔区(ITS)的扩增及序列分析[J].草业学报,2007,16(5):127-132.
    [151]王安虎,夏明忠,蔡光泽.栽培苦荞麦的起源及其近缘种亲缘分析[J].西南农业学报,2008,21(2):282-285.
    [152]张艳,柴岩,冯佰利等,苦荞和甜荞查尔酮合成酶基因的克隆及序列比较[J].西北植物学报,2008,28(3):0447-0451.
    [153]Aii J, Nagano M, Penner G A, et al. Identification of RAPD markers linked to the homostylar (Ho) gene in buckwheat[J]. Japanese Society of Breeding,1998,48(1): 59-62.
    [154]田磊,徐丽珍,杨世林.金荞麦地上部分化学成分的研究[J].中国中药杂志,1997,22(12):743-745.
    [155]吴和珍,周洁云,潘宏林.金荞麦化学成分的研究[J].中国医院药学杂志,2008,28(21):1829-1831.
    [156]邵萌,杨跃辉,高慧媛等.金荞麦中的酚酸类成分[J].中国中药杂志,2005,30(20):1591-1593.
    [157]包塔娜,彭树林,周正质等.苦荞粉中的化学成分[J].天然产物研究与开发,2003,15(1):24-26.
    [158]孙博航,吴雅清,高慧媛等.苦荞麦的化学成分[J].沈阳药科大学学报,2008,25(7):541-543.
    [159]包塔娜,周正质,张帆等.苦荞麦麸皮的化学成分研究[J].天然产物研究与开发,2003,15(2):116-117.
    [160]汪嘉庆,王喆星,黄健等.苦荞麦种子的化学成分[J].沈阳药科大学学报,2009,26(4):270-274.
    [161]龚宁,陈庆富,李昌梅等.几种荞麦的抗氧化酶活性研究[J].广西植物,2006,26(1):88-91.
    [162]闫继平,王立波,李维等.金荞麦抗菌活性研究[J].中国现代中药,2006,8(6):21-23.
    [163]罗虹,刘鹏,徐根娣等.铝对荞麦和金荞麦根际土壤微生物及酶活性的影响[J].生态环境,2008,17(6):2381-2386.
    [164]陈晓锋.金荞麦体外抑制肿瘤细胞生长的研究[J].中西医结合学报,2003,1(2):128-131.
    [165]韩淑英,贾秀荣,喇万英.荞麦提取物对血脂及脂质过氧化产物丙二醛的影响[J].华北煤炭医学院学报,2002,4(3):282-253.
    [166]韩淑英,吕华,朱丽莎.荞麦种子总黄酮降血脂、血糖及抗脂质过氧化作用的研究[J].中国药理学通报,2002,17(6):694-696.
    [167]Dietryc, Szostak D. Effect of processing on flavonid contents in buckwheat grain[J]. Agri Food Chem,1999,47(10):4384-4387.
    [168]赵明和,何玲玲,李慧娟.靴靶荞食用药用研究[J].粮食与油脂,1995,(4):4-7.
    [169]张政.苦荞蛋白复合物的营养成分及其抗衰老作用的研究[J].营养学报,1999,21(2):159-162.
    [170]常庆涛,王书勤,王建如.浅析苦荞的营养价值与开发利用[J].安徽农业科学,2001,29(5):681-683.
    [1]武维华主编.植物生理学[M].北京:科学出版社,2003,440.
    [2]彭珂珊,徐宣斌,胡晋辉等.干旱是西部地区生态系统受损的关键因素[J].石家庄经济学院学报,2002,25(3):257-262.
    [3]汤章城.植物对水分胁迫的反应和适应性Ⅰ.抗逆性的一般概念和植物的抗涝性[J].植物生理学通讯,1983,(3):24-29.
    [4]Goodwin S M, Jenks M A. Plant cuticle function as a barrier to waterloss[M]. In: Jenks M A, Hasegawa P M eds. Plant Abiotic Stress. Oxford, UK:Blackwell Publishing, Inc.2005.14-32.
    [5]LI C. Population differences in water-use efficiency of Eucalyptus microtheca seedlings under different watering regimes[J]. Physiol Plant,2000,108:134-139.
    [6]许大全,张玉忠.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [7]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报,1988,14(3):217-222.
    [8]Huber W, Sankhla N. C4 pathway and regulation of balance between C4 and C3 metabolism[J]. Water and Plant Life. Springer-verlag,1976,15:335-363.
    [9]王霞,侯平,尹林克等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J].干旱区研究,2002,19(3):17-20.
    [10]周青,黄晓华,马育国等.紫外辐射胁迫对小麦生长的影响[J].农业环境保护,2001,20(2):94-96.
    [11]冯虎元;陈拓,徐时健等.UV-B辐射对大豆生长、产量和稳定碳同位素组成的影响[J].植物学报,2001,43(7):709-713.
    [12]王忠.植物生理学报[M].北京:中国农业出版社,2000:128-131.
    [13]侯扶江,郑文菊.紫外线-B辐射与3种植物幼苗的光合作用---光合作用对紫外线-B敏感性的比较[J].西北植物学报,2000,20(2):218-223.
    [14]李元,王勋陵,胡之德.增强的UV-B辐射对麦田生态系统Mg和Zn累积和循环的影响[J].生态学杂志,2001,20(1):26-29.
    [15]张新永,郭华春,戴华峰.增强UV-B辐射对彩色马铃薯叶片中相关保护酶活性的影响.西北植物学报,2009,29(5):0867-0873.
    [16]Petropoulou Y, Kyparissis A, Nikolopoulos D et al. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiol Plant,1995,94:37-44.
    [17]Caldwell M M, Bjorn L O, Bornman J F et al. Effects of increased solar ultraviolet radiation on terrresstrial ecosystems. J Photochem Photobiol B:Biol,1998,46: 40-52.
    [18]Li A J, Hong S-P. Flora of China (Vol5) [M].
    [19]潘宏林,林静.金荞麦的生药学研究[J].中药材,2006,29(1):14-15.
    [20]冯黎莎,陈放,白洁.金荞麦的抑菌活性研究[J].武汉植物学研究,2006,24(3):240-244.
    [21]舒成仁,付志荣.金荞麦提取物药理作用的研究进展[J].医学导报,2006,25(4):328-329.
    [1]IPCC. Climate Change: The Scientific Basis. In Contribution of Working Group I. Third Assessment Report of Intergovermental Panel on Climate Change eds. Hougton J T, Dung Y, Griggs D J, Noguer M, Van der Linden P J, Dui X, Maskell K, Johson C A. Cambridge: Cambridge University Press, 2007.
    [2]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,28(6):803-809.
    [3]刘长利,王文全,魏胜利.干旱胁迫对甘草各营养器官生物量及分配的影响[J].中药材,'2005,28(1):7-8.
    [4]单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报,2006,26(2):1 27-1 29.
    [5]苏丹,孙国峰,张金政等.水分胁迫对费菜和长药八宝生长及生物量分配的影响[J].园艺学报,2007,34(5):1317-1320
    [6]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10):5407-5416.
    [7]常君,姚小华,杨水平等.水分胁迫对美国山核桃苗木生长的影响[J].林业科学研究,2009,22(1):134-138.
    [8]金不换,陈雅君,吴艳华等.早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应[J].草地学报,2009,17(6):813-816.
    [9]S醤chez-Coronado M E, Coates R, Castro-Colina L, et al. Improving seed germination and seedling growth of Omphalea oleifera (Euphorbiaceae) for restoratiosn projects in tropical rain forests[J]. Forest Ecology and Management, 2007,243(1): 144-155.
    [10]Guo W, Li B, Zhang X, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress[J]. Journal of Arid Environment, 2007,69 (3): 385-399.
    [11]Liu F, St黷zel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress[J]. Science Horticultural, 2004,102: 15-27.
    [12]李元,王勋陵.UV-B辐射对田间春小麦生物量和产量的影响[J].农村生态环境,1999,15(2):28-31.
    [13]陈章和,朱素琴,李韶等.UV-B辐射对南亚热带森林木本植物幼苗生长的影响[J].云南植物研究,2000,22(4):467—474.
    [14]祖艳群,李元,王勋陵.增强的UV-B辐射对麦田生态系统能量累积和流动的影 响[J].西北植物学报,2000,20(3):387-391.
    [15]冯虎元,陈拓,徐世健等.UV-B辐射对大豆生长、产量和稳定碳同位素组成的 影响[J].植物学报,2001,43(7):709-713.
    [16]薛慧君,王勋陵,岳明.增强紫外-B对反枝苋的形态、生理及异速生长的影响 [J].西北植物学报,2003,23(5):783-787.
    [17]朱玉安.增强紫外B(UV-B)辐射对植物生长发育和光合作用的影响[J].陕西农 业科学,2007,(4):113-116.
    [18]王生耀,王堃,赵永来等.干旱和UV-B对两种牧草生长和抗氧化系统的影响[J]. 草地学报,2008,16(4):392-402.
    [19]Bjorn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystem[J]. Intern Environ Studies, 1996, 51: 217-243.
    [20]Caldwell M M, Bjorn L O, Bornman J F, et al. Effects of increased solar ultraviolet radiation on terrresstrial ecosystems [J]. Photochem Photobiol Biol, 1998,46:40-52.
    [21]Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81: 1925-1936.
    [22]Neumann P M. The role of cell wall adjustment in plant resistance to water deficits[J]. Crop Sci, 1995,35: 1258-1266.
    [23]Li C. Population differences in water-use efficiency of Eucalyptus microtheca seedlings under different watering regimes[J]. Physiol Plant, 2000,108: 134-139.
    [24]Zhang X L, Zang R G, Li C Y. Population differences in physiologica land morphological adap tations of Populus davidiana seedlings in response to progressive drought stress[J]. Plant Sci, 2004, 166: 791-797.
    [25]Zhang X, Wu N, Li C Y. Physiological and growth responses of Populus davidiana ecotypes to different soilwater contents[J]. A rid Environ, 2005, 60; 567-579.
    [26]王翔,尹春英,李春阳.干旱胁迫对青海杨不同种群的影响[J].应用与环境生 物学报,2006,1 2(4):496-499.
    [27]Dai Q J. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation[J]. Environmental and Experimental Botany, 1994, 34: 433-442.
    [28]郑有飞,杨志敏,颜景义等.谷物对增强紫外辐射的响应及其评价[J].应用生态学报,1996,7(1):107-109.
    [29]侯扶江,贲贵英,颜景义等.增强紫外辐射对田间大豆生长和光合作用的影响[J].植物生态学报,1998,22(3):256-261.
    [30]Teramura A H. Effects of ultraviolet-B radiation on the growth and yield of crop??plants[J]. Physiol Plant, 1983,58:415-427.
    [31]安黎哲,冯虎元,王勋陵.增强UV-B辐射对某些谷物生长的影响[J].生态学报, 2001,21(2):249-253.
    [32]Teramura A H. Implications of strato sphericozone depletion upon plant production[J]. Hort Science, 1990,25: 1557-1560.
    [33]张磊,王连喜,张晓煜等.UV-B增强对中高海拔干旱半干旱地区春小麦植株形态的影响[J].干旱地区农业研究,2007,25(2):80-85.
    [34]Petropoulou Y, Kyparissis A, Nikolopoulos D, et al. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions[J]. Physiol Plant, 1995,94: 37-44.
    [35]Strand J A, Weisner S E B. Phenotypic plasticity contrasting species specific traits induced by identical environmental constraints[J]. New Phytologist, 2004, 163:449-451.
    [1]Ormrod D P, Lesser V M, Olazyk D M, et al. Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in dougas-fir seedlings [J]. Int plant Sci,1999,160(3): 529-534.
    [2]Wu F Z, Bao W K, Li F L, et al. Effects of drought stress and N supply on the growth, biomass partitioning and water use efficiency of Sophora davidii seedlings[J].Environmental and Experimental Botany, 2008, 63:248-255.
    [3]Gratani L, Varone L. Leaf key traits of Erica arborea L., Erica multiflora L.and Rosm arinus officinalis L. CO~2 occurring in the Mediterranean maquis[J]. Flora, 2004,199: 58-69.
    [4]朱志梅,杨持.草原沙漠化过程中植物的耐胁迫类型研究[J].生态学报,2004,24(6):1093-1100.
    [5]孙景宽,张文辉,陆兆华等.干旱胁迫下沙枣和孩儿拳头叶绿素荧光特性研究[J].植物研究,2009,29(2):216-223.
    [6]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10):5406-5416.
    [7]Jeon M W, AH M B, Hahn E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during exvitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature [J]. Environmental and Experimental Botany, 2006,55:183-194.
    [8]Roden J S, Ball MC. The effect of elevated [CO~2] on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits [J].Physiol.Planta, 1996, 111: 909-919.
    [9]Rigoberto R S, Josue K S, Jorge A A G, et al. Biomass distribution, maturity acceleratiosn and yield in drought-stressed common bean cultivars[J], Field Crops Research, 2004, 85: 203-211.
    [10]张明生,谈峰.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001,4:23-25.
    [11]贾国梅,张红燕,韩京成等.土壤含水量对狗牙根叶片生理生态指标的影响[J].水土保持研究,2009,16(5):199-202.
    [12]马红群,洪鸿,周忆堂等.NariSO_3对UV-B辐射增强下菠菜幼苗光合作用的影响[J].园艺学报,2009,36(3):369-376.
    [13]侯扶江,贲桂英,颜景义等.田间增加紫外线(UV)辐射对大豆幼苗生长和光合??作用的影响[J].植物生态学报,1998,22(3):256-261.
    [14]陈章和,朱素琴,李韶山等.UV-B辐射对南亚热带森林木本植物幼苗生长的影响[J].云南植物研究,2000,22(4):467-474.
    [15]祖艳群,李元,高召华等.UV-B辐射对仙客来的生理效应[J].武汉植物学研究,2007,25(2):209-212.
    [16]冯虎元,安黎哲,陈书燕等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1568.
    [17]白宝璋,史国安,赵景阳等.植物生理学实验教程[M].北京:中国农业科技出版社,2001:15-80.
    [18]Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000,81:1925-1936.
    [19]任安芝,高玉葆,王巍等.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响[J].生态学报第,2005,25(2):225-231.
    [20]宋丽萍,蔡体久,喻晓丽.水分胁迫对刺五加幼苗光合生理特性的影响[J].中国水土保持科学,2007,5(2):91-95.
    [21]常红军,秦毓茜.干旱和盐胁迫对草地早熟禾草坪质量及其叶绿素荧光参数的影响[J].西北植物学报,2008,28(9):1850-1855.
    [22]徐兴友,王子华,龙茹等.干旱对6种野生花卉光合色素含量与气体交换的影响[J].经济林研究,2008,26(4):1-6.
    [23]李玉灵,朱帆,王俊刚等.水分胁迫下臭柏(Sabina vulgaris Ant.)光合特性和色素组成的季节变化[J].生态学报,2009,29(8):4346-4352.
    [24]胡梦芸,李辉,张颖君等.水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响[J].作物学报,2009,35(4):724-732.
    [25]Mokhtar Guerfel, Olfa Baccouri, Dalenda Boujnah, et al. Impacts of water stress on gas exchange, water relations, chlorophyll contents and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars[J]. Scientia Horticulturae, 2008,119(3): 257-263.
    [26]Efeoglu B, Ekmekciand Y, Cicek N, Physiological responses of three maize cultivars to drought stress[J]. South African Journal of Botany, 2008,75(1): 34-42.
    [27]杨晓光,于沪宁.夏玉米水分胁迫与反冲机制及其应用[J].生态农业研究,1999,7(3):27-31.
    [28]王建伟,周凌云.土壤水分变化对金银花叶片生理生态特征的影响[J].土壤,2007,39(3):479—482.
    [29]聂磊,刘鸿先,彭少麟.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响??[J].植物资源与环境学报,2001,10(3):19-24.
    [30]Vavilin D, Vermaas W. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria[J]. Proceedings of the National Academy of Science, 2001,98 (24): 14168-14173.
    [31]Ohtsuka T, Ito H, Tanaka A. Conversion of Chlorophyll b to Chlorophyll a and the Assembly of Chlorophyll with Apoproteins by Isolated Chlorop lasts[J]. Plant Physiology, 1997,113 (1): 137 -147.
    [32]Anderson J M, Kara E M. Grana stacking and protection of photosystemIIin thylakoid membranes of higher plant leaves under sustained high irradiance a hypothesis[J]. Photosy nthesis Research, 1994,41: 315- 326.
    [33]何军,许兴,李树华等.叶绿素荧光的影响[J].西北植物学报,2004,24(9):1594-1598.
    [34]童方平,方伟,马履一等.水分胁迫下湿地松优良半同胞家系光合色素的响应[J].中国农学通报,2006,22(11):97-102.
    [35]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26:0266-0275.
    [36]张亚黎,罗宏海,张旺锋等.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J].植物生态学报,2008,32(3):681-689.
    [37]Mathews-Roth M M. Carotenoids and photoprotection[J]. Photochem Photobiol, 1997,65S: 148-151.
    [38]许丽颖,赫玉苹,王刚等.水分胁迫对紫叶李叶片色素含量与PAL活性的影响[J].吉林农业大学学报,2007,29(2):168—172.
    [39]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:北京农业出版社,1993,168—183.
    [40]李艳秋,夏新莉,尹伟伦.水分胁迫对4种草坪草光合色素及叶绿素荧光参数的影响[J].河南农业科学,2007,(1):69-76.
    [41]陈思嘉,陈填烽,杨芳等.水分胁迫对钝顶螺旋藻光合色素和生长的影响[J].暨南大学学报(自然科学版),2005,26(5):705-711.
    [42]Kyparissis A, Manetas Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub: ecophysiological comparisons between winter and summer leaves[J]. Acta Oecologica, 1993,14(1): 23-32.
    [1]Jonaliza C L, Grenggrai P, Boonrat J, et al. Quantitative trait lociassociated with drought tolerance at reproductive stage in rice[J]. Plant Physiology,2004,135: 384-399.
    [2]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture [J]. Journal of Experimental Botany, 2004,55:2365-2384.
    [3]Mishra N P, Mishra R K, Singhal G S. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J]. Plant Physiol,1993, 102:903-908.
    [4]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性和脂质过氧化作用的影响[J].生态学报,1999,19(6):850-854.
    [5]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507.
    [6]孙国荣,彭永臻,阎秀峰等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165-167.
    [7]张文辉,.段宝利,周建云等.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应[J].植物生态学报,2004,28(4):483-490.
    [8]陈少瑜,郎南军,贾利强等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响[J].植物研究,2006,26(1):88-92.
    [9]邹春静,徐文铎,靳牡丹等.干旱胁迫对沙地云杉生态型保护酶活性的影响[J]干旱区研究,2007,24(6):810-814.
    [10]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144-150.
    [11]张木清,余松烈.水分胁迫下蔗叶活性氧代谢的数学分析[J].作物学报,1996,22(6):729-735.
    [12]毕会涛,黄付强,邱林等.干旱胁迫对灰枣保护性酶活性及膜脂过氧化的影响[J].中国农学通报,2007,23(2):151-155.
    [13]谢亚军,王兵,梁新华等.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响[J].农业科学研究,2008,29(4):19-22.
    [14]Murphy T M. Effects of broad-band ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose cells[J]. Physiol. Plant,1990,80:63-78.
    [15]Takeuchi Y, Kubo H, Kasahara H;. et al. Adaptive alteratiosns in the actives of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B[J]. physiol,1996,147:589-592.
    [16]晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):375-378.
    [17]Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physio,1996, 110(1):125-136.
    [18]Santos I, Fidalgo F, Almeida J M. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation[J]. Plant Sci, 2004,167(4):925-935.
    [19]聂磊,刘鸿先,彭少麟.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响[J].植物资源与环境学报,2001,10(3):19-24.
    [20]冯虎元,安黎哲,陈书燕等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1568.
    [21]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社.1990.
    [22]李兰芳,张魁,吴树勋等.不同生长期白羊草中总黄酮的含量测定[J].中国野生植物资源,1996,23(4):37-39.
    [23]马书荣,曲笑岩,祖元刚.温室内长春花总黄酮含量的动态变化研究[J].植物研究,2006,26(2):211-215.
    [24]中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社.1999.
    [25]Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology,2000,81:1925-1936.
    [26]张峰,杨颖丽,何文亮等.水分胁迫及复水过程中小麦抗氧化酶的变化[J].西北植物学报,2004,24(2):205-209.
    [27]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [28]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理与分子生物学学报,1991,17(2):177-182.
    [29]Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant[J]. Physiology and Plant Molecular Biology,1992,43: 83-116.
    [30]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B radition on the growth and composition of plants[J]. Plant Physiol,1981,50:479-487.
    [31]郑学钦.用化学发光法检测芦丁等物质清除超氧阴离子活性氧的作用[J].中国药学杂志,1997,32(3):140-142.
    [32]张英,吴晓琴,丁霄霖等.黄酮类化合物结构与清除活性氧自由基效能关系的研究[J].天然产物研究与开发,1998,10(4):26-33.
    [33]谢毛成,丁家宜,李刚.光果甘草与乌拉尔甘草清除活性氧能力的比较[J].植物资源与环境学报,2003,12(1):29-31.
    [34]方兴,钟章成,闫明等.增强UV-B辐射与不同水平氮素对谷子(Setaria italica (L.)Beauv.)叶片保护物质及保护酶的影响[J].生态学报,2008,28(1):284-291.
    [35]Vinson J A, Hao Y, Su X H, et al. Phenol antioxidant quantity and quality in foods: vegetables[J]. Journal of Agriculture and Food Chemistry,1999,46:3630-3634.
    [36]Nicholas S S, Quinton J C. Hydroxyl radical scav enging activity of compatible solutes[J]. Phytochemistry,1989,28:1057-1060.
    [37]Zhao F Y, Guo S L, Wang Z L, et al. Recent advances in study on transgenic plants for salt tolerance[J]. Journal of Plant physiology and molecular Biology,2003,29: 171-178.
    [38]朱俊刚,王曙光,李晓燕等.PEG胁迫对六倍体小黑麦幼苗SOD、POD活性及MDA含量的影响[J].中国农学通报,2009,25(18):202-204.
    [39]周虹,范巧佳,郑顺林等.春季水分胁迫对川芍叶片相对含水量及保护酶活性的影响[J].中国中药杂志,2009,34(2):132-137.
    [40]任迎虹.干旱胁迫对不同桑品种保护酶和桑树生理的影响研究[J].西南大学学报(自然科学版),2009,31(4):94-99.
    [41]何操,尹丽,胡庭兴等.干旱胁迫对麻疯树幼苗抗氧化代谢的影响[J].四川林业科技,2009,30(5):16-21.
    [42]巩巧玲,冯佰利,高金锋等.干旱胁迫对荞麦幼苗活性氧代谢的影响[J].华北农学报,2009,24(4):153-157.
    [43]蔡娜,淡荣,陈鹏.水分胁迫对苦荞幼苗黄酮类物质含量的影响[J].西北农业学报,2008,17(4):91-93.
    [44]杨云富,郭巧生,张守栋等.水分胁迫对药用白菊花抗干旱生理及药材内在品质的影响[J].中国中药杂志,2009,34(4):486-487.
    [45]张新永,郭华春,戴华峰.增强UV-B辐射对彩色马铃薯叶片中相关保护酶活性的影响[J].西北植物学报,2009,29(5):0867-0873.
    [46]吴杏春,林文雄,郭玉春等.UV-B辐射增强对水稻叶片抗氧化系统的影响[J].福建农业学报,2001,16(3):51-55.
    [47]强维亚,陈拓,王勋陵等.镉和增强紫外线UV-B辐射复合作用对大豆生长的影响[J].应用生态学报,2004,15(4):697-700.
    [48]刘芸,钟章成,Werger M J A等.α-NAA和UV-B辐射对栝楼幼苗光合色素及保护酶活性的影响[J].生态学报,2003,23(1):8-13.
    [49]古今,陈宗瑜,訾先能等.植物酶系统对UV-B辐射的响应机制[J].生态学杂志,2006,25(10):1269-1274.
    [50]Pastori G M, Trippi V S. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maizes strain[J]. Plant Cell Physiol,1992,33(7): 957-961.
    [51]Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants[J]. Physiol plant,1994,92(4):696-717.
    [52]Jagtap V, Bhargava S. Variation in the antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. exposed to high light,Low water and high temperature stress[J]. Physiol plant,1995,145(2): 195-197.
    [53]王芳,姬茜茹,邱宗波等.不同玉米品种对增强UV-B辐射与干旱复合胁迫的生理响应[J].农业环境科学学报,2009,28(3):438-442.
    [54]王生耀,王堃,赵永来等.干旱和UV-B对两种牧草生长和抗氧化系统的影响[J].草地学报,2008,16(4):392-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700