用户名: 密码: 验证码:
基于镍钴锰前驱体的锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前锂离子电池正极材料LiCoO2仍在市场中占据主导地位,但由于其自身缺陷及资源限制,在市场竞争中迫切需要开发一种新的正极材料,而三元复合LiNi1/3Co1/3Mn1/3O2基于自身性能优势及与LiCoO2结构相似性成为最有可能的LiCoO2替代品。作者在详细评述LiNi1/3Co1/3O2正极材料的结构、电化学性能、制备工艺及其发展方向的基础上,以提高电化学性能为目标,研究了基于镍钴锰前驱体采用高温固相反应法制备LiNi1/3Co1/3O2正极材料的新工艺,并对其进行了体相掺杂和表面包覆改性研究。本论文主要叙述如下研究内容。
     首先,论述了共沉淀法合成前驱体的理论基础。根据同时平衡原理和质量守恒定律推导Ni(Ⅱ)-Co(Ⅱ)-Mn(Ⅱ)-NH4+-NH3-C2O42--H2O系和Ni(Ⅱ)-Co(Ⅱ)-Mn(Ⅱ)-NH4+-NH3-H2O系的热力学平衡数学模型,绘制出相关金属的log[Me]T-pH图,研究了溶液中总草酸根浓度、总氨浓度和pH值对该平衡体系的影响,探讨了镍、钴、锰草酸盐和氢氧化物的共沉淀机理。在此基础上,根据热力学平衡模拟结果,以镍、钴、锰硫酸盐、草酸和氨水为原料,采用正向加料方式,液相共沉淀法合成了组分精确、形貌单一、粒径分布均匀的Ni1/3Co1/3Mn1/3C2 O4·2H2O前驱体。采用控制结晶法,利用NH3与Ni2+、Co2+和Mn2+离子配合作用,合成了球形Ni1/3Co1/3Mn1/3(OH)2前驱体;研究还发现,通过添加抗氧化剂A,能解决氢氧化物共沉淀反应过程中Mn2+氧化致使产物化学组分偏析的难题,有效抑制Mn2+离子的氧化,实现镍钴锰复合共沉淀。
     其次,以优化条件下合成的镍钴锰草酸盐前驱体和LiOH·H2O为原料,采用高温固相反应制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,详细考察了前驱体预处理、合成时间、烧结温度、锂金属摩尔比、空气流量等条件对正极材料性能的影响,获得了最佳工艺条件。对制备的LiNi1/3Co1/3Mn1/3O2正极材料进行电化学性能检测,在0.1C、2.75V-4.3V下充放电,材料的首次放电比容量达168.8mAh/g,20次循环后容量保持率为95.4%,在2.75V-4.4V、4.5V、4.6V、4.8V下首次放电比容量分别为176.1mAh/g、189.1mAh/g、200.8 mAh/g和223.6mAh/g;在1C和2C、2.75V-4.3V下的首次放电比容量则分别为124.8mAh/g和104.6mAh/g。而以Ni1/3Co1/3 Mn1/3(OH)2前驱体与锂盐为原料,采用相同方法合成的正极材料,在0.1C、2.75V-4.3V下的首次放电比容量为163.4 mAh/g。
     再次,采用草酸盐共沉淀法制备了Ti4+、Mg2+离子掺杂的LiNi1/3 Co1/3-XMn1/3TixO2、LiNi1/3Co1/3-xMn1/3MgxO2正极材料,考察了Ti4+、Mg2+离子体相掺杂对LiNi1/3Co1/3Mn1/3O2正极材料电化学性能的影响。经XRD和SEM检测表明,Ti4+、Mg2+离子掺杂量x=0.01-0.1时未改变正极材料结构和形貌,而电化学测试结果表明当掺杂量x=0.025时提高了正极材料的高倍率充放电性能,尤以掺杂钛为佳。在2.75V-4.3V电压区间、1C充放电时,LiNi1/3Co1/3-0.025Mn1/3Ti0.025O2和Li Ni1/3 Co1/3-0.025Mn1/3Mg0.025O2首次放电容量分别为140.3mAh/g和129.7 mAh/g,100次循环后的容量保持率分别为92.5%和91.1%;2C充放电时,两者的首次放电容量则分别为126.9mAh/g和114.8 mAh/g,经100次循环后容量保持率分别为90.8%和88.3%。利用恒电位阶跃法研究了Li-在正极材料中的扩散系数发现,嵌锂电位为3.7V时,LiNi1/3Co1/3 Mn1/3O2中锂离子扩散系数为2.63×10-11cm2/s,LiNi1/3Co1/3-xMn1/3TixO2中为3.27×10-10cm2/s,LiNi1/3Co1/3-xMn1/3MgxO2中为7.63×10-11cm2/s。结果表明Ti4+、Mg2+离子掺杂可提高锂离子在材料中的扩散系数。
     最后,首次研究低热固相化学反应法对LiNi1/3Co1/3Mn1/3O2表面SnO2包覆。该法是一种工艺简单、行之有效的正极材料表面包覆改性方法。研究确定SnO2包覆量以3wt%为最佳,经TEM、XPS检测分析证实,包覆后在正极材料表面形成了约20nm厚的均匀包覆层。在0.1C、2.75V-4.6V下,3wt%SnO2包覆LiNi1/3Co1/3Mn1/3O2正极材料的首次放电比容量为188.6mAh/g,30次循环后容量保持率为88.17%。采用交流阻抗法对LiNi1/3Co1/3Mn1/3O2正极材料界面反应特性进行研究发现,充放电循环过程中电池容量衰减与电荷传输电阻(Rct)增大有关, SnO2包覆后Rct显著降低,由此提出了LiNi1/3Co1/3Mn1/3O2正极材料包覆改性的机理模型。
At present LiCoO2 still dominates the lithium-ion battery cathode material market, but due to its own shortcomings and resource constraints, there is an urgent need to develop a new cathode material in the market competition. Ternary complex LiNi1/3Co1/3Mn1/3O2is the best alternative with LiCoO2 cathode material due to its excellent electrochemical properties and similar structure to that of LiCoO2. The structure, electrochemical performance, preparation technology and developing trends of LiNi1/3Co1/3Mn1/3O2 cathode material were described by author. LiNi1/3Co1/3Mn1/3O2 based on Ni-Co-Mn precursor was prepared by solid-state reaction at high temperature, followed with ion-doping and surface coating to improve its electrochemical performance. The contents of this study were described in this dissertation.
     First of all, theoretical basis for co-precipitation synthesis of Ni-Co-Mn precursor was discussed. According to the principle of simultaneity balance and mass conservation, the mathematic model of thermodynamic equilibrium for the system of Ni(Ⅱ)-Co(Ⅱ)-Mn(Ⅱ)-NH4+-NH3-C2O42--H2O and Ni(Ⅱ)-Co(Ⅱ)-Mn(Ⅱ)-NH4+-NH3-H2O has been built, respectively. The log[Me]T-pH diagram of the related metal ion was drawn, and effect of total oxalate concentration, total ammonia concentration and pH value on the co-precipitation of Ni, Co, Mn oxalate and hydroxide was investigated, respectively. Using oxalic acid and stoichiometric mixed solution of NiSO4, CoSO4 and MnSO4 as starting materials, triple oxalate precursor of nickel, cobalt, and manganese with homo-morphology and uniform particle size distribution was synthesized with liquid-phase co-precipitation method. The obtained oxalate precursor was characterized by chemical element analysis, XRD and DSC-TGA, respectively, and the molecular formula of precursor was determined as Ni1/3Co1/3Mn1/3C2O4·2H2O. In order to prevent oxidation of Mn2+ ion, anti-oxidative agent was added during co-precipitation. As a result, Ni2+, Co2+, and Mn2+ were co-precipitated with stoichiometric ratio.
     And Secondly, the mixtures of oxalate precursor and LiOH·H2O was used as raw materials to prepare layered LiNi1/3Co1/3Mn1/3O2 cathode material by solid-state reaction at high temperature. Effect of precursor pre-treatment, reaction time, sintering temperature, the molar ratio of lithium to metal and air flow on the properties of obtained cathode material was investigated in detail. The results of electrochemical performance tests show that the first discharge specific capacity of LiNi1/3Co1/3Mn1/3O2 obtained under optimum conditions can reach 168.8mAh/g at 0.1C in voltages of 2.75V-4.3V, and the capacity maintenance rate is 95.4% after 20 charge-discharge circles. In voltages of 2.75V-4.4V,4.5V,4.6V or 4.8V, the first discharge specific capacity of obtained cathode material is 176.1mAh/g,189.1mAh/g,200.8mAh/g or 223.6mAh/g, respectively. At 1C and 2C, the first discharge specific capacity is 124.8mAh/g and 104.6mAh/g, respectively in voltages of 2.75V-4.3V. Using Ni1/3Co1/3Mn1/3(OH)2 precursor and LiOH·H2O as starting material, LiNi1/3Co1/3Mn1/3O2 was prepared with solid-state reaction method, and in voltages of 2.75V-4.3V its first discharge specific capacity is 163.4mAh/g at 0.1C.
     Once again, LiNi1/3Co1/3-xMn1/3TixO2 and LiNi1/3Co1/3-xMn1/3MgxO2 were synthesized with oxalate co-precipitation method. Effect of Ti4+ Mg2+ ion-doping on the electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material was investigated. The results show that x=0.01-1amount of Ti4+ or Mg2+ ion-doping has little influence on the crystal structure and morphology of obtained sample. The charge-discharge performance at high rate is improved when the doping amount x=0.025, especially in titanium-doped battery. At 1C, the first discharge capacity of LiNi1/3Co1/3-0.025Mn1/3Ti0.025O2 and LiNi1/3Co1/3-0.025Mn1/3Mg0.025O2 is 140.3mAh/g and 129.7mAh/g, respectively, and the capacity maintenance rate is 92.5% and 91.1% after 100 charge-discharge cycles. At 2C, the first discharge capacity is decreased to 126.9mAh/g and 114.8mAh/g, respectively, and the capacity maintenance rate is 90.8% and 88.3% after 100 charge-discharge cycles. The influence of Ti4+ or Mg2+ ion-doping on the diffusion coefficient of Li+ was studied with constant potential step method. It was found that the diffusion coefficient of lithium-ion was increased after Ti4+, Mg2+ ion-doping. When the lithium potential was 3.7V, lithium-ion diffusion coefficient of un-doped sample was 2.63x10-11cm2/s. After Ti4+ and Mg2+ ion-doping, the lithium-ion diffusion coefficient was enhanced to 3.27×10-10 cm2/s and 7.63×10-11 cm2/s, respectively.
     Finally, the LiNi1/3Co1/3Mn1/3O2 cathode material coated with SnO2 film was firstly prepared with low-heating solid-state reaction method. It is shown this method is a kind of simple and effective method for cathode material coated modification. The results show that a uniform 20nm thick coating layer formed on the surface of cathode material was confirmed by TEM and XPS when SnO2-coated amount of 3wt%. At 0.1C, the first discharge capacity is 188.6mAh/g in voltages of 2.75V-4.6V, and the capacity maintenance rate is 88.17%after 30 charge-discharge cycles. AC impedance method was adopted to study the interfacial reaction characteristics of LiNi1/3Co1/3Mn1/3O2 cathode material. The results show that the battery capacity decays during charge-discharge cycle due to charge-transfer resistance (Rct) increasing, and Rct significantly decreases after SnO2-coating. Therefore, the mechanism model of LiNi1/3Co1/3 Mn1/3O2 cathode material coating modification was proposed.
引文
[1]张文保,倪生麟.化学电源导论[M].上海:上海交通大学出版社,1992.1-7
    [2]郭炳昆,徐辉,王先友,等.锂离子电池[M].长沙,中南大学出版社,2002.17-38,145-156
    [3]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000.1-143
    [4]T. Ohzuku, R. Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. J. Power Sources,2007,174(2):449-456
    [5]R. Koksbang, J. Barker, H. Shi, et al. Cathode materials for lithium rocking chair batteries[J]. Solide State Ionics,1996,84(1-2):1-21
    [6]S. Bruno. Recent advances in lithium ion battery materials[J]. Electrochemica Acta,2000,45(8):2461-2466
    [7]P. Poizot, S. Laruelle, S. Grugeon,et al. Nano-sized transition metal oxides as negative electrode materials for lithium ion batteries[J]. Nature,2000,407(2): 496-499
    [8]M.Winter, J. O. Besenhardl. Insertion electrode materials for recharged lithium batteries[J]. Advanced Mater,1998,10:742-746
    [9]J. Akimoto, Y. Gotoh, Y. Oosawa. Synthesis and structure refinement of LiCoO2 single crystals[J]. J. Solid State Chemistry,1998,141:298-302
    [10]J. M. Paulsen, J. R. Muller-Nehaus, J. R. Dahn. Layered LiCoO2 with a different oxygen stacking(O2 structure) as a cathode material for rechargeable lithium batteries[J]. J.Electrochem Soc,2000,147(2):508-516
    [11]E. D. Jeong, M. S. Won. Cathode properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction[J]. J. Powder source, 1998,70(1):70-77
    [12]吴国良.LiCoO2正极材料的制备及应用研究[J].电池,2000,30(3):105-107
    [13]刘小虹,余兰.低热固相反应法合成电池正极材料[J].电池工业,2003,6:278-281
    [14]S. G. Kang, S. Y. Kang, K. S. Ryu, et al. Electrochemical and structural properties of HT- LiCoO2 and LT- LiCoO2 prepared by the citrate sol-gel method[J]. Solid State Ionics,1999,120:155-161
    [15]Z. S. Peng, C. R. Wan, C. Y. Jiang. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials[J]. J. Power Sources,1998,72: 215-220
    [16]D. Larcher, M. R. Palacin, G. G. Ammtucci, et al. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions [J]. J. Electrochem. Soc.,1997,144 (2):408-417
    [17]B. Garcia, J. Farcy, J. P. Pereira-Ramos. Low temperature cobalt oxide as rechargeable cathode material for lithium batteries[J]. J. Power Sources,1995, 54:373-377
    [18]B. Garcia, J. Farcy, J. P. Pereira-Ramos, et al. Electrochemical properties of low temperature crystallized LiCoO2 [J]. J. Electrochem. Soc.,1998,145 (7): 1179-1184
    [19]M. Yoshio, H. Tanaka, K. Tominaga. Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary[J]. J. Power Sources,1992,40:347-353
    [20]A. D. Epifanio, F. Croce, F. Ronci, et al. Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 Lithium-ion cathode material prepared by a chemical route[J]. Phys. Chem.,2001,67(3):4399-4403
    [21]刘景,温兆银,吴梅梅,等.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17(6):1-9
    [22]A. R. Armstrong, A. D. Robertson, G Robert, et al. The layered intercalation compounds Li(Mn1-yCoy)O2:postive electrode materials for lithium-ion batterys[J]. J. Solid State Chemistry,1999,145(2):549-556
    [23]M. Holzapfel, R. Schreiner, A. Ott. Lithium-ion conductors of the system LiCo1-xFexO2:a first electrochemical investigation[J]. Electrochemical Acta, 2001,46(7):1063-1070
    [24]S. Madhvi, G. V. Subba Rao, B. V. R. Chowdari, et al. Effect of Cr dopant on the cathodic behavior of LiCoO2[J]. Electrochimica Acta,2002,48(3):219-226
    [25]S. Madhavi, G. V. Subba Rao, B. V. R. Chowdari, et al. Synthesis and cathodic properties of LiCo1-yRhyO2(0≤y≤0.2) and LiRhO2[J]. J. Electrochem Soc.,2001, 148(4):A1279-A1286
    [26]B. J. Hwang, Y. W. Tasi, G T. K. Fey, et al. Effect of Lanthanum dopant on the structural and electoral and electrical properties of LiCoVO4 cathode materials investigated by EXAFS[J]. J. Power Sources,2001,97-98(4):551-554
    [27]G. T. K. Fey, J. G. Chen, V. Subramanian, et al. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2[J]. J. Power Sources,2002,112(2): 384-394
    [28]I. Kodama, Y. Yoshida, I. Nakane, et al. Non-aqueous electrolyte cell having a positive electrode with Ti-attached LiCoO2 [P].United states:6395426,2002-05-28
    [29]M. Mladenov, R. Stoyanova, E. Zhecheva, et al. Effect of Mg doping and MgO-surface modification on the cycling Stability of LiCoO2 electrodes[J].Electrochemistry Communications,2001,3:410-416
    [30]S. Levasseur, M. Menetrier, C. Delmas. On the LixCo1-yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies[J].J. Power Sources,2002,112(2):1-9
    [31]G. Ceder, Y. M. Chiang, D. R. Sadoway, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature,1998, 392(2):694-696
    [32]W. S. Yoon, K. K. Lee, K. B. Kim. Synthesis of LiAlyCo1-yO2 using Acrylic acid and its electrochemical properties for Li rechargeable batteries[J]. J. Power Sources,2001,97-98(2):303-307
    [33]J. J. Kim, K. H. Ryu, K. Sakaue, et al. Strutural characterization for the chemically Li+ ion extracted LiyCoO2, LiyCo0.95Ga0.05O2 and LiyCo0.9Ga0.1O2 compounds[J]. J. Physics and Chemistry of Solids.,2002,63(11):2037-2045
    [34]N. Imanishi, M. Fujii, A. Hirano, et al. Structure and electrochemical behaviors of LixCoO2(x>1) treated under high oxygen pressure[J]. Solid state ionics., 2001,140(1-2):45-53
    [35]吴宇平,方世壁,刘昌炎,等.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209
    [36]G. T. K. Fey, V. Subra, V. Subramanian, et al. Electrochemical performance of Sr2+-doped LiNi0.8Co0.2O2 as a cathode material for lithium batteries synthesized via a wet chemistry route using oxalic acid[J]. Materials letters.,2002,52(3): 197-202
    [37]J. Cho, Y. J. Kim, B. Park. Novel LiCoO2 cathode material with Al2O3 coating for a Li Ion Cell[J]. Chem. Mater.,2000,12:3788-3791
    [38]J. Cho, C. Kim, S. Yoo. Improvement of structure stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2[J]. Elctrochemical and Solid-State Letters,2000,3(8):362-365
    [39]T. Ohzuku, A. Veda, M. Nagayama. Electrochemistry and structure chemistry of LiNiO2(R3m) [J]. J. Powder Sources,1997,68(2):316-319
    [40]A.G. Ritchie, C.O.Giwa, J.C.Lee, et al. Future cathode materials for lithium rechargeable batteries[J]. J. Powder Sources,1999,80(1):98-102
    [41]Li. W, J. C. Currie, J. Wolstenholme. Influence of morphology on the stability of LiNiO2[J]. J. Powder sources,1997,68(2):565-569
    [42]J. Schoonman, H. L.Tuller. Defect chemical aspects of lithium ion battery cathodes[J]. J. Powder sources,1999,81-82:44-48
    [43]M. Broussely, P. Biensan. Lithium insertion into best materials:the key to success for Li ion batteries[J]. Electrochemica Acta,1999,45:7-12
    [44]T. Ohzuku, K. Knakura, T. Aoki. Comparative study of solid-state redox reactions of LiCo1/4Ni3/4O2 and LiAl1/4Ni3/4O2 for lithium-ion batteries[J]. Electrochimica Acta,1999,45:151-160
    [45]J. Kim, K. Amine. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1-xMxO2(M=Cu2+,Al3+ and Ti4+)[J]. J. Power Sources,2002,104(1):33-39
    [46]C. Pouillerie, L. Croguennec, C. Delmas. The LixNi1-yMgyO2(y=0.05,0.10) system:structural modifications observed upon cycling[J]. Solid State Ionics, 2000,132:15-29
    [47]C. Pouillerie, L. Croguennec, P. Biensan, et al. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries[J]. J. Electrochem. Soc.,2000,147:2061-2069
    [48]韩景立,刘庆国.锂镍钴复合物锂离子电池正极材料的研究[J].电化学,2000,6(4):469-472
    [49]解晶莹,尹鸽平,史鹏飞.锂镍钴复合氧化物的合成和电化学行为研究[J].电源技术,1997,21(5):185-189
    [50]M. Broussely. Recent development on lithium ion batteries at SAFT[J]. J. Power Sources,1999,81-82(1-2):140-143
    [51]K. Tamura, T. Horiba. Large-scale development of lithium batteries for electric vehicles and electric power storage applications[J]. J. Power Sources,1999, 81-82(1-2):156-161
    [52]Gao yuan, J. R. Dahn. Synthesis and characterization of Li1+xMn2-xO4 for ion battery application[J]. J. Electrochem. Soc,1996,143(1):100-144
    [53]J. Barker, R. Pynenburg, R. Koksbang. Determination of thermodynamic, kinetic and interfacial properties for the Li//LixMn2O4 system by electrochemical techniques[J]. J. Power Sources,1994,52:185-192
    [54]L. Chen, X. Huang, E. Kelder, et al. Diffusion enhancement in LixMn2O4[J]. Solid State Ionics,1995,76:91-96
    [55]M. M. Thackeray, L. A. de Picciotto, A. de Kock, et al. Spinel electrodes for lithium batteries-A review[J]. J. Power Sources,1987,21:1-8
    [56]A. Yamada, M. Tanaka. Jahn-Teller structural phase transition around 280K in LiMn2O4[J]. Mate. Res. Bull.,1995,30:715-721
    [57]J. M. Tarascon, E. Wang, F. K. Shokoohi, et al. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells[J]. J. Electrochem. Soc.,1991,138: 2859-2864
    [58]H. Huang, P. G. Bruce.3V and 4V lithium manganese oxide cathods for rechargeable lithium batteries[J]. J. Power Source,1995,54:52-57
    [59]Y. Gao, P. G. Dahn. The high temperature phase diagram of Li1+xMn2-xO4 and its implication[J]. J. Electrochem.Soc.,1996,143:1783-1788
    [60]J. M. Tarascon, W. R. Mckinnon, F. Coowar, et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4[J]. J. Electrochem. Soc.,1994,141:1421-1431
    [61]D. Guyomard, J. M. Tarascon. The carbon/Li1+xMn2O4 system [J]. Solid State Inoics,1994,69:222-237
    [62]A.Yamada, Kmiura, K. Hinokuma. Synthesis and structural aspects of LiMn2 O4±δ as a cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1995,142:2149-2156
    [63]Z. P. Jiang, K.M. Abraham. Preparation and electrochemical characterization of micron-sized spinel LiMn2O4[J]. J. Electrochem. Soc.,1996,143(5):1591-1598
    [64]W. Liu, G. C. Farringtom. Synthesis and electrochemical studies of spinal phase LiMn2O4 cathode materials prepared by the Pechini process [J]. J. Electrochem. Soc,1996,143(3):879-884
    [65]X. Qiu, X. Sun, W. Shen, et al. Spinel Li1+xMn2O4 synthesized by co-precipitation as cathodes for lithium ion batteries[J]. Solid State Inoics,1997, 93:335-339
    [66]S. I. Pyun, Y. M. Choi, I. D. Jeng. Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Li1±δMn2O4 electrodes prepared by sol-gel methode[J]. J. Power Source,1997, 68:593-599
    [67]T. Tsumura, M. Inugaki. Preparation of LiMn2O4 via dicarboxylates and their lithium extraction/insertion behavor[J]. Solid State Inoics,1997,104:35-43
    [68]Y. K. Sun. Synthesis and electrochemical studies of spinel Li1.03Mn2O4 cathode materials prepared by a sol-gel method for lithium secondary batteries[J]. Solid State Inoics,1997,100:115-125
    [69]S. Bach, J. Farcy, J. P. Pereira-ramos. An electrochemical investigation of Li intercalation in the sol-gel LiMn2-xCoxO4 spinel oxide[J]. Solid State Inoics, 1998,110:193-198
    [70]S. R. S. Prabaharan, M. S. Mchael, T. Premkumar, et al. Soft chemistry synthesis of electrochemically-active spinel LiMn2O4 for Li ion batteries[J]. Solid State Inoics,1998,112:25-34
    [71]K. T. Hwang, W. S. Um, H. S. Lee, et al. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method [J]. J. Power Source,1998,74:169-174
    [72]J. H. Choy, D. H. Kim, C. W. Kwon, et al. Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route[J]. J. Power Source,1999,77:1-11
    [73]杨文胜,刘庆国,仇卫华,等.柠檬酸络合反应方法制备尖晶石型LiMn2O4[J].电源技术(增刊),1999,23:49-52
    [74]唐致远,李建刚,薛建军.锂电池正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,8:10-14
    [75]Y. K. Sun. Electrochemical cyclability of oxysulfide spinel Li1.03Al0.2Mn1.8O3.96 S0.04 material for lithium secondary batteries[J]. Electrochemistry Communications,2000,2:6-9
    [76]A. Veluchamy, H. Ikutab, M. Wakihara. Boron-substituted manganese spinel oxide cathode for lithium ion battery[J]. Solid State Ionics,2001,143:161-171
    [77]Ch. H. Lu, H. Ch. Wang. Effects of cobalt-ion doping on the electrochemical properties of spinel lithium manganese oxide prepared via a reverse-micelle route[J]. J. European Ceramic Society,2003,23:865-871
    [78]W. Enoch. Method of treating lithium manganese oxide spinel[P]. US: US5733685,1998-03-31
    [79]A. R. Arnstrong, P. G. Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature,1996,381:499-500
    [80]任旭梅,吴川,何国蓉.锂离子电池正负极材料研究进展[J].化学研究与应 用,2000,12(4):360-364
    [81]A. R. Armstrong, A. D. Robertson, P. G. Bruce. Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials[J]. Electrochimica Acta, 1999,45:285-294
    [82]S. Komaba, S. T. Myung, N. Kumagai. Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries[J]. Solid State Ionics,2002,152-153:311-318
    [83]M. Tabuchi, K. Ado, H. Kobayashi, et al. Synthesis of LiMnO2 with a-NaMnO2 type structure by a mixed alkaline hydrothermal reaction[J]. J. Electrochem. Soc., 2002,149:A288-A292
    [84]F. Munaksts. Positive electrode material and battery for nonaquous electrolyte secondary battery[P]. US Patent Application,20020012843,2000-1-31
    [85]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochemic. Soc.,1997,144(4):1188-1194
    [86]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochemic. Soc.,1997, 144(5):1609-1613
    [87]A. S. Andersson, B. Kalska. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and mossbauer spectroscopy study[J]. Solid State Ionics,2000, 130(1-2):41-52
    [88]A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. J. Electrochem. Soc.,2001,148(3):A224-A229
    [89]P. P. Prosini, M. Lisi, D. Zane et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics,2002,148:45-51
    [90]N. Ravet, Y. Chouinard, J. F. Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. J. Power Sources,2001,97-98:503-507
    [91]P. P. Prosini, M. carewska, S. Scaccia, et al. A new Synthetic Route for Preparing LiFePO4 with Enhanced Electrochemical Performance[J]. J. Electrochem. Soc., 2002,149(7):A886-890
    [92]F. Core, A. D. Epifanio, J. Hassoun, et al. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode[J]. Electrochemical and Solid-State Letters,2002,5(3):A47-50
    [93]S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically conductive phosphor-olivines as lithium storage electrodes[J]. Nature materials,2002,1: 123-128
    [94]J. F. Ni, H. H. Zhou, J. T. Chen, et al. Effect on the electrochemical perfoemance of lithium iron phosphate by Cr3+ ion doping[J]. Wu li Xue bao,2004,20(6): 582-586
    [95]M. Thackeray. Lithium-ion batteries-An unexpected conductor[J]. Nature Materials,2002,1(2):81-82
    [96]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367
    [97]D. D. Macneil, J. R. Dahn. Can an electrolyte for lithium-ion batteries be too stable?[J]. J. Electrochem. Soc.,2003,150(1):A21-A28
    [98]J. Jiang, J. R. Dahn. ARC studies of the thermal stability of three different cathode materials:LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePCO4, in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochem. Commun.,2004,6:39-43
    [99]林传刚,李晓干,仇卫华.锂离子电池正极材料LiNiO2及其掺杂化合物[J].北京科技大学学报,2001,23(2):114-117
    [100]D. D. Macneil, Z. H. Lu, J. R. Dahn. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J]. J. Power Sources,2002,108:8-14
    [101]T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo1/3Ni1/3 Mn1/3O2 for lithium-ion batteries[J]. Chem. Lett.,2001,30:642-643
    [102]Z. Lu, D. D. MacNeil, J. R. Dahn. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochem. Solid-State Lett.,2001,4:A191-A194
    [103]Z. Lu, D. D. MacNeil, J. R. Dahn. Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett.,2001,4: A200-203
    [104]T. Q. Duong, K. Striebel. Batteries for Advanced Transportation Technologies (BATT) Program for Electrochemical Energy Storage,1st Quarter Report FY 2004 http://berc.lbl.gov/BATT/BATT.html
    [105]叶尚云,张平伟,乔芝郁.层状Ni-Mn基锂离子电池正极材料研究进展[J].稀有金属,2005,29(3):328-338
    [106]N. Yabuuchi, T. Ohzuku. Novel lithium insertion material of LiNi1/3Co1/3 Mn1/3O2 for advanced lithium-ion batteries[J]. J. Power Sources,2003,119-121: 171-174
    [107]Y. Koyama, I. Tanaka, T. Ohzuku, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. J. Power Sources,2003, 119-121:644-648
    [108]Y. Koyama, N. Yabuuchi, T. Ohzuku, et al. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced Lithium-ion batteries[J]. J. Electrochem Soc.,2004,151(10):A1545-A1551.
    [109]P. S. Whitfield, I. J. Davidson, L. M. D. Cranswick, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathodematerials LiCo1/3Ni1/3Mn1/3O2 using neutron and anomalous dispersion powder diffraction[J].Solid State Ionics,2005,176(5-6):463-471
    [110]D. D. MacNeil, Z. Lu, J. R. Dahn. Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0≤x≤1/2)[J]. J. Electrochem. Soc.,2002,149(10): A1332-A1336
    [111]H. Kobayashi, Y. Arachi, S. Emura, et al. Investigation of lithium de-intercalation mechanism for Li1-xNi1/3Mn1/3Co1/3O2[J]. J. Power Sources, 2005,146(1-2):640-644
    [112]M. G Kim, H. J. Shin, J. H. Kim, et al. XAS investigation of inhomogeneous metal-oxygen bong covalency in bulk and surface for charge compensation in Li-ion battery cathode Li(Ni1/3Co1/3Mn1/3)O2 material[J]. J. Eelectrochem. Soc., 2005,152(7):A1320-A1328
    [113]J. Kim, H. Chung. Role of transition metals in layerer Li[Ni, Co, Mn]O2 under electrochemical opration[J]. Eletrochimica Acta,2004,49:3573-3580
    [114]D. Ch. Li, T. Muta, L. Q. Zhang, et al. Effect of synthesis method on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2[J]. J Power Sources,2004, 132:150-155
    [115]郭瑞,史鹏飞,程新群,等.高温固相法合成LiNi1/3Mn1/3Co1/3O2及其性能研究[J].无机化学学报,2007(8):1387-1392
    [116]L. Q. Zhang, X. Q. Wang, T. Muta, et al. The effects of extra Li conent, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Co1/3Mn1/3O2[J]. J. Power Sources,2006,162:629-635
    [117]X. Liu, G Zhu, K. Yang, et al. A mixture of LiNi1/3Co1/3Mn1/3O2 and LiCoO2 as positive active material of LIB for power application[J]. J. Power Sources, 2007,174:1126-1130
    [118]应皆荣,姜长印,万春荣,等.锂离子电池高密度球形系列正极材料[J].中国有色金属学报,2005,15(1):11-18
    [119]M. H. Lee, Y. J. Kang, S. T. Myung, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta,2004,50: 939-948
    [120]I. Belharouak, Y. K. Sun, J. Liu, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications[J]. J. Power Sources,2003,123(2): 247-252
    [121]Y. M. Todorov, K. Numata. Effects of the Li:(Mn+Co+Ni)molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochim. Acta,2004,50(2-3):495-499
    [122]刘静静,仇卫华,李涛,等Li(Ni1/3Mn1/3Co1/3)O2正极材料的电化学性能[J].电池,2005,35(5):340-341
    [123]J. Choi, A. Manthiram. Investigation of the irreversible capacity loss in the layered LiNi1/3Mn1/3Co1/3O2 cathodes[J]. Electrochem.Solid-State Lett.,2005, 8(8):C102-C105
    [124]J. Choi, A. Manthiram. Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes[J]. J. Electrochem. Soc.,2005,152(9):A1714-A1718
    [125]T. H. Cho, S. M. Park, M. Yoshio, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. J. Power Sources,2005,142:306-312
    [126]S. H. Park, H. S. Shin, S. T. Myung, et al. Synthesis of nanostructured Li[Ni1/3Mn1/3Co1/3]O2 via a modified carbonate process[J]. Chem. Mater.,2005, 17:6
    [127]T. H. Cho, Y. Shiosaki, H. Noguchi. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method[J]. J. Power Sources,2006,159(2):1322-1327
    [128]S. Zhang, X. Qiu, Z. He, et al. Nanoparticled Li(Ni1/3Co1/3Mn1/3)O2 as cathode material for high-rate lithium-ion batteries[J]. J. Power Sources,2006,153(2): 350-353.
    [129]K. H. Dai, Y. T. Xie, Y. J. Wang, et al. Effect of fluorine in the preparation of Li(Ni1/3Co1/3Mn1/3)O2 via hydroxide co-precipitation[J]. Electrochimica Acta, 2008,53:3257-3261
    [130]S. Patoux, M. M. Doeff. Direct synthesis of LiNi1/3Co1/3Mn1/302 from nitrate precursors[J]. Electrochemistry Communications,2004,6:767-772
    [131]B. J. Hwang, Y. W. Tsai, D. Carlier. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2[J]. Chem. Mater.,2003,15(19):3676-3682
    [132]C. H. Chen, C. J. Wang, B. J. Hwang. Electrochemical performance of layered Li[NixCo1-2xMnx]O2 cathode materials synthesized by a sol-gel method[J]. J. Power Sources,2005,146:626-629
    [133]Y. W. Tsai, B. J. Hwang, G. Ceder, et al. In-situ x-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling[J]. Chem. Mater.,2005,17(12):3191-3199
    [134]H. J. Guo, R. F. Liang, X. H. Li, et al. Effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode for lithium ion batteries[J]. Trans. Nonferrous Met. Soc. China,2007,17:1307-1311
    [135]D. C. Li, H. Noguchi, M. Yoshio. Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2 (0< x≤ 0.1) prepared by spray dry method[J]. Electrochimica Acta,2004,50:427-430
    [136]J. M. Kim, N. Kumagai, S. Komaba. Improved electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2-δ(x=0, 0.03 and 0.06) with lithium excess composition prepared by a spray drying method[J]. Electrochimica Acta,2006,52: 1483-1490
    [137]陈祖耀,张大杰,钱逸泰.喷雾热解法制备超细粉末及其应用[J].硅酸盐通报,1988,6:54-58
    [138]戴遐明.喷雾热解—一种重要的微粉制备工艺[J].中国粉体技术,1995,3:28-33
    [139]赵新宇,张煜,古宏晨,等.喷雾热解制备稀土超细粉末一氧化钇粒子形态与形成机理[J].高等学校化学学报,1998,19(4):507-510
    [140]I. Taniguchi, D. Song, M. Wakihara. Electrochemical properties of LiM1/6 Mn11/6O4 (M=Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method[J]. J. Power Sources,2002,109: 333-339
    [141]S. L. Bewlay, K. Konstantinov, G. X. Wang, e al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004,58:1788-1791
    [142]S. W. Oh, S. H. Park, C. W. Park, et al. Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1-xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method[J]. Solid State Ionics,2004,171:167-172
    [143]S. H. Park, S. W. Oh, S. T. Myung, et al. Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material for prepared by ultrasonic spray pyrolysis method[J]. Solid State Ionics,2005,176:481-486
    [144]K. Y. Choi, K. D. Kim, J. W. Yang. Optimization of the synthesis conditions of LiCoO2 for lithium secondary battery by ultrasonic spray pyrolysis process[J]. J. Materials Processing Technology,2006,171:118-124
    [145]S. H. Park, C. S. Yoon, S. G. Kang, et al. Synthesis and structural characterization of layered LiNi1/3Co1/3Mn1/3O2 cathode material by ultrasonic spray pyrolysis method[J]. Electrochimica Acta,2004,49(4):557-563
    [146]S. H. Ju, D. Y. Kim, Y. C. Kang. The characteristics of Li(Ni1/3Co1/3Mn1/3)O2 particles prepared from precursor particles with spherical shape obtained[J]. Ceramics International,2007,33:1093-1098
    [147]S. T. Myung, M. H. Lee, S. Komaba, et al. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery[J]. Electrochim. Acta,2005,50(24):4800-4806
    [148]P. S. Whitfield, I. J. Davidson, L. M. D. Cranswick, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction[J]. Solid State Ionics,2005,176(5-6):463-471
    [149]胡学山,刘兴泉LiNi1/3Co1/3Mn1/3O2的制备及电化学性能[J].电源技术,2005,30(3):153-18
    [150]仇卫华,刘静静,于凌燕,等.一种采用低热固相反应法制备层状锂钴镍锰氧化物材料的方法[P].中国,CN200510011676,2005-10-26
    [151]J. J. Liu, W. H. Qiu, L. Y. Yu, et al. Studies on the low-heating solid-state reaction method to synthesize LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. J. Power Sources,2007,174:701-704
    [152]D. G Tong, Q. Y. Lai, N. N. Wei, et al. Synthesis of LiCo1/3Ni1/3Mn1/3O2 as a cathode material for lithium ion battery by water-in-oil emulsion method[J]. Mater. Chem. and Phy.,2005,94(2-3):423-428
    [153]G. H. Kim, S. T. Myung, H. S. Kim, et al. Synthesis of spherical Li[Ni(1/3-z)Co(1/3-z)Mn(1/3-z)Mgz]O2 as positive electrode material for lithium-ion battery[J]. Electrochimica Acta,2006,51:2447-2453
    [154]S. H. Park, S. W. Oh, Y. K. Sun. Synthesis and structural characterization of layered Li[Co1/3+xNi1/3Mn1/3-xMox]O2 cathode materials by ultrasonic spray pyrolysis[J]. J. Power Sources,2005,146(1-2):622-625
    [155]J. Choi, A. Manthiram. Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97 O2[J].Electrochem. Solid-State Lett.,2004,7(10):A365-A368
    [156]Y. S. Meng, Y. W. Wu, B. J. Hwang, et al. Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries:LiNi1/3Fe1/6Co1/6Mn1/3O2[J]. J. Electrochem Soc.,2004,151(8):A1134-A1140
    [157]H. S. Shin, D. Shin, Y. K. Sun. Improvement of electrochemical properties of Li[Nio.4Co0.2Mn(0.4-x)Mgx]O2-yFy cathode materials at high voltage region[J]. Electrochimica Acta,2006,52:1477-1482
    [158]Y. S. He, P. Li, X. Z. Liao, et al. Synthesis of Li[Ni1/3Co1/3Mn1/3]O2-zFz cathode material from oxalate precursors for lithium ion battery[J]. J. Fluorine Chemistry,2007,128:139-143
    [159]G. H. Kim, S. T. Myung, H. J. Bang, et al. Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgz]O2-yFy via coprecipitation[J]. Electro-chem. Solid-State Lett.,2004,7(12):A477-A480
    [160]G. H. Kim, S. T. Myung, C. S. Yoon, et al. Improvement of high-voltage cycling behavior of surface-modified LiNi1/3Co1/3Mn1/3O2 cathodes by fluorine substitution for Li-ion batteries[J]. J. Eelectrochem. Soc.,2005,152(9):A1707-A1713
    [161]D. C. Li, Y. Kato, K. Kobayakawa, et al. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating[J]. J. Power Source,2006,160:1342-1348
    [162]Y. Kim, H. S. Kim, S. W. Martin. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 coated materials for lithium ion batteries[J]. Electrochimica Acta,2006,52:1316-1322
    [163]Z. Yang, X. H. Li, Z. X. Wang, et al. Surface modifaction of spherical LiNi1/3 Co1/3Mn1/3O2 with AI2O3 using heterogeneous nucleation process[J]. Tans. Noferrous Met. Soc. China,2007,17:1319-1323
    [164]H. S Kim, M. Kong, K. Kim, et al. Effect of carbon coating on LiNi1/3 Co1/3Mn1/3O2 cathode material for lithium secondary batteries[J]. J. Power Sources,2007,171:917-921
    [165]B. Lin, Z. Y. Wen, J. Han, et al. Electrochemical properties of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries[J]. Solid State Ionics,2008,179(27-32):1750-1753
    [166]H. S. Kim, Y. Kim, S. Kim, et al. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles[J]. J. Power Source,2006,161:623-627
    [167]H. Kitao, T. Fujihara, K. Takeda, et al. High-temperature storage performance of Li-ionbatteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material[J]. Electrochem. Solid-State Lett.,2005,8(2):A87-90
    [168]N. Mijung, Y. Lee, J. Cho. Water adsorption and storage characteristics of optimized LiCoO2 and LiNil/3Mn1/3Co1/3O2 composite cathode material for Li-ion cells[J]. J. Electrochemi. Soc.,2006,153(5):A935-940
    [169]J. P. Lang, X. Q. Xin. Solid state synthesis of Mo(W)-S cluster compounds at low heating temperature[J]. J. Solid State Chem.,1994,108:118-127
    [170]候红卫,忻新泉.Mo(W)-Cu(Ag)-S原子簇化合物的反应[J].结构化学,1995,14(5-6),405-407
    [171]候红卫,忻新泉,宋连卿,等.两个新颖原子簇化合物的合成及三阶非线性光学吸收性质[J].化学学报,2000,58(3):283-286
    [172]张驰,金国成,忻新泉.原子簇化合物的固相合成及其三阶非线性光学性质究[J].无机化学学报,2000,162(2):29-240
    [173]X. Q. Xin, L. M. Zheng. Production of metal compound by solid-phase[J]. J. Solid State Chem.,1993,106:451-455
    [174]陈金喜,潘涛,刘明光,等.Zn(p-DMABA)2C12的低热固相合成及其X射线粉末衍射数据[J].化学学报,2002,60(1):60-64
    [175]周益明,许娟,孙冬梅,等.尿素Fe(Ⅲ)配合物的固相合成[J].应用化学,2003,20(3):305-306
    [176]高艳阳.镍(Ⅱ)-六次甲基四胺配合物的固相反应合成[J].应用基础与工程学学报,2001,9(2):133-135
    [177]由万胜,王轶博,王恩波,等.室温固相反应制备Keggin结构杂多酸铵盐纳米粒子[J].高等学校化学学报,2000,21(11):1636-1638
    [178]夏熙,努丽燕娜,郭再萍.低热固相反应法制备纳米LiCoO2的研究(Ⅰ)[J]. 高等学校化学学报,1999,20(12):1847-1849
    [179]唐新村.尖晶石LiMn2O4前驱体的低热固相反应法制备机理及其结构与热分解过程研究[J].高等学校化学学报,2003,24(4):576-579
    [180]慷慨,戴受惠,万玉华.固相配位化学反应法制备LiMn2O4的研究[J].功能材料,2000,31(3):283-286
    [181]H. T. Cui, G. Y. Hong, X. Y. Wu, et al. Silicon dioxide coating of CeO2 nanoparticles by solid state reaction at room temperature[J]. Materials Research Bulletin,2002,37(13):2155-2163
    [182]H. T. Cui, G Y. Hong, H. P. You, et al. Coating of Y2O3: Eu3+ particles with alumina by a humid solid state reaction at room temperature[J]. J. Colloid and Interface Science,2002,252(1):184-187
    [183]G. X. Liu, G. Y. Hong, D. X. Sun. Coating Gd2O3: Eu phosphors with silica by solid-state reaction at room temperature[J]. Powder Technology,2004,145(2): 149-153
    [184]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.23-26
    [185]钟竹前,梅光贵.湿法冶金过程[M].长沙:中南工业大学出版,1988.34-36
    [186]迪安J A.兰氏化学手册[M].北京:科学出版社(十三版中文版),1991
    [187]李继光,孙旭东,茹红强,等.湿化学法合成单分散陶瓷超微粉体的基本理[J].功能材料,1997,28(4):333-336
    [188]V. K. LaMer, R. H. Dineger. Theory, production and mechanism of formation of monodispersed hydrosols[J]. J. American Chemical Society,1950,72(11):4847-4854
    [189]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.48-52
    [190]胡黎明,古宏晨.化学工程的前沿-超细粉体的制备[J].化工进展,1996,2:1-7
    [191]曹茂盛.超细颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1995.10-14
    [192]顾艳芳,胡黎明.沉淀过程中超细颗粒的凝并与生长模型[J].华东化工学院学报,1992,18(4):551-554
    [193]J. Prywer. Theoretical ananlysis of changes in habit of growth rates of individual faces[J]. J. Crystal Growth,1999, (197):27-28
    [194]王宇菲,卓海宇.沉淀法制备纳米粉体及其形貌控制[J].湖南有色金属,2002,18(5):23-25
    [195]邬建辉.特种镍粉制备新方法的研究[博士学位论文].长沙:中南大学,
    2003
    [196]董成勇.高活性多孔纤维状钴粉制备新方法研究[硕士学位论文].长沙:中南大学,2006
    [197]J. Zhan, C. F. Zhang, T. J. Li et al. Thermodynamic analysis on preparation of fibrous NiO precursor powders with oxalate precipitation process[J]. Trans. Nonferrous Met. Soc. China,2005,15(4):926-930
    [198]盛世雄.X射线衍射分析技术[M].北京:冶金出版社,1986.97-99
    [199]K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari. Performance of layered LiNi1/3Co1/3Mn1/3O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002,48:145-151
    [200]Z. H. Lu, X. J. Huang, H. Huang, et al. The phase transition and optimal synthesis temperature of LiNiO2[J]. Solid State Ionics,1999,120(1-4):103-107
    [201]M. Yoshio, Y. Todorov, K. Yamato, et al. Perparation of LiyMnxNi1-xO2 as a cathode for lithium-ion batteries[J]. J. Power Source,1998,74(1):46-53
    [202]徐恒钧,刘国勋.材料科学基础[M].北京:北京工业大学出版社,2001.55-58
    [203]S. Jouarmeau, K.W. Eberman, J.R. Dahn, et al. Synthesis, characterization, and electrochemical behavior of improved Li[NixCo1-2xMnx]O2 (0.1≤x≤0.5) [J]. J. Electrochem Soc.,2003,150(12):A1637-A1642
    [204]J. Cho, G. Kim, H.S. Lim. Effect of preparation methods of LiNi1-xCoxO2 cathode materials on their chemical structure and electrode performance[J]. J. Electrochem Soc.,1999,146:3571-3576
    [205]S. Wu, C. Yang. Preparation of LiNi0.8Co0.2O2-based cathode materials for lithium batteries by a co-precipitation method[J]. J. Power Sources,2005, 146(1-2):270-274
    [206]S. Levasseur, M. Menetrier, E. Suard, et al. Evidence for structural defects in non-stoichiometric HT-LiCoO2:electrochemical, electronic properties and 7Li NMR studies[J].Solid State Ionics,2000,128:11-24
    [207]S. Levasseur, M. Menetrier, C. Delmas. Combined effects of Ni and Li doping on the phase transitions in LixCoO2[J]. J. Electrochem Soc.,2002,149:A1533-A1540
    [208]N. Tran, L. Croguennec, F. Weill, et al. Structure and electrochemical performances of the Li1+x(Ni0.425Mn0.425Co0.15)1-xO2 materials[C].12th Interna-tional meeting on lithium batteries, Japan: 2004. Abstract314
    [209]J. M. Kim, N. Kumagai, S. Komaba. Improved electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2-δ(x=0, 0.03 and 0.06) with lithium excess compo-sition prepared by a spray drying method[J]. Electrochimica Acta,2006, 52:1483-1490
    [210]S. Madhavi, G V. Subba Rao, B.V. R. Chowdari, et al. Synthesis and Cathodic Properties of LiCo1-yRhyO2 (0≤y≤0.2) and LiRhO2[J]. J. Electrochem. Soc. 2001,148 (11):A1279-A1286
    [211]A. F. Carley, S. D. Jackson, J. N. O'Shea, et al. The formation and characterisation of Ni3+-an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O[J]. Surf. Sci.,1999,440(3):L868-874
    [212]K. Amine, H. Tukamoto, H. Yasuda, et al. A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries[J]. J. Electrochem. Soc., 1996,143(5):1607-1613
    [213]S. H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5-xMn0.5-xM2x)O2(M=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries[J]. J. Power Sources,2002,112:41-48
    [214]S. Megahed, B. Scrosati. Lithium-ion rechargeable batteries[J]. J. Power source, 1994,51(1-2):79-104
    [215]A. R. Armstrong, D. A. Robertson, G.Robert, et al. The Layered Intercalation Compounds Li(Mn2-yCoy)O2:Positive Electrode Materials for Lithium-Ion Batteries[J]. J. Solid State Chem.1999,145:549-556
    [216]C. H. Chen, J. Liu, M. E. Stoll, et al. Alunimum-doped nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. J. Power Sources,2004, 128(2):278-285
    [217]张银亮.配位共沉淀热分解还原法制备多孔纤维状铁镍合金粉[硕士学位论文].长沙:中南大学,2009
    [218]B. J. Hwang, R. Santhanam, C. H. Chen. Effect of synthesis conditions on electrochemical prperties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries[J]. J. Power Sources,2003,114(2):244-252
    [219]黄元乔,郭文勇,李道聪,等.锂离子电池正极材料的制备及电化学性能研究[J].无机化学学报,2005,5(5):736-740
    [220]刘永安,罗益民,唐英,等.大学物理学[M].长沙:中南大学出版社,2001.394-397
    [221]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987.142-181
    [222]Y. Gao, M. Yakovleva. Lithium metal oxide containing multiple dopants and method of preparing same[P]. U. S. Patent, US6277521B1,2001-08-21
    [223]Kim J M, Chung H T. Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults [J]. J. Power source,2003,115: 125-130
    [224]Jang Y, Huang B, Chiang Y M, et al. Electrochemical cycling-induced spinel formation in high-charge-capacity orthorhombic LiMnO2 [J]. J Electrochem Soc,1999,146(9):3217-3223
    [225]L. Yuan, Z. P. Guo, K. Konstantinov et al. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries [J]. J. Power Source,2006,159(1): 345-348
    [226]日本化学会编,董万堂,董绍俊,译.无机固态反应[M].北京:科学出版社,1985
    [227]N. B. Hannay. Treatise on Solid State Chemistry, vol. i, the chemical structure of solids[M]. New York:Plenum Press,1976.4:16
    [228]G Tammann, Q. A. Mansuri. Recrystallization of Metals and Salts[J]. Z. Anorg.Chem.,1923,126:119
    [229]L. X. Lei, X. Q. Xin. Stepwise reaction of CuCl2·2H2O with 2,2'-bipyridyl in the solid state[J]. J. Solid State Chemistry,1995,119(2):299-303
    [230]陈鼎,严红革,黄培云.机械力化学技术研究进展[J].稀有金属,27(2),2003:293-297
    [231]J. Lin, S. Nadiv. Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment[J]. Materials Science and Engineering, 1979,39(2):193-209
    [232]唐新村.低热固相反应制备锂离子电池正极材料及其嵌锂性能的研究[博士学位论文].长沙:湖南大学,2002
    [233]田昭武.电化学研究方法[M].北京:科学出版社,1984
    [234]H. T. Cui, G. Y. Hong, H. P. You, et al. Coating of Y2O3:Eu3+ particles with alumina by a humid solid state reaction at room temperature[J]. J. Colloid and Interface Science,2002,252(1):184-187
    [235]B. D. Cullity. Elements of X-Ray Diffraction,2nd edition[M]. Landon: Addison Wesley Publishing Company,1978.102
    [236]J. Szuber, G Czempik, R. Larciprete et al. The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen[J]. Sensors and Actuators B:Chemical,70(1-3):177-181
    [237]张耿豪.表面修饰球状LiNi1/3Co1/3Mn1/3O2锂离子正极材料的研究[博士学位论文].台湾:国立台湾科技大学,2005
    [238]S. B. Jang, S. H. Kang, K. Amine, et al. Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3O2] cathode materials at elevated temperature[J]. Electrochimica Acta,50,2005:4168-4173
    [239]D. Ostrovskii, F. Ronci, B. Scrosati, et al. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. J. Power Sources, 2001,103(1):10-17
    [240]Z. X. Wang, X. J. Huang, L. Q. Chen. Charaterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries[J]. J. Electrochem. Soc.,2004,151(10):A1641-1652
    [241]Z. X. Wang, Y. CH. Sun, L. Q. Chen, et al. Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for Lithium-ion batteries[J]. J. Electrochem. Soc.,2004,151(6): A914-A921
    [242]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001
    [243]M. D. Levi, K. Gamolsky, D. Aurbach, et al. On electrochemical impedence of LixCo0.2Ni0.8 and LixNiO2 intercalation electrodes[J]. Electrochimica,2000, 45(11):1781-1789
    [244]P. G. Bruee, M. Y Saidi. The mechanism of electrointerealation[J]. J. Electrochem. Chem.,1992,322:93-105
    [245]D. P. Abraham, J. Liu, C. H. Chen, et al. Diagnosis of power fade mechanisms in high-power lithium-ion cells[J]. J. Power Source,2003,119-121:511-516
    [246]D. Aurbach, B. Markovsky, M. D. Levi, et al. New insights into the interactions of between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. J. Power Sources,1999,81-82:95-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700