用户名: 密码: 验证码:
大兴安岭中生代火山岩年代学及地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭地区以出露大面积中生代火山岩为特征。对于北部地区已有大量的年代学研究,结果表明北部地区中生代火山岩的形成时代集中在早白垩世,只有少量晚侏罗世火山岩;但是对于中南部地区,至今还没有系统的年代学研究。这严重制约了对于大兴安岭地区以及整个中国东部中生代期间地质构造演化过程的深入认识。本文重点对年代学研究缺乏的大兴安岭中南部进行了系统的定年工作。在此基础上,结合火山岩地球化学特征,探讨大兴安岭地区大规模中生代火山岩的岩浆源区、岩石成因以及岩石地球化学特征随时代的演化等问题,进而对岩浆作用的构造控制因素、地球动力学本质等问题进行了讨论,并重点讨论了中生代岩浆作用与中国东部中生代岩石圈减薄事件之间的关系。
     依据区域地层对比和岩石组合特征、沉积夹层中的化石资料及火山活动的旋回特征,大兴安岭中南部中生代火山岩自下到上依次划分为满克头鄂博组、玛尼吐组、白音高老组和梅勒图组。其中满克头鄂博组和白音高老组主要由酸性火山岩及相应的火山碎屑岩构成,岩石类型主要包括英安岩、流纹岩及凝灰质岩石;而玛尼吐组和梅勒图组则主要由中基性火山岩构成,包括玄武岩、安山岩及凝灰质岩石。已有的研究认为这些火山岩主体形成于晚侏罗世,但是缺乏高精度年龄数据的支持。只有很少高精度年龄数据报道,而且这些数据只局限在有限的范围内,因而不能限制大规模火山作用的时代,即其起止时间及主体形成时间。
     本文使用锆石U-Pb及全岩~(40)Ar/~(39)Ar定年方法对中南部火山岩进行了系统的年代学研究。对满克头鄂博组的17件样品定年结果表明其形成时代包括晚侏罗世和早白垩世两期,时代范围分别为160Ma-150Ma和136Ma-122Ma,峰值分别为150Ma与135Ma左右,但是有一个样品获得了较老的年龄为173Ma,其建组剖面上两个样品获得的年龄分别为152Ma和158Ma。而10件样品的定年结果表明玛尼吐组的年龄范围为158Ma-125Ma,同样可以分为两期:158Ma-150Ma与137Ma-125Ma,对应的火山作用峰期分别为155Ma-160Ma和125Ma,而建组剖面上获得的年龄为137Ma。满克头鄂博组和玛尼吐组具有相似的年代学格架,而区别在于满克头鄂博组以晚侏罗世火山岩为主体,而玛尼吐组则以早白垩世为主。相比较而言,白音高老组和梅勒图组具有较小的年龄范围,集中在141Ma到124Ma期间(白音高老组:141Ma-124Ma;梅勒图组:134-124Ma),全部为早白垩世,高峰期在130Ma左右,而建组剖面上获得的年龄分别为139Ma和131Ma。结合已有的年代学数据表明,大兴安岭中南段中生代火山岩主体形成于晚侏罗世-早白垩世期间,介于160Ma到122Ma之间,并且可以分为两个阶段:160Ma-150Ma与141Ma-122Ma,在这两个阶段之间有一个明显的间断(大约10Ma)。虽然都形成于晚侏罗世-早白垩世期间,并且火山作用的高峰期都出现在130Ma-120Ma期间,大兴安岭北部和中南部火山岩在年代学格架上仍具有明显的差异,具有不同的火山作用终止时间和不同的岩浆期次。这表明大兴安岭北部和中南部具有不同的岩浆作用过程,反映了深部动力学过程的不同。这些年龄结果也表明大兴安岭地区中生代火山岩地层划分对比需要重新考虑,本文对连续剖面的定年结果也表明了这一点。而以前划分的满克头鄂博组、玛尼吐组当中包含了不同时代的火山岩,因而将这些不同时代的火山岩划分为一个组是不合理的:同时这四个组在形成时代上具有明显的重叠,因而以前认为的地层上下叠置关系并不存在。对大兴安岭及其邻区中生代火成岩形成时代的统计表明存在侏罗纪和早白垩世两期岩浆作用,前者以侵入岩为主,后者则以火山岩为主。其中火山岩具有自西向东逐渐变新的特征,而侵入岩则具有相反的趋势,即自西向东逐渐变老。二者之间有一个明显的岩浆作用平静期,而这个平静期的持续时间从大陆边缘向大陆内部逐渐变小,在大兴安岭地区小于10Ma,而在日本列岛则大于60Ma。另外一个显著特征就是早白垩世岩浆作用在不同地区具有相似的起始时间,集中在135Ma左右,整体上不超过140Ma。
     大兴安岭北部中基性火山岩以碱性系列岩石为主,只有少量为亚碱性系列;而中南部火山岩则以亚碱性系列为主,只有少量晚侏罗世岩石为碱性系列。北部中基性岩石在稀土及微量元素上以富集轻稀土和大离子亲石元素而亏损高场强元素以及明显亏损Nb、Ta为特征,可以划分为高Ti和低Ti两种类型,其中高Ti岩类比低Ti岩类具有更高的轻稀土富集程度及较高的P、Ti丰度,富集Ba、Sr:而低Ti岩类以明显的Th富集和P、Ti亏损为特征。中南部中基性岩总体上具有较低但是变化较大的轻稀土富集程度,同样富集大离子亲石元素而亏损高场强元素且具有明显的Nb、Ta负异常。按照微量元素特征可以分为高K和低K两种类型,前者具有较高的轻稀土和Rb、Ba、Th、Sr丰度,具有明显的K正异常;后者则以较低的轻稀土丰度和明显的Ba正异常以及K、Zr、Hf负异常为特征。地球化学及同位素特征表明大兴安岭中生代中基性系列岩石显示地球化学双重性,既有富集特征又有亏损特征,其中北部以富集型地幔源区为主,而中南部同时出现富集型和亏损型地幔源区,表明其源区的不均一性。而Nd、Hf同位素年龄表明富集型地幔的形成与古亚洲洋闭合事件有密切关系。酸性岩类包含两种明显区别的类型:第一类具有较低的重稀土丰度及微弱的Eu异常,微量元素表现出较高的Ba、Sr丰度:第二类则具有较高的重稀土丰度,强烈的Eu及Ba、Sr负异常,这两类岩石被划分为高Ba-Sr和低Ba-Sr岩类。其中第一类岩石主要分布在北区,而第二类岩石则广泛分布在北部和中南部;此外在时代特征上,低Ba-Sr岩类主要出现在岩浆作用的晚期阶段。其中北部低Ba-Sr岩石具有明显偏高的形成温度,而中南部同类型岩石则具有明显偏低的形成温度,这表明北部在岩浆作用晚期等温面明显抬升,而中南部则相反。这也表明早白垩世期间北部和中南部具有不同的深部作用过程。部分晚侏罗世酸性岩石具有埃达克质岩石的特征,表明晚侏罗世期间大兴安岭地区存在明显加厚的地壳。
     大兴安岭早白垩世火山岩形成于伸展构造环境是众多研究者的共识,主要的证据包括区内广泛出露的同时代的A型花岗岩及其他碱性岩石,变质核杂岩和中基性-酸性脉岩群。而岩石组合、区域构造特征以及亚洲大陆边缘广泛发育的拼贴增生杂岩表明晚侏罗世处于挤压环境当中。这表明晚侏罗世-早白垩世期间,大兴安岭及其邻区经历了构造环境的转换过程,即由挤压转换为伸展。这个转换时期对应于岩浆作用的平静期。
     虽然中南部地区有大量火山岩形成于晚侏罗世期间,大兴安岭中生代火山作用的峰期为早白垩世,与中国东部早白垩世大火成岩事件具有一致的年代学格架。这表明大兴安岭中生代火山岩是中国东部早白垩世大火成岩事件的组成部分,即大兴安岭中生代火山岩是中国东部岩石圈减薄事件的浅部表现。侏罗纪-早白垩世火成岩的时空分布特征表明其形成受到古太平洋板块俯冲作用的控制。侏罗纪期间,受到古太平洋板块低角度俯冲作用的影响,形成了侏罗纪具有活动大陆边缘特征岩石组合,造成了明显的地壳加厚。早白垩世期间,由于加厚地壳重力失稳拆沉,拆沉作用造成软流圈地幔物质上涌,从而造成大规模岩浆作用。拆沉作用从西向东逐渐迁移,从而形成早白垩世岩浆作用自西向东逐渐变新的特征。拆沉作用的高峰时期,甚至出现软流圈与地壳直接接触的现象。而拆沉作用同时也造成了洋壳俯冲角度的改变,使其由早期的低角度俯冲转变为现今的高角度俯冲。尽管受到相同的构造因素的控制,大兴安岭北部和中南部具有不同的作用过程,北部表现出明显的岩石圈减薄过程,而中南部则主要表现为岩浆底侵作用,即减薄作用在空间上具有明显的不均一性。
The Great Xing'an Range in NE China is characterized by the widespread Mesozoic volcanic rocks. For the volcanic rocks in the northern segment, large number of geochronological studies has been done, which indicate that most of these volcanic rocks formed in the the Early Cretaceous, with a few of the Late Jurassic time. But for the volcanics in the middle and southern segments, systematic geochronological study is still absent till now, which hampers further studying of the geological and tectonic evolution history of the Great Xing'an Range, as well as the eastern China. On the basis of the previous studies, a systematic geochronological study has been done focusing on the volcanic rocks in the middle and southern Great Xing'an Range. And then the obtained age date was combined with the geochemistry in order to determine the magma sources and the petrogenesis of the volcanic rocks, as well as the temporal evolution of the volcanics. Importantly, here I further discussed the tectonic controlling factors and geodynamic nature of the igneous events, and the relationship between the magmatism and the lithospheric thinning in the eastern China.
     Based on the field relationship of the volcano strata and the features of rocks assemblages, fossil information in the sedimentary layers, as well as the episodes of the volcanism, the volcanic strata were divided into the Manketouebo, Manitu, Baiyingaolao and Meiletu Formations from bottom to top. The Manketouebo and Baiyingaolao are composed of felsic volcanics and related volcano clastic rocks, including dacite, rhyolite, trachyte and taffaceous rocks, while the Manitu and Meiletu formations comprise a suite of mafic-intermediate rocks, including basalt, andesite and trachy basealt, basaltic trachy andesite, trachy andesite, and related tuffaceous rocks. These volcanics were previously thought to be formed mainly in the Late Jurassic, but lacking of high precise age evidence. Till now, there are only few precision data reported in restricted area, nevertheless, these data can not constrain the beginning time and duration of the voluminous volcanics in the region.
     Systematic dating on the volcanics in the southern segment was performed by zircon U-Pb and whole rock ~(40)Ar/~(39)Ar methods. 17 analyzed samples from the Manketouebo Formation indicates that this formation contains two episodes of magmatism, i.e., the Late Jurassic (160-150Ma) and Early Cretaceous (136-122Ma), with the peak ages at 150Ma and 135Ma, respectively. But there is one sample have much older age of 173Ma. The obtained U-Pb ages of two samples from the location at where the Manketouebo Formation was defined are 152 and 158Ma. Dating on 10 samples from the Manitu Formation indicates that the Manitu Formation has the similer age frame to that of the Manketouebo Formation and also can be divided into two epidodes: 158Ma-150Ma and 137Ma-125Ma, with peak ages of 160Ma-155Ma and 125Ma, respectively. The only differenc is that the volcanis of the Early Cretaceous are dominant in the Manitu Formation, while the majority of the Manketouebo Formation is the Late Jurassic. In the contrast, the Baiyingaolao and Meiletu formations were formed in the Early Cretaceous with much shorter duration, during the period between 141Ma and 124Ma. LJ-Pb ages of the samples from the locations at where thses two formations were firstly founded are 139Ma and 131 Ma, respectively. All these data, combined with the previously published data, indicates that the volcanics in the middle-southern Great Xing'an Range mainly formed during the Late Jurassic-Early Cretaceous time, between 160Ma and 122Ma, with two episodes of 160Ma-150Ma and 141Ma-122Ma. Between them, there is a magmatic gap about 10Ma. Although the volcanic rocks in the both segments formed during the period of Late Jurassic-Early Cretaceous with identical peak time, the ending time and the episodes of the volcanism are different, reflecting the different magmatism sequence, which was probably caused by the different deep geodynamic procedures. These age data also suggest that the previous scheme of subdivision and regional correlation of the volcano strata need to be re-evaluated, which is also manifested by the age data obtained from the successive sections in this study. The former difined Manketouebo and Manitu formations actually contain volcanics of different time; while these four formations have obvious overlapping in age, which means that the previously defined stratigraphic sequence is not realistic.
     Age compilation of the igneous rocks in the Great Xing'an Range and adjacent area implies that there exist two episodes of magmatism in the Jurassic and Early Cretaceous time: the former mainly comprise intusive rocks, while the latter eruptive. Between them, the eruptive rocks have an age-decreasing trend from the west to the east; while the intrusive rocks have the oppsite trend, i.e., becoming young westward. Between them, there is a magmaic gap, which becomes shorter from the continental margin to the intracontinent, from about 60Ma in the Japanese island to less than lOMa in the Great Xing'an Range. Another important feature is that the initial time of the Early Cretaceous magmatism is similar in different region, at about 135Ma, not older than 140Ma.
     In the northern part of the Great Xing'an Range, the mafic-intermediate volcanics are mainly alkaline series, with minor of sub-alkaline; on the contray, those in the middle-southern segment are sub-alkaline series. In the northern part, the mafic-intermediate rocks are characterized by enrichment in LREE, LILE and depletion in HSFE, and can be divided into two types of high Ti and low Ti types. Compared to the low Ti rock, the high Ti rocks are relatively enriched in LREE and Ba-Sr, with high abundances of P and Ti; while the low Ti rocks have more enrichment in Th and depletion in P and Ti. In the middl-southern segment, the mafic-intermediate rocks have relatively low but variable degrees of LREE enrichment. They are enriched in the LILE and depleted in HFSE and 1Mb, Ta. Based on the features of trace elements, these rocks can be divided into the high K and low K types. The former is characterized by the relatively high LREE, Rb, Ba, Th, and Sr abundances and obvious enrichment of K; while the latter has low abundances of LREE, clear positive Ba and negative K, Zr and Hf anomalies. Geochemical and isotopic features of the mafic-intermediate volcanics in the Great Xing'an Range imply the heterogeneity and complexity of the magma sources, that is, the mantle sources include both enriched and depleted. The magma source of the bolcanic rocks in the northern segment is mainly enriched, while in the middle-southern segment includes both enriched and depleted mantle sources. The Nd and Hf isotopic ages show that the formation of the the enriched mantle was closely related to the subduction of the oceanic crust of the Paleo-Asian ocean.
     The felsic rocks include two distinct groups with different REE and trace elements patterns. Rocks of the first group have relatively low HREE abundances and high Ba-Sr abundances with weak Eu anomalies, while rocks of the second group have relatively high HREE abundances and obvious negative anomalies of Eu, Ba and Sr. They are nemed as high Ba-Sr rocks and low Ba-Sr rocks, respectively. The high Ba-Sr rocks mainly distribute in the northern segment, while the low Ba-Sr rocks in the whole range. Temporally, the felsic rocks of low Ba-Sr abundances mainly generated in late stage of the volcanism. The low Ba-Sr rocks in the northern segment have obviously high generation temperatures, indicating the high isothermal surface when they formed; while rocks of the same kind in the middle-southern segment have low temperatures. The different temperatures of the rocks probably reflect the different deep processes. Some of the felsic rocks formed in the Late Jurassic time have the geochemical features of adakitic rocks, indicating the existence of thichened crust at that time.
     For the tectonic environment of the Early Cretaceous, it is consensus that they formed in an extensional environment. The evidences supporting this conclusion include the widespread A-type granite and other kind of alkaline rocks, metamorphic core complexes and mafic-felsic dyke swarms of the same time. Whist, the rock assemblages, features of regional tectonics as well as the well developed accretionary complex along the continental margin indicate that the compressive environment during the Late Jurassic time. That is, during the period of Late Jurassic-Early Cretaceous, the tectonic environment of Great Xing'an Range and adjacent region transformed from compressive to extensional. And the transformation corresponds to the magmatic gap.
     Inspite of the Late Jurassic volcanic rocks in the Great Xing'an Range, the peak time of the magmatism is the Early Cretaceous time, which is identical to that of the Early Cretaceous giant igneous events. This means the huge voluminous volcanic rocks in the Great Xing'an Range is related to the lithospheric thinning event. The temporal-spatial distribution of the Mesozoic igneous rocks in the eastern margin of the continent indicates that they were controlled by the subduction of the Paleo-Pacific plate. During the Jurassic time, the flat subduction of the oceanic plate beneath the continental plate induced the igneous assemblages of active continental margin affinity and hickened the continental crust. Along the subduction, the igneous rocks become youngling westward from the continental margin to the intracontinent. In the Early Cretaceous time, the delamination of the thickened crust induced the upwelling of the asthenospheric mantle, and subsequent huge magmatism. The delamination migrated eastward from the intracontinent to the continental margin, and the corresponding migration of the volcanism. At the climax of the delamination, the asthenosphere contacted with the crust directly, and induced the voluminous felsic rocks. Delamination also induced the change of the subduction angle of the oceanic slabs, resulting in the present high angle subduction revealed by the geophysic data. Although controlled by the same tectonic background, the northern and middle-southern parts of the Great Xing'an Range had different deep processes. In the northern part, the lithospheric thinning was remarkable; while in the middle-southern part underplating of was dominant. That is, the lithospheric thinning is heterogeneous spatially.
引文
[1]蒋国源,权恒.大兴安岭根河、海拉尔盆地中生代火山岩.中国地质科学院沈阳地质矿产研究所所刊,1988,17:23-100.
    [2]赵国龙,扬桂林,傅嘉友,杨桂林,杨玉琢,王忠.大兴安岭中南部中生代火山岩.北京:北京科学技术出版社,1989,1-260.
    [3]葛文春,林强,孙德有,吴福元,元钟宽,李文远,陈明植,尹成孝.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,1999,15(3):396-407.
    [4]葛文春,林强,孙德有,吴福元,李献华.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学-中国地质大学学报,2000a,25(2):172-178.
    [5]葛文春,林强,李献华,孙德有,吴福元.2000b.大兴安岭伊列克得组玄武岩的地球化学特征.矿物岩石,20(3):14-18.
    [6]葛文春,李献华,林强,孙德有,吴福元,尹成孝.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义.地质科学,2001,36(2):176-183.
    [7]林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯,尹成孝.东北地区中生代火山岩的大地构造意义.地质科学,1998,33(2):129-139.
    [8]林强,葛文春,孙德有,吴福元.东北亚中生代火山岩德地球动力学意义.地球物理学报,1999,42(增刊):75-84.
    [9]林强,葛文春,孙德有,吴福元,元钟宽,李文远,尹成孝,陈明植,闵庚德,权致纯.大兴安岭中生代两类流纹岩与玄武岩的成因联系.长春科技大学学报,2000,30(4):322-328.
    [10]林强,葛文春,曹林,孙德有,林经国.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学.2003,32(3):208-222.
    [11]Shao, J.A., Zang, S.X., Mou, B.L. 1994. Extensional tectonics and asthenospheric upwelling in the orogenic belt: a case study from Hinggan-Mongolia Orogenic belt. Chin. Sci. Bull. 39, 533-537.
    [12]邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化.中国科学D辑,28:194-200.
    [13]邵济安,刘福田,陈辉,韩庆军.2001b.大兴安岭-岩山晚中生代岩浆活动与俯冲作用关系.地质学报,75:56-63.
    [14]郭锋,范蔚铭,王岳军,林舸.大兴安岭南段晚中生代双峰式火山作用.岩石学报,2001,17(1):161-168.
    [15]Fan, W.M., Guo, F., Wang, Y.J., Lin G. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China. J. Volcano. Geotherm. Res., 2003, 121: 115-135.
    [16]高晓峰,郭锋,范蔚茗,李超文,李晓勇.南兴安岭晚中生代中酸性火山岩的岩石成因.岩石学报,2005,21(3):734-748.
    [17]Wang F., Zhou X.H., Zhang L.C., Ying J.F., Zhang Y.T., Wu F.Y., Zhu R.X., 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251, 179-198.
    [18]Zhang, J.H., Ge, W.C., Wu, F.Y., Liu, X.M., 2006. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance: zircon U-Pb age and Hf isotopic constraints. Acta Geol. Sin. 80, 801-812.
    [19]张玉涛,张连昌,英基丰,周新华.2006.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义.岩石学报,22:2733-2742.
    [20]张永北,孙世华,毛骞.2006.大兴安岭南段东麓中生代O型埃达克质火山岩及其成因、古构造环境和找矿意义.岩石学报,22:2289-2304.
    [21]陈志广,张连昌,周新华,万博,英基丰,王非.2006.满洲里新右旗火山岩剖面年代学和地球化学特征.岩石学报,22:2971-2980.
    [22]张玉涛,张连昌,英基丰,周新华,王非,侯泉林,刘庆.2007.大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征.岩石学报,23:2811-2832.
    [23]张连昌,陈志广,周新华,英基丰,王非,张玉涛.2007.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约.岩石学报,23:2823-2857.
    [24]范蔚茗,郭锋,高晓峰,李超文.2008.东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义.地球化学,37:361-372.
    [25]Guo, F., Fan, W.M., Li, C.W., Gao, X.F., Miao, L.C. 2008. Early Cretaceous highly positive_(Nd) felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth. Int. J. Earth Sci., DOI 10.1007/s00531-008-0362-8.
    [26]Zhang, J.H., Ge, W.C., Wu, F.Y., Simon, A.W., Yang, J.H., Liu, X.M. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos, 102, 138-157.
    [27]Zhang, L. C., Zhou, X. H., Ying, J.F., Wang, F., Guo, F., Wan, B., Chen, Z.G. 2008. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: Implications for their origin and mantle source characteristics. Chem. Geol, 256: 12-23.
    [28]黑龙江省地质矿产局.1991.黑龙江区域地质志.北京:地质出版社,1-734.
    [29]内蒙古自治区地质矿产局.1993.内蒙古自治区区域地质志.北京:地质出版社,1-725.
    [30]王友勤,苏养正,刘尔义.东北区区域地层.武汉喻家山:中国地质大学出版社,1997,1-175.
    [31]武广,朱群,李之彤,王希今,王宏博,李广远,庞庆帮.2005d.大兴安岭北部中生代火山岩地球化学特征及~(40)Ar/~(39)Ar年代学研究.见:2005年全国岩石学与地球动力学研讨会论文摘要.pp.127-130.
    [32]张吉衡.2006.大兴安岭地区中生代火山岩的年代学格架.吉林大学硕士论文.
    [33]陈志广,张连昌,周新华,刘庆,万博,吴华英.二连盆地北缘中生代火山岩年代学和地球化学特征[C].2007年全国岩石学与地球动力学暨地球动力学研讨会论文摘要.2007年全国岩石学与地球动力学暨地球动力学研讨会.武汉:中国地质大学,2007年11月,pp.260-262.
    [34]Wu EY., Lin J.Q., Wilde S.A., Zhang X.O., Yang J.H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103-119.
    [35]吴福元,徐义刚,高山,郑建平.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,24:1145-1174.
    [36]Meng Q.R., 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369:155-174.
    [37]叶惠文,张兴洲,周裕文.1994.从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化.见:M-SGT地质课题组编,中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京:地质出版社,73-83.
    [38]葛文春,吴福元,周长勇,A.A.Abdel Rahman.2005a.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报,50.1239-1247.
    [38]周长勇,吴福元,葛文春,Abdel Rahman A.A.,张吉衡,程瑞玉.2005.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因.岩石学报,21:763-775.
    [39]洪大卫,黄怀曾,肖宜君,徐海明,靳满元.1994.内蒙中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,68(3):219-230.
    [40]Robinson, P.T., Zhou, M.F., Hu, X.F. 1999. Geochemical constraints on the petrogenesis and tectonic setting of the Hegenshan ophiolite, Northern China. J. Asian Earth Sci., 17: 423-442.
    [41]Chen, B., Jahn, B.M.,Wilde, S.,Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157-182.
    [42]孙德有,吴福元,李惠民,林强.2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报,45(20):2217-2222.
    [43]Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143-173.
    [45]施光海,苗来成,张福勤,简平,范蔚茗,刘敦一.2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,49(4):384-389.
    [46]Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M. 2007a. The Jiamusi Massif: a Jurassic accretionary terrane along the western Pacific margin of NE China. Island Arc, 16: 156-172.
    [47]吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15:181-189.
    [48]吴福元,孙德有,张广良.2000.任向文论燕山运动的深部地球动力学本质.高校地质学报,6(3):379-388.
    [49]吴福元,葛文春,孙德有,郭春丽.2003.中国东部岩石圈减薄研究中的几个问题.地学前缘,10(3):51-59.
    [50]Jahn, B.M.,Wu, F.Y., Chen, B., 2000. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 23: 82-92.
    [51]Wu, F.Y., Jahn, B.M., Wilde, S., Sun, D.Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328, 89-113.
    [52]Hong, D.W., Wang, T., Wang, S.G., Xie X.L. 2004. Continental crustal growth and the supercontinentat cycle: evidence from the Central Asian Orogenic Belt. J. Asian Earth Sci., 23: 799-813. doi: 10.1016/S1367-9120(03)00134-2
    [53]葛文春,隋振民,吴福元,张吉衡,徐学纯,程瑞玉.2007a.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报,23:423-440.
    [54]隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉.2007.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报,23:461-480.
    [55]Wilde, S.A., Dorsett-Bain, H.L., and Liu, J.L. 1997. The identification of a Late Pan-African granulite facies event in Northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China. Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology, VSP International. Science Publishers, Amsterdam. 17, 59-74.
    [56]Wilde, S.A., Zhang, X.Z., Wu, F.Y. 2000. Extension of a newly identified 500 Ma metamorphic terrain in Northeast China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China, Tectonophysics 328, 115-130.
    [57]Wilde, S.A., Wu, F.Y., Zhang, X.Z. 2003. Late Pan-African magmatism in Northeastern China: SHRIMP U-Pb zircon evidence for igneous ages from the Mashan Complex. Precambrian Res., 122:311-327.
    [58]曹熹,党增欣,张兴洲等.1992.佳木斯复合地块.长春:吉林科学技术出版.
    [59]吴福元,孙德有,李惠民,林强,汪筱林.2000.松辽盆地基底岩石锆石U-Pb年龄.科学通报,45:656-660.
    [60]Wu, F.Y., Sun, D.Y., Li, H.M., Wang X.L. 2001. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Phys. Chem. Earth (part A), 26: 793-803.
    [61]王颖,张福勤,张大伟,苗来成,李铁胜,颉颃强,孟庆任,刘敦一.2006.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义.科学通报,51:1811-1816.
    [62]裴福萍,许文良,杨德彬,赵全国,柳小明,胡兆初.2006.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义.科学通报,51:2281-2287.
    [63]高福红,许文良,杨德彬,裴福萍,柳小明,胡兆初.2007.松辽盆地南部基底花岗质岩石锆石LA-ICP-MSU-Pb定年:对盆地基底形成时代的制约.中国科学D辑,37:331-335.
    [64]王兴光,王颖.2007.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义.地质科技情报,26:23-27.
    [65]章凤奇,陈汉林,董传万,余星,肖骏,庞彦明,曹瑞成,朱德丰.2008.松辽盆地北部存在前寒武纪基底的证据.中国地质,35:421-428.
    [66]Wang P.J., Liu W.Z., Wang S.X., Song W.H. 2002.~(40)Ar/~(39)Ar and K/Ar dating on the volcanic rocks in the Songliao Basin, NE China: constrains on stratigraphy and basin dynamics. International Journal of Earth Science, 91:331-340.
    [67]章凤奇,庞彦明,杨树锋,董传万,陈汉林,舒萍.2007.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义.地质学报,81:1249-1259.
    [68]章凤奇,陈汉林,董传万,庞彦明,舒萍,王岩楼,杨树锋.2008.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨.地层学杂志,32:15-20.
    [69]舒萍,丁日新,纪学雁,曲延明.2007.松辽盆地庆深气田储层火山岩锆石地质年代学研究.岩石矿物学杂志,26:239-246.
    [70]丁日新,舒萍,纪学雁,曲延明,程日辉,张斌.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义.吉林大学学报(地球科学版),2007,37:525-5302.
    [71]高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征.2008,吉林大学硕士论文.
    [72]葛文春,吴福元,周长勇,张吉衡.2005b.乌兰浩特地区中生代花岗岩的锆石U-Pb年龄.岩石学报,21:749-762.
    [73]葛文春,吴福元,周长勇,张吉衡.2007b.兴蒙造山带东段斑岩型Cu-Mo矿床成矿时代及其地球动力学意义.科学通报,52:2407-2417.
    [74]武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.2005c.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,50:2278-2288.
    [75]苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若.2003.小兴安岭西北部新开岭-科洛杂岩锆石年代学研究及其意义.科学通报,48:2315-2323.
    [76]苗来成,刘敦一,张福勤,范蔚茗,石玉若,颉颃强.2007.大兴安岭韩家园子和新林地区兴华波口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报,52:591-601.
    [77]邵济安等,张履桥,牟保磊,韩庆军.2007.大兴安岭的隆起与地球动力学背景.北京:地质出版社,pp250.
    [78]吉林省地质矿产局.1988.吉林省地质志.北京:地质出版社,1-698.
    [79]河北省地质矿产局.1989.河北省北京市天津市地质志.北京:地质出版社,1-741.
    [80]赵书跃,韩彦东,朱春燕,郭奎城,王建民,刘宝山.2004.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义.地质力学学报,10:276-287.
    [81]尹志刚,赵海滨,赵寒冬,张跃龙.2005.大兴安岭北端塔木兰沟组玄武质岩石的地球化学特征及构造背景.地质通报,24:848-853.
    [82]邓晋福,赵海玲,莫宣学等.1996.大陆根-柱构造--大陆动力学的钥匙.北京:地质出版社,18-24.
    [83]邵济安,李献华,张履桥,牟保磊,刘玉琳.2001a.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,30:517-524.
    [84]Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Wallay, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C. 2004..Improved ~(206)pb/~(238)U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series or zircon standards. Chem. Geol. 206:115-140.
    [85]刘海臣,朱炳泉,张展霞.1998.LAM-ICPMS法用于单颗粒锆石定年研究.科学通报,43:1103-1106.
    [86]Horn, I., Rudnick, R.L., McDonough, W.F. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and Laser ablation-ICP-MS: application to U-Pb geochronology. Chem. Geol., 167: 405-425.
    [87]梁细荣,李献华,刘永康,朱炳泉,张海洋.2000.激光等离子体质谱法(LA-ICPMS)用于年轻锆石U-Pb定年.地球化学,29:1-5.
    [88]Ballard, J.R., Palin, J.M., Williams, I.S., Campbell, I.H., Faunes, A. 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP. Geology, 29: 383-386.
    [89]Li, X.H., Liang, X.R., Sun, M., Liu, Y., Tu X.L. 2000. Geochronology and geochemistry of single-grain zircons: Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur. J. Mineral., 12: 1015-1024.
    [90]Li, X.H., Liang, X.R., Sun, M., Guan, H., Malpas, J.G. 2001. Precise ~(206)pb/~(238)U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chem. Geol., 175:209-219.
    [91]Belousova, E.A., Griffin, W.L., O'Reilly, S. Y., Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143: 602-622.
    [92]Ko(?)ler, J., Fonneland, H., Sylvester, P., Tubrett, M., Pedersen, R.B. 2002. U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques. Chem. Geol., 182:605-618.
    [93]刘民武,赫英.2003.激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展.地球科学进展.18:116-121.
    [94]Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in-situ U-Pb zircon geochronology. Chem. Geol., 211:331-335.
    [95]袁洪林,吴福元,高山,柳小明,徐平,孙德有.2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,48:1511-1520.
    [96]Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D.,Wu, F.Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand. Newslett. 28, 353-370.
    [97]Paul, B., Woodhead, J.D., Hergt, J. 2005. Improved in situ isotope analysis of low-Pb materials using LA-MC-ICP-MS with parallel ion counter and Faraday detection. J. Anal. At. Spectrom. 20, 1350-1357.
    [98]柳小明,高山,第五春荣,袁洪林,胡兆初.2007.单颗粒锆石的20 m小斑束原位 微区LA-ICP-MSU-Pb年龄和微量元素的同时测定.科学通报,52:228-235.
    [99]Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., G(u|¨)nther, D., Fontaine, G. H., Liu, X. M., Diwu, C. R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and traceelement compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol., 247: 100-118.
    [100]谢烈文,张艳斌,张辉煌,孙金凤,吴福元.2008.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报,53:220-228.
    [101]Gunther, D., Frischknecht, R., Heinrich, C.A. 1997. Capabilities of an ArF 193nm excimer laser for LAM-ICP-MS micro-analysis of geological minerals. Journal of Analytical Atomic Spectrometry, 12: 939-944.
    [102]Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S. 2008. Simultaneous determinations of U-Pb age and trace element compositions of zircon by LA-ICPMS at small spot sizes. Geostandards and Geoanalytical Research, in review.
    [103]Anderson, T. 2002. Correction of common lead in U-Pb analyses that do not report ~(204)Pb. Chem. Geol., 192: 59-79.
    [104]Ludwig, K.R., 2003. Isoplot 3.0--a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Publ., vol. 4.70 pp.
    [105]李惠民,董传万,徐夕生,周新民.1995.泉州辉长岩中单粒锆石U-Pb法定年-闽东南基性岩浆岩的起源.科学通报,40(2):158-160.
    [106]王非,贺怀宇,朱日祥,桑海清,王英兰,杨列坤.2005.~(40)Ar/~(39)A年代学国际国内标样的对比标定.中国科学D辑,35(7):617-626.
    [107]刘晔,柳小明,胡兆初,第五春荣,袁洪林,高山.2007.ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析.岩石学报,23:1203-1212.
    [108]Irvine, T.N., Baragar, W.R.A. 1971. A guide to the chem ical classification of the common volcaic rocks. Can. J. Earth Sci., 8: 523-548.
    [109]Sun, S.S., and McDonough, W.F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., and Norry, M. J. (eds), Magmatism in the Ocean Basins. Geological Society Special Publication, No. 42, 231-255.
    [110]Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46: 411-429.
    [111]Miller, C.F., McDowell, S.M., Mapes, R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532.
    [112]Jung, S., and Pf(a|¨)nder, J.A. 2007. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na_2O, Al_2O_3/TiO_2 and accessory mineral saturation thermometry. Eur J Mineral., 19: 859-870.
    [113]Watson, E.B., and Harrison, T.M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295-304.
    [114]Bowden, P.1966. Zirconium in Younger Granites of Northern Nigeria. Geochim Cosmochim Acta, 30: 985-993.
    [115]Dietrich, R.V. 1968. Behavior of zirconium in certain artificial magmas under diverse P-T coniditons. Lithos, 1: 20-29.
    [116]Hanchar, J.M., Watson, E.B. 2003. Zircon Saturation Thermometry. In Hanchar, J. M. and Hoskin, P.W. O. (eds), Zircon. Rev Mineral Geochem, 53:89-112.
    [117]Watson, E.B. 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contr. Mineral. Petrol., 70:407-419.
    [118]Harrison, T.M., Watson, E.B. 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contr. Mineral. Petrol., 84: 66-72.
    [119]Green, T.H., Watson, E.B. 1982. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to Orogenic rock series. Contr. Mineral. Petrol., 79:96-105.
    [120] Dickinson, J.E. Jr., Hess, P.C. 1982. Zircon saturation in lunar basalts and granites. Earth Planet Sci. Lett., 57: 336-344.
    [121] Harrison, T.M., Schmidt, A.K. 2007. High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci. Lett., 261: 9-18.
    [122] Fu, B., Cavosie A.J., Clechenko, C.C., Fournelle, J., Kita, N.T., Lackey, J.S., Page, F.Z., Wilde, S.A., Valley, J.W. 2005. Ti-in-zircon thermometer: preliminary results. Eos Trans AGU, Abstr 86, V41F-1538.
    [123] Watson, E.B. 1996. Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance. Trans Roy Soc Edinburgh: Earth Sci., 87: 43-56.
    [124] Evans, O.C., and Hanson, G.N. 1993. Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks. Chem. Geol., 110: 69-93.
    [125] Harrison, T. M., Watson, E. B., Aikman, A. B. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology 35: 635-638.
    [126] Clemens, J. D. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Sci. Rev., 61: 1-18.
    [127] Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D., and Wyborn L.A.I. 2000. Lachlan Fold Belt granites revisited: high- and low-temperature granites and their implications. Australian Journal of Earth Sciences 47:123-138.
    [128] Chappell, B.W,, Bryant, C.J.,Wyborn, D., White, A.J.R., Williams, I.S. 1998. High and lowtemperature granites. Resource Geol., 48: 225-236.
    [129] Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D., Wyborn,L.A.I. 2001. Lachlan Fold Belt granites revisited: high and low temperature granites and their implications. Austr. Earth Sci.,47:123-138.
    [130] Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D. 2004.Low and high temperature granites. Trans. Royal. Soc., Edinburgh: Earth Sci., 95:125-140.
    [131] 隋振民.2007.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化.吉林大学博士论文,148pp.
    [132] 吴福元,李献华,杨进辉,郑永飞.2006.花岗岩成因研究的若干问题.岩石学报,23:1217-1238.
    [133] Clemens, J. D., Holloway, J.R., White, A.J.R. 1986. Origin of an A-type granite: Experimental constraints. Am. Mineral., 71:317-324.
    [134] Patino Douce, A. E. 1997. Generation of metaluminous A-type granites by low pressure melting of calc-alckaline granitoids. Geol., 25: 743-746.
    [135] Jahn,B.M., Wu, F.Y., Capdevila. R., Fourcade, S., Wang, Y.X., and Zhao, Z.H. 2001.Highly evoloved juvenile granites with the tetrad REE patterns: The Woduhe and Baerzhe granites form the Great Xing'an Range (Khingan) Mountains in NE China. Lithos, 59:171-198.
    [136] Wu, F.Y., Sun, D.Y., Jahn, B.M. and Wilde, S.A. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J. Asian Earth Sci., 23:731-744.
    [137] Stolze, A.J., Jochum, K.P., Spettel, B., Hofmann, A.W. 1996. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24: 587-590.
    [138] Badarch, G., Dickson, C.W., Windley, B.F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 21: 87-110.
    [139] Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian. orogenic belt. Tectonics, 22, 1069. doi:10. 1029/2002TC001484.
    [140] Li, J.Y., 2007. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 26: 207-224.
    [141] Van der Voo, R., Spakman, W., Bijwaard, H. 1999. Mesozoic subducted slabs under Siberia. Nature, 397: 246-249.
    [142] Graham, S.A., Hendrix, M.S., Johnson, C.L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L.E., Hacker, B.R. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geol. Soc. Amer. Bull., 113: 1560-1579.
    [143] Tomurtogoo, O., Windley, B.F., Kroner, A., Badarch, G., Liu, D.Y. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. London, 162: 125-134.
    [144] Uyeda, S., Miyashiro, A. 1974. Plate tectonics and the Japanese islands: A synthesis. Geo. Soc. Am. Bull., 85:1159-1170.
    [145] Hilde, T.W.C., Uyeda, S., Kroenke, L., 1977. Evolution of the western Pacific and its margin. Tectonophysics, 38: 145-165.
    [146] Seng(o|¨)r, A.M.C., Natal'in, B.A. 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp. 486-640.
    [147] Fukao, Y., Obayashi, M., Inoue, H., Nenbai, M. 1992. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res., 97: 4809-4822.
    [148] Huang, J.L., Zhao, D.P. 2006. High-resolution mantle tomography of China and Surrounding regions. J. Geophy. Res. 111, B09305. doi:10.1029/2005JB004066.
    [149] Tang, Q.S., Chen, L.2008. Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh Wave Dispersion Analysis. Tectonophysics, 455: 43-52.
    [150] Kojima, S. 1987. Mesozoic terrane accretion in northeast China, Sikhote-Alin and Japan regions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69: 213-232.
    [151] Natal'in, B.A. 1993. History and modes of Mesozoic accretion in southeastern Russia. Island Arc, 2:15 34.
    [152] lsozaki, Y., 1997. Jurassic accretion tectonics of Japan. Island Arc, 6: 25-51.
    [153] Maruyama, S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc, 6: 91-120.
    [154] 秦克章,李惠民,李伟实,Ishihara Shunso.1999.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代.地质论评,45:181-185.
    [155] 李锦轶,和政军,莫申国,Sorokin A.A.2004.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报,23:120-129.
    [156] Liu W., Siebel T.W., Li X., Pan X. 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia ofChina: Constraints on basaltic underplating. Chemical Geology, 219: 5-35.
    [157] 吴福元.1998.壳幔物质交换的岩浆岩石学研究.地学前缘,5(3):95-103.
    [158] 孙德有,吴福元,林强,路孝平.2001.张广才岭燕山早期白石山岩体成因与壳幔相互作用.岩石学报,17:227-235.
    [159] 孙德有,吴福元,高山,路孝平.2005.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘,12:263-275.
    [160] 许文良,裴福萍,高福红,杨德彬,卜永吉.2008.伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义.地球科学-中国地质大学学报,33:145-150.
    [161] Wu, F.Y, Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.E, Lin, Q., Ge, W.C., Sun, D.Y., 2003. Highly fractionated 1-type granites in NE China (1): Geochronology and petrogenesis. Lithos, 66:241-273.
    [162]张艳斌,吴福元,李惠民,路孝平,孙德有,周红英.2002.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄.岩石学报,18:475-481.
    [163]张艳斌,吴福元,翟明国,路孝平.2004.和龙地块的构造属性与华北地台北缘东段边界.中国科学,34:795-806.
    [164]Zhang, Y.B., Wu, F.Y., Wilde, S.A., Zhai, M.G., Lu, X.R, Sun, D.Y., 2004. Zircon U-Pb ages and tectonic implications of"Early Paleozoic" granitoids at Yanbian, Jilin province, NE China. Island Arc, 13: 484-505.
    [165]Zhang, Y.B., Wu, F.Y., Zhai, M.G., Lu, X.P., Zhang, H.F., 2007. Geochronology and Tectonic Implications of the Seluohe Group in the Northern Margin of the North China Craton. Inter. Geol. Rev.. 50:135-153
    [166]张艳斌.2007.吉黑东部花岗岩的成因与显生宙地壳增生.中国科学院地质与地球物理研究所博士后研究工作报告.1-96.
    [167]Wu, F.Y., Yang, J.H., Wilde, S.A., Zhang, X.O. 2005b. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol., 221: 127-156.
    [168]杨进辉,吴福元,柳小明,谢烈文,杨岳衡.2007.辽东半岛小黑山岩体成因及其地质意义:锆石U-Pb年龄和铪同位素证据.矿物岩石地球化学通报,126:29-43.
    [169]Sagong, H., Kwon, S.T. 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24 (2004TC001720).
    [170]Wu, F.Y., Han, R.H., Yang, J.H., Wilde, S.A., Zhai, M.G. 2007b. Initial constraints on granitic magmatism in North Korea using U-Pb zircon geochronology. Chem. Geol., 238: 232-248.
    [171]Kinoshita O. 1995, Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the paleogene. Tectonophysics, 245: 25-35.
    [172]Smith, P.E., Evensen, N.M., York, D., Chang, M.M., Jian, F., Li, J.L., Cumbaa, S., Russell, D. 1995. Dates and rates in ancient lakes: ~(40)At/~(39)Ar evidence for an Early Cretaceous age for the Jehol Group, northeastern China. Can. J. Earth Sci. 32: 1426-1431.
    [173]Swisher Ⅲ, C.C., Wang, Y.Q., Wang, X.L., Xu, X., Wang, Y. 1999. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400:58-61.
    [174]Swisher Ⅲ, C.C.,Wang, X.L., Zhou, Z.H.,Wang, Y.Q., Jin, F., Zhang, J.Y., Xu, X., Zhang, F.C., Wang, Y. 2002. Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning, China: new ~(40)Ar/~(39)Ar dating of the Yixian and Tuchengzi formations. Chin. Sci. Bull., 47:135-138.
    [175]Davis, G.A., Zheng, Y.D., Wang, C., Darby, B.J., Zhang, C.H., Gehrels, G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix, M.S., Davies, G.A. (Eds.), Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation: GSA Memoir, 194: 17-198.
    [176]王松山,王元青,胡华光,李惠民.辽西四合屯脊椎动物生存时代:锆石U-Pb年龄证据.科学通报,2001a,46(4):330-333.
    [177]王松山,胡华光,李佩贤,王元青.2001b.再论辽西四合屯脊椎动物生存时代:Ar-Ar年龄证据.岩石学报,17:663-668.
    [178]陈跃军.2003.吉林省东南部中生代火山事件地层研究.吉林大学博士学位论文.1-105.
    [179]彭艳东,张立东,陈文,张长捷,郭胜哲,邢德和,贾斌,陈树旺,丁秋红.2003.辽西义县组火山岩~(40)Ar/~(39)Ar、K-Ar法年龄测定.地球化学,32(5):427-435.
    [180]裴福萍,许文良,杨德彬,赵全国.2005.吉林通化赤柏松辉长岩锆石SHRIMP U-Pb定年及其地质意义.中国科学(D辑),35(5):393-398.
    [181]李超文.2006.吉林省东南部晚中生代火山作用及其深部过程研究.中国科学院研究生院博士学位论文.
    [182]李超文,郭锋,范蔚茗,高晓峰.2007.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义.中国科学D辑,37:319-330.
    [183]纪伟强,2007.吉黑东部中生代晚期火山岩的年代学和地球化学.吉林大学硕士论文.
    [184]李培忠,于津生.1993.黑龙江碾子山晶洞碱性花岗岩岩体年龄及其意义.地球化学,4:389-397.
    [185]王一先,赵振华.1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学,26(1):24-35.
    [186]杨中柱,孟庆成,冮冮,韩小平.1996.辽南变质核杂岩.辽宁地质,4:241-250.
    [187]张履桥,邵济安,郑广瑞.1998.内蒙古甘珠尔苗变质核杂岩.地质学报,33:140-146.
    [188]张晓东,余青,陈发景,汪新文.2000.松辽盆地变质核杂岩和伸展断陷的构造特征及成因.地学前缘,7:11-419.
    [189]Liu, J.L., Davis, G.A., Lin, Z.Y., Wu, F.Y. 2005. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407: 65-80.
    [190]Yang, J.H., Wu, F.Y., Chung, S.L., Lo, C.H., Wilde, S.A., Davis, G.A. 2007. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from ~(40)Ar/~(39)Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. GSA Bulletin, 119(11): 1405-1414.
    [191]邵济安,张履桥.2002.华北北部中生代岩墒群.岩石学报,18:312-318.
    [192]Maruyama, S.,Isozaki, Y., Kimura, G., Terabayashi, M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750Ma to the present. Island Arc, 6: 121-142.
    [193]Sagong, H., Kwon, S.T. 2005. Mesozoic episodic magmatism in South. Korea and its tectonic implication. Tectonics, 24 (2004TC001720).
    [194]Menzies, M.A., Fan, W.M., Zhang, M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of>120km of Archean lithosphere, Sino-Korean craton, China. in: H.M. Prichard, T. Alabaster, N.B.W. Harris, C.R. Neary (Eds.), Magmatic Processes and Plate Tectonics, Spec. Publ.-Geol. Soc. Lond., 76: 71-81.
    [195]Menzies, M.A., Xu, Y.G. 1998. Geodynamics of the North China craton, in: M.F.J. flower, S.L. Chung, C.H. Lo, T.Y. Lee (Eds.), Mantle Dydamics and Plate Interactions in East Asia, Am. Geophy. Union, Washington, D.C., Geodyn. Ser., 100: 155-165.
    [196]Griffin, W.L., Zhang, A.D., O'Reilly, S.Y., Ryan, C.G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton, in: M.F.J. flower, S.L. Chung, C.H. Lo, T.Y. Lee (Eds.), Mantle Dydamics and Plate Interactions in East Asia, Am. Geophy. Union, Washington, D.C., Geodyn. Ser., 100: 107-126.
    [197]Wu, F.Y., Walker, R.J., Ren, X.W., Snn, D.Y., Zhou, X.H. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem. Geol., 197:107-129.
    [198]Wu, F.Y., Walker, R.J., Yang, Y.H., Yuan, H.L., Yang, J.H. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim. Cosmochim. Acta, 70: 5013-5034.
    [199]Xu, Y.G. 2001. Thermal-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Phys. Chem. Earth. 26: 747-757.
    [200]Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.S.2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet. Sci. Lett., 198: 307-322.
    [201]Gao, S., Roberta, L., Rudnick, Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang Q.H. 2004.Recycling lower continental crustin the North China craton. Nature, 432: 892-897.
    [202]Zhang, H.F., 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case ofSino-Korean craton. Earth Planet. Sci. Lett., 237: 768-780.
    [203]Zheng, J.R, Griffin, W.L., O'Reilly, S.Y., Yang, J.S., Li, T.F., Zhang, M., Zhang, R.Y., Liou, J.G. 2006. Mineral chemistry of peridotites fiom Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath Eastern China. J. Petrol. 47:2233-2256.
    [204]Seng(o|¨)r, A.M.C., Natal'in, B.A., Burtman, V.S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700