用户名: 密码: 验证码:
西藏革吉县尕尔穷铜金矿矿床地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尕尓穷铜金矿位于班公湖-怒江成矿带西段,南侧为冈底斯-拉萨-腾冲陆块中的昂龙岗日岩浆弧,北侧为羌塘-三江复合板块,地处狮泉河晚燕山期构造带与冈底斯-念青唐古拉板片两大构造单元的交汇处。伴随着新特提斯构造演化,构造岩浆活动异常发育,成矿条件有利。研究区地层属于碳酸盐岩与火山凝灰岩互层的白垩系则弄群多爱组,岩浆岩为燕山晚期中酸性侵入岩,构造以断裂构造为主。主矿体位于石英闪长岩与碳酸盐岩的接触带上,呈层状、似层状、透镜状产出。有用元素为铜和金,伴生组分为银。矿石主要为浸染状、稀疏浸染状、细脉浸染状,矿石矿物主要为黄铜矿、斑铜矿、自然金。
     矿区与成矿有关的岩浆岩为石英闪长岩和花岗斑岩,两类岩石均富集Rb、Ba、Th、U等大离子亲石元素,亏损Nb、Ta、Zr、Hf等高场强元素;但花岗斑岩更亏损Sr、Ti元素。石英闪长岩具有活动大陆边缘岛弧环境的主量、微量、稀土元素特征;花岗斑岩具有碰撞环境下的主量、微量、稀土元素特征。石英闪长岩具有壳幔混合的同位素特征,花岗斑岩具有壳源的同位素特征。
     根据矽卡岩中主量元素的特征,将其为内矽卡岩和外矽卡岩。内矽卡岩中SiO_2、Al_2O_3、K_2O、Na_2O含量偏高,铜、钼含量较高,具有负铕异常,轻稀土元素富集内部分异较明显,重稀土元素亏损且分异不明显。外矽卡岩中Fe_2O_3、CaO含量偏高,铜、金含量较高,具有负铕异常,轻稀土元素亏损分异较明显,重稀土富集分异不明显。同位素特征表明,矽卡岩中的碳、氧主要来源于围岩,部分来源于岩浆作用。
     结合尕尔穷铜金矿的区域地质特征、矿体地质特征、矿床地球化学,认为尕尔穷铜金矿形成于燕山晚期。主要有两期矿化,早期为112Ma左右活动大陆边缘环境下的偏中性的岩浆侵位于多爱组碳酸盐岩中,在接触带形成以铜、金为主的矿化;晚期为87.66Ma左右产出于碰撞环境下的花岗质岩浆侵位于多爱组碳酸盐岩和早期的闪长岩中,在接触带形成以钼为主的矿化,同时对早期成矿物质起到了进一步富集。矿区有利的围岩条件、构造条件和两期岩浆活动最终造就了尕尔穷铜金矿的形成。
Gaerqiong Copper-gold deposit is located in the west of bangong-nujiang metallogenic belt,which on the south Anglonggangri magmatic arc of Gangdese-lasa plate and on the north qiangtang-sanjiang plate,Which is located locates in the intersection of the Shiquanhe Late-Yanshan Junction Zone and Gangdese Niainqentangula plate. With meso-Tethys evolution, mineral-formation condition very favorable with tectonic movement and magmatic activity. What the deposite diggings are carbonatite and pyroclasticrock which belongs to Duoai Formation of Zelong Group, Cretaceous system. Magmatic rocks for late yanshan period intermediate-acidic intrusive rocks.Constructed to fracture primarily, folding structures not development. The Main orebody in quartz diorite and and carbonate contact take, outputing as bedded vein near-bedded and lensing. Useful elements for copper and gold, silver and molybdenum potential economic value.The deposit consists of pepper and salt structure ore and veinlet disseminated ore,mainly of for chalcopyrite , bornite and free gold.
     Can be divided into the magmatite dioritoid and granite classes, two types of rocks are enrichment Rb, Ba, Th, U etc large-ion lithophile element, losses Nb ,Ta, Zr, Hf etc high field strength elements; But the granitoids are more losses Sr, Ti elements. Dioritoid have active continental margin of trace, rare earth element characteristic; Granite have collision orogens, trace, rare earth element characteristic. Dioritoid have isotopic element of crust-mantle system, Granite have isotopic element of crust system.
     According to the elements within its for difference, endoskarn and exoskarn. Endoskarn have more SiO_2, Al_2O_3, K_2O, Na_2O, Copper-molybdenum;With less Eu, light rare-earth element enrichment internal differentiation is more apparent, heavy rare-earth losses and differentiation of rare earth elements is not clear. Exoskarn have more Fe_2O_3, CaO,Copper-gold,With less Eu, light rare earth elements is obvious, heavy losses differentiation is not clear. Isotopic element shows that the skarn carbon and oxygen the main comre from the surrounding rock, the less come from magmatism.
     Combined with the Gaerqiong poor-copper ore regional geological characteristics, the geological characteristics, geochemistry, think Gaerqiong deposits formed in late yanshan period. Mineralization activities there are two major periods, about 112Ma early for active margin of trace dioritoid intrusive carbonate with formation mainly with copper, gold mineralization; About 87.66 Ma late for the collision environment output granitoids are invading carbonate, early flash in contact dioritoid with form the mineralization mainly molybdenum in early ore-forming materials, and played the role of further enrichment. Mining area surrounding conditions favorable, structure condition and two periods magmatic activity eventually contributed to the formation of Gaerqiong copper-gold deposit.
引文
曹圣华,邓世权,肖志坚,廖六根.2006.班公湖—怒江结合带西段中特提斯多岛弧构造演化[J].沉积与特提斯地质,26(4): 25~32.
    曹圣华,肖晓林,欧阳克贵.2008.班公湖—怒江结合带西段侏罗纪木嘎岗日群的重新厘定及意义[J].沉积学报,26(4): 559~564.
    陈奇,谢琳,肖志坚.2007.青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化[J].东华理工学院学报,30(2): 107~112.
    陈衍景,常兆山. 1996.中国矽卡岩型金矿床地质研究和勘查的进展与问题[J].有色金属矿产与勘查,5(3):129~139.
    陈衍景.1996.中国夕卡岩型金矿床的勘查进展和方向[J].地质与勘探,32(4):9~18.
    陈玉禄,张宽忠,李关清等.2005.班公湖—怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义[J].地质通报,24(7): 621~624
    陈玉禄,张宽忠,杨志民等.2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报,25(6): 694~699.
    陈毓川,李兆鼐,毋瑞身等. 2001.中国金矿床及其成矿规律[M].北京:地质出版社.
    程裕淇、陈毓川、赵一鸣. 1979.初论矿床的成矿系列问题[J].中国地质科学院学报,第1号,32~58.
    邓万明著.1998.青藏高原北部新生代板内火山岩.北京:地质出版社.
    丁悌平,万德芳,李金城等.1988.硅同位素测量方法及其地质意义[J].矿床地质,7(4):90~96.
    郭铁鹰,梁定一等.1991.西藏阿里地质[R].武汉:中国地质大学出版社.
    侯德义.1984.找矿勘探地质学[M].北京:地质出版社.
    侯增谦,孟祥金,曲晓明等.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,24(2):108~121.
    黄汲清,陈炳蔚. 1993.中国及邻区特提斯海的演化[M].北京:地质出版社.
    黄汲清,陈国铭,陈炳蔚. 1984.特提斯-喜马拉雅构造域初步分析[J]..地质学报.1:1~17.
    黄勇.2009.西藏谢通门县雄村铜金矿矿床地球化学特征[D].成都:成都理工大学.
    季绍新,余根峰,邢文臣. 2001.试论青藏高原岩浆活动史及其与板块构造的关系[J].火山地质与矿产.22(1):31~40.
    蒋光武,谢尧武,白珍平等. 2009.青藏高原班公湖-怒江缝合带丁青-碧土段大地构造演化[J].地质通报,28(9):1259~1266.
    赖绍聪,邓晋福,赵海玲著.1996.青藏高原北缘火山作用与构造演化[R]..西安:陕西科学技术出版社.
    黎诺. 1993.矽卡岩铜矿床的研究与找矿[J].中国地质科学院矿产资源研究所所刊,第1号,111~123.
    李昌年著.1992.火成岩微量元素岩石学[M]..武汉:中国地质大学出版社.
    李光明,李金祥,秦克章,张天平,肖波.2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,23(5):935~952.
    李光明,李金祥,秦克章等. 2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,23(5):935~952.
    李金祥,李光明,秦克章等.2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,24(3): 531~543.
    李金祥,秦克章,李光明等.2008.西藏班公湖带多不杂富金斑岩铜矿床中金红石的特征及其意义[J].矿床地质,27(2):209~219.
    李金祥,秦克章,李光明等. 2008.西藏班公湖带多不杂富金斑岩铜矿床中金红石的特征及其意义[J].矿床地质,27(2):209~219.
    梁祥济.2000.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社.
    廖国兴. 1983.西藏班公湖-怒江板块缝合带东段地质特征.北京:地质出版社.青藏高原地质文集(12).
    刘庆宏,肖志坚,曹圣华等.2004.班公湖—怒江结合带西段多岛弧盆系时空结构初步分析[J].沉积与特提斯地质,24(3): 15~21.
    刘增乾. 1990.青藏高原大地构造与形成演化[M]..北京:地质出版
    刘增乾等. 1990.青藏高原大地构造与形成演化[M].北京:地质出版社.
    刘肇昌.1985.板块构造学[M].成都:四川科学技术出版社.
    孟良义.1997.斑岩铜矿床的成矿模式和石英脉金矿床的成矿信息[M].北京:海洋出版社.
    潘桂棠,徐强,王立全.2001.青藏高原多岛弧-盆系格局机制[J].矿物岩石.21(3):186-189.
    潘桂棠,郑海翔,徐耀荣等. 1983.初论班公湖-怒江结合带[R].北京:地质出版社.青藏高原地质文集(12).
    潘桂棠、莫宣学、侯增谦等. 2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521~533.
    邱家骧,王方正,马昌前等. 1991.应用岩浆岩石学[M]..中国地质大学出版社.155~211.
    邱瑞照,周肃,邓晋福等. 2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定—兼论班公湖-怒江蛇绿岩形成时代[J].中国地质,31(3):262~268.
    曲晓明,辛洪波. 2006.藏西班公湖斑岩铜矿的形成时代与成矿构造环境[J].地质通报,25(7):792~799.
    曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,25(7): 792~799.
    山西地质调查院.2007.西藏自治区革吉县尕尔穷及尕尔穷外围铜金矿普查地质报告[R].
    佘宏全,李进文,丰成友,马东方,潘桂棠,李光明.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义[J].地质学报,80(9):1434~1448.
    唐菊兴,陈毓川,王登红等.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698~704.
    唐菊兴,李志军,刘文周等.2009.西藏自治区革吉县尕尔穷铜矿详查地质报告[R].
    唐菊兴,王成辉,屈文俊等.2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义[J].岩矿测试,28(3):215~218.
    唐菊兴,张丽,李志军等.2006.西藏玉龙铜矿床—鼻状构造圈闭控制的特大型矿床[J].矿床地质,25(6):654~662.
    田毅. 2009.西藏班公湖-怒江成矿带西段铜(金)、铁矿床岩石地球化学特征[D].吉林:吉林大学.
    田毅.2009.西藏班公湖-怒江成矿带西段铜(金)、铁矿床岩石地球化学特征研究[D].吉林:吉林大学.
    王冠民,钟建华. 2002.班公湖-怒江构造西段三叠纪-侏罗纪构造-沉积演化[J].地质论评,48(3):297~303.
    王建平.班公湖一怒江缝合带东段地质特征—特提斯洋演化[A].选自:31届国际地质大会论文集[C],64~48.
    王友. 2010.西藏革吉县尕尔穷铜金矿床矿石特征研究[D].成都:成都理工大学.
    卫万顺,路彦明,刘桂阁,范俊杰,陈勇敢.2001.西藏班公湖—怒江成矿带中段砂金成色特征[J].黄金地质,7(4): 9~14.
    西藏地矿局地质六队.2004.西藏自治区革吉县尕尔穷铜金矿普查地质报告[R].
    西藏自治区地矿局. 1984.1:150万西藏板块构造建造图[M].北京:地质出版社.
    西藏自治区地矿局.1997.西藏自治区岩石地层[R].武汉:中国地质大学出版社.
    西藏自治区地质调查院. 2004.狮泉河幅1:25万区域地质调查报告[R].
    西藏自治区地质调查院.2005.1/25万(狮泉河幅)区域地质调查报告[R].
    夏代祥. 1986.班公湖-怒江、雅鲁藏布江缝合带中段演化历程剖析[A].北京:地质出版社,青藏高原地质文集(90).
    夏代祥.1985.班公湖一怒江、雅鲁藏布江缝合带中段演化历程的剖析[A].选自:青藏高原地质文集[C],9:123~138.
    辛洪波,曲晓明,王瑞江等.2009.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nb同位素特征[J].28(6):785~792.
    许文良,杨德彬,裴福萍等.2009.华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造:来自橄榄岩捕虏体中角闪石的成分制约[J].吉林大学学报,39(4):606~617.
    姚晓峰. 2010.西藏革吉县尕尔穷矽卡岩型铜金矿成矿岩浆岩特征及其含矿性研究[D].成都:成都理工大学.
    应立娟.2007.新疆乔夏哈拉铁铜金矿床地质、地球化学特征与成因研究[D].北京:中国地质科学院.
    雍永源,贾宝江.2000.板块剪式汇聚加地体拼贴—中特提斯消亡的新模式[J].沉积与特提斯地质.20(1).P85-89.
    余光明,王成善,张哨楠.1991.西藏班公湖-丁青断裂带侏罗纪沉积盆地的特征[J]..中国地质科学院成都地质矿产研究所所刊.第13号,33-43.
    余光明,王成善. 1990.西藏特提斯沉积地质[M].北京:地质出版社.
    余宏全,李进文,马东方等. 2009.西藏多不杂斑岩铜矿辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质,28(6):737-746.
    张翔,刘建宏,黎志恒等.2006.北祁连成矿带地球化学块体含矿性评价[J].地质与勘探,41(3):42~48.
    赵一鸣,李大新.2003.中国夕卡岩矿床中的角闪石[J].矿床地质,22(4):345~359.
    赵一鸣.1990.中国夕卡岩矿床[M].北京:地质出版社.
    赵政璋,李永铁,叶和飞,张昱文主编.2001.青藏高原大地构造特征及盆地演化[R].北京:科学出版社.
    赵政璋,李永铁,叶和飞,张昱文主编.2001.青藏高原地层[R].北京:科学出版社.
    郑文宝.2009.西藏墨竹工卡县甲玛铜多金属矿矿床地球化学特征[D].成都:成都理工大学.
    郑有业,许荣科.2003.班怒带向北俯冲的新证据:尕苍见一带沟弧盆体系的厘定及地质意义.地质通报. 23(5-6).
    中国地质调查局.2004.班公湖—怒江结合带区域地质调查成果与进展[J].地质通报,23(1): 61~62.
    庄龙池,郑兰,陈文芳.1997.湖南石门磺厂雄黄矿区硅质岩的硅、氧同位素研究和成因[J].华南地质与矿产,(2):51~53.
    Allegre C J and 34 others. 1984. Structure and evolution of the Hi-malayan_Tibet orogenic belt[J].
    Baker T and Lang J R. 2003. Reconciling fluid inclusions, fluids processand fluid source in skarns: An example from the Bismark skarn de-posit, Mexico[J]. Mineralium Deposita, 38: 474~495.
    Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoicvolcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic significance [J]. EarthPlanet. Sci. Lett. 79: 281~302.
    Doe B.R. and Zartman R.E. Plumbotectonics:The paanerozoic In:Geochemistry of hydrothermal ore deposits. Wiley-Interscience,New York,1979:22~70.
    Durr S B. 1996. Provenance of Xizang fore_arc basin clastic rocks (Cre-taceous, south Tibet)[J]. Geol. Soc. Am. Bull., 108: 669~684.
    Gaetani M and Garzanti E. 1991. Multicyclic history of the northern In-dia continental margin(northwestern Himalaya)[J]. Am. Assoc. Pet Geol Bull,75:1427~1446.
    Harris,A.C.&Golding,S.D.2002.New Evidence of Magmatic-fluid-related Phyllic Alteration:Implications for the Genesis of Porphyry Cu Deposits[J].Geological Society of America,30(4):335~338
    Harris,A.C.,Golding,S.D.&White,N.C..2005.Bajo de la Alumbrera Copper-Gold Deposit:Stable Isotope Evidence for a Porphyry-Related Hydrothermal System Dominated by Magmatic Aqueous Fluids[J].Economic Geology,100:863~886
    Harris,A.C.,S.E.Bryan&R.J.Holcombe.2006.Volcanic Setting of the Bajo de la Alumbre-ra Porphyry Cu-Au Deposit,Farallon Negro Volcanics,Northwest Argentina[J].Economic Geology,101:71~94
    Heithersay,P.S.&Walshe,J.L.1995.Endeavour 26 North:A Porphyry Copper-Gold Deposit in the Late Ordovician,Shoshonitic Goonumbla Volcanic Complex,New South Wales,Austrilia[J]. Economic Geology,90:1506~1532
    Kapp P, Murphy M A,Yin A,et al. 2003 Mesozoic and Cenozoic tectonic evolution of the Shiquanhe of westen Tibet[J].Tectonics, ,22(4):3-1~3-23.
    Mitchell A.H.G,Garson M S. 1981.Mineral deposits and global tectonic settings[M].Academic press,100~140. Nature, 307: 17~22.
    Penniston-Dorland,S.C..2001.Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence:Grasberg Igneous Cpmplex,Irian Jaya,Indonesia[J].American Mineralogist,86:652~666.
    Pierce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotra-verse Lhasa to Golmud[M]. Londm: Phil. Trans. Roy. Soc. Lond., A327: 203~213.
    Pollard,P.J. &Taylor R.G.. 2005.Ages of Intrusion, Alteration, and Mineralization at the Grasberg Cu-Au Deposit, Papua, Indonesia[J]. Economic Geology,100:1005~1020
    Sawkins F.J. , 1984.Metal deposits in relation to plate tectonics[M]. Springer-Verlag,1~110.
    Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[ J] . Geolo- gy, 1998, 26: 523-526
    Taylor D, Leeuwen T U. Porphyry-type deposits in southern Asia. Mining Geology(Specials issue), 1980, 8: 95–116
    Titley S R, Beane R E. Porphyry copper deposits [J]. Economic Geology, 1981, 75TH Anniv Vol: 214-269
    Van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for Deep Mantle Circulation from Global Tomography [J]. Nature, 386:578~584
    Van der Voo R, Spakman W, Bijwaad H. 1999. Mesozoic subducted slabs under Siberia[J]. Nature, 397: 246~249
    Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5):395~398
    Watanabe, Yasushi, Hedenquist, Jeffrey W. Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Economic Geology, 2001, Vol.96, No.8, pp.1775-1797
    Weber, Bodo, Lopez Martinez, Margarita. Sr, Nd, Pb isotopes and Ar-Ar dating of the "El Arco" porphyry copper deposit, Baja California; evidence for Cu mineralization within an oceanic island arc. Abstracts with Programs - Geological Society of America, 2002, Vol.34, No.6, pp.88
    White D E . Environments of generation of some basemetal ore deposits [J]. Econ Geol, 1968, 63, (4): 301-335
    Widiyantoro S, Van der Hilst R D. 1996. The slab of subducted lithosphere beneath the Sunda arc, Indonesia [J]. Science, 271:1566~1570
    Wild M J, Tabner B J, Macdonald R. 1999.ESR dating of quartz phenocrysts in some rhyolitic extrusive rocks using Al and Ti impurity centres. Quaternary Sci. Rev., 18(13): 1507~1514
    Z .Qiang, Z .Wenyao, X, Yonqin . 1999.Global plate Motion Models Incorporating the velocity field of ITRF96 . G. R . Lett, 26(18):2813~2816.
    Zartman , R.E. and Doe , B.R. 1981. Plumbotectonics—the model. Tectonophysics,vol.75:135~162.
    Zhao W, Nelson K D, Project INDEPTH Team. 1993.Deep seismic reflection evidence for continental underthrusting beneath S. Tibet[J]. Nature, 366:557~559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700