用户名: 密码: 验证码:
阳山金矿带成矿作用:多元同位素示踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳山金矿带位于西秦岭勉略缝合带的文县弧形构造带内,是研究复合造山带中金矿成因的理想选区,巨量金的来源及聚集机理是亟需深入研究的关键科学问题。论文通过系统的矿床地质和多元同位素示踪研究,获得如下主要成果。
     (1)通过矿相学研究将阳山金矿带的时间演化划分为3期5个阶段,分别为:沉积-成岩期、成矿期早阶段、成矿期主阶段、成矿期晚阶段和成矿后。
     (2)C-H-O同位素研究表明,阳山金矿带成矿流体主要为变质水,混有部分岩浆水和少量的大气降水。在成矿期早阶段流体以岩浆水为主,形成演化的岩浆水;成矿主阶段则主要为变质水运移过程中不断与泥盆纪地层发生水岩作用,形成演化的变质水;晚阶段成矿流体主要为变质水和岩浆水形成的混合流体,并有大气降水的加入;成矿后,流体中大量大气降水的加入,使其氢、氧同位素组成明显向大气降水线漂移。
     (3)S-Pb同位素研究表明,阳山金矿带成矿物质与碧口群关系不明显,主要来源于泥盆纪地层,少量来源于中酸性岩脉。沉积-成岩期黄铁矿具有典型沉积硫特征,变化范围比较宽;成矿期早阶段黄铁矿硫为2.84~3.24,岩浆源特征;成矿期主阶段硫同位素组成为7.63~10.93与泥盆系地层硫同位素组成(10.1‰和10.9‰)相一致,成矿期晚阶段硫同位素组成为5.81~7.91,具有与成矿主阶段类似的硫同位素组成特征,表征阳山金矿带硫主要来源于泥盆系地层。不同赋矿围岩及不同成矿阶段硫化物Pb同位素组成进一步证实了成矿物质主要来源于泥盆纪地层。
     (4)通过统计分析前人锆石U-Pb测年、独居石U-Th-Pb电子探测年和K-Ar测年得出,阳山成矿带主要成岩与成矿年龄相近,约为185Ma。
     (5)通过查明阳山金矿带成矿流体和成矿物质来源、成矿时代,结合其基础地质研究,分别与卡林-类卡林金矿、造山型金矿进行综合对比,得出阳山金矿带为造山型金矿。
The Yangshan gold deposit belt is located in Wenxian arc structural belt, whichbelongs to the Mian-Lue suture of the West Qinling orogeny tectonically. Therefore,this gold deposit belt is believed to be an ideal region for exploring the genesis of golddeposits developed in composite orogenenic belts. The key scientific problemsinclude the source of vast quantity of gold and the mechanism for its accumulation.We conducted detailed field work on this gold ore belt, and collected samplessystematically for multi-isotope determination and further tracing the sources ofore-forming fluid and materials. Below are the main conclusions we have in thisstudy:
     (1) Based on ore microscopic observations, we divide the evolution of this golddeposit belt into3phases and5stages, including depositional-diagenetic phase, earlystage in ore-forming phase, main stage in ore-forming phase, late stage in ore-forming,and post ore-forming phase.
     (2) Analysis for C-H-O isotopic data indicates that the ore-forming fluid of thisdeposit belt mainly consists of metamorphic water mixing with minor magmatic andmeteoric water. In the early stage of the ore-forming phase, the fluid is dominated byevolved magmatic water; in the main stage, the ore-forming fluid is evolvedmetamorphic water formed via water-rock reaction between metamorphic water andthe surrounding Devonian strata during fluid migration; the ore-forming fluid for thelate stage is a mixture of metamorphic and magmatic water with some addition ofmeteoric water, while abundant meteoric water was added into the fluid in postore-forming phase, as evidenced by the migration of H-O isotopic composition towardmeteoric water line in the plot.
     (3) S-Pb isotopic data for pyrites show the ore-forming materials of this golddeposit belt are mainly derived from those Devonian strata and with minor frommedium-acidic dikes, but appear to have no obvious relationship with the Bikougroup. For the depositional-diagenetic phase, those pyrites yield typically sedimentarysulfur with a broad range of values. The sulfur data for the early stage of the ore-forming phase varies at2.84-3.24‰, which is indicative of magmatic source. Thesulfur isotopic values for the main stage are from7.63‰to10.93‰, which isconsistent with those of the Devonian strata (10.1‰and10.9‰). Also, the sulfurisotopic data in the late stage are similar to those of the main stage, varying at5.81~7.91‰. These two together imply those Devonian strata provide the ore-formingmaterials, which is further confirmed by Pb isotopic data from various kinds ofwall-rock and sulfide minerals at different stages of the ore-forming phase.
     (4) Based on integrated zircon U-Pb dating, monazite U-Th-Pb dating, and K-Ardating, it is revealed that the main metallogenetic timing is close to the maindiagenetic timing, both around185Ma.
     (5) The Yangshan gold deposit belt iscompared with Carlin-type and orogenicgold deposits in terms of geological conditions and sources of the ore-forming fluidand materials constrained by multiple isotope analysis, and is ascribed to be orogenicgold deposits.
引文
Anderson PG, Hodgson CJ. The structure and geological development of the ericksongold mine, cassiar district, british-columbia, with implications for the origin ofmother-lode-type gold deposits. Canadian Journal of Earth Sciences,1989,26(12):2645-2660.
    Arehart G.B., Chryssoulis S.L., Kesler S.E. Gold and arsenic in iron sulfides fromsediment-hosted disseminated gold deposits; implications for depositionalprocesses. Economic Geology.1993,88(1):171~185
    Barker SLL, Dipple GM, Hickey KA, Lepore WA and Vaughan JR. Applying stableisotopes to mineral exploration: teaching an old dog new tricks. EconomicGeology.2013,108:1-9
    Barley ME, Eisenlohr BN, Grovs DI. Late archean convergent margin tectonics andgold mineralization-a new look at the norseman-wiluna belt, western-australia.Geology,1989,17(9):826-829.
    Barnes H.L. Geochemistry of hydrothermal ore deposits. New York: John Wiley andSons,1997
    Beaudoin G and Pitre D. Stable isotope geochemistry of the Archean Val-d’Or(Canada) orogenic gold vein field. Mineralium Deposita.2005,40:59-75
    BohlkeE JK, Kistler RW. Rb-Sr, K-Ar, and stable isotope evidence for the ages andsources of fluid components of gold-bearing quartz veins in the northernsierra-nevada foothills metamorphic belt, California. Economic Geology,1986,81(2):296-322.
    Campbell McCuaig T., Kerrich R. P-T-t-deformation-fluid characteristics of lode golddeposits: evidence from alteration systematics. Ore Geology Reviews.1998,12(6):381~453
    Clayton RN, O’Neil JR, Mayada TK. Oxygen isotope exchange between quartz andwater. Journal of Geophysics Research,1972,77:3057-3067.
    Deng J, Yang LQ, Sun ZS, Wang JP, Wang QF, Xin HB and Li XJ. A metallogenicmodel of gold deposits of the Jiaodong granite-greenstone belt. Acta GeologicaSinica.2003,77(4):537-546
    Deng J., Yang L., Gao B., et al. Fluid evolution and metallogenic dynamics duringtectonic regime transition: example from the Jiapigou gold belt in NortheastChina. Resource geology.2009,59(2):140~152
    Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ and Wang CM.Character and post-ore changes, modifications and preservation of Cenozoicalkali-rich porphyry gold metallogenic system in western Yunnan, China. ActaPetroloeica Sinica.2010,26(6):1633-1645(in Chinese with English abstract)
    Deng J., Wang Q., Yang S., et al. Genetic relationship between the Emeishan plumeand the bauxite deposits in Western Guangxi, China: Constraints from U-Pb andLu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian EarthSciences.2010,37(5~6):412~424
    Deng J, Yang LQ and Wang CM. Research advances of superimposed orogenesis andmetallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica.2011,27(9):2501-2509(in Chinese with English abstract)
    Deng J., Wang Q., Xiao C., et al. Tectonic-magmatic-metallogenic system, Tonglingore cluster region, Anhui Province, China. International Geology Review.2011,53(5~6):449~476
    Dong Y., Zhang G., Neubauer F., et al. Tectonic evolution of the Qinling orogen,China: Review and synthesis. Journal of Asian Earth Sciences.2011,41(3):213~237
    Engel AEJ, Clayton RN and Epstein S. Variations in isotopic composition of oxygenand carbon in Leadville limestone (Mississippian, Colorado) and in itshydrothermal and metamorphic phases: Journal of Geology.1958,66:374-393
    Faure G. Principles of isotope geochemistry. New York: John Wiley and Sons,1986.217~234
    Foster G, Gibson H D, Parrish R, et al. Textural, chemical and isotopic insights intothe nature and behaviour of metamorphic monazite. Chemical Geology,2002,191:183-207.
    Giesemann A., J ger H.J., Norman A., et al. Online sulfur-isotope determinationusing an elemental analyzer coupled to a mass spectrometer. AnalyticalChemistry.1994,66(18):2816~2819
    Goldfarb R., Baker T., Dube B., et al., Distribution, character and genesis of golddeposits in metamorphic terranes. In: Economic geology100th Anniversaryvolume. Littleton: Society of Economic Geologists,2005,407~450
    Groves DI, Goldfarb RJ, Gebre-Mariam M, et al. Orogenic gold deposits: a proposedclassification in the context of their crustal distribution and relationship to othergold deposit types. Ore Geology Reviews,1998,13(1-5):7-27.
    Haeussler PJ, Bradley D, Goldfarb RJ, et al. Link between ridge subduction and goldmineralization in southern Alaska. Geology,1995,23(11):995-998.
    Hofstra AH. Isotopic composition of sulfur in Carlin-type gold deposits: Implicationsfor genetic models. Society of Economic Geologists Guidebook Series,1997,28:119-129.
    Hofstra AH, Cline JS. Characteristics and models for Carlin-type gold deposits. SEGReviews,2000,13:165-220.
    Jarvis K.E., Williams J.G. Laser ablation inductively coupled plasma massspectrometry (LA-ICP-MS): a rapid technique for the direct, quantitativedetermination of major, trace and rare-earth elements in geological samples.Chemical Geology.1993,106(3-4):251~262
    Jenner F.E., Holden P., Mavrogenes J.A., et al. Determination of SeleniumConcentrations in NIST SRM610,612,614and Geological Glass ReferenceMaterials Using the Electron Probe, LA-ICP-MS and SHRIMP II. Geostandardsand Geoanalytical Research.2009,33(3):309~317
    Kerrich R, Wyman D. Geodynamic setting of mesothermal gold deposits: anassociation with accretionary tectonic regimes. Geology,1990,18:882-885.
    Kerrich R, Cassidy KF. Temporal relationships of lode-gold mineralization toaccretion, magmatism, metamorphism and deformation, Archean to present: areview. Ore Geology Reviews,1994,9:263-310.
    Kerrich R, Goldfarb RJ, Groves DI, et al, The characteristics, origins, andgeodynamic settings of supergiant gold metallogenic provinces. Science in China(Series D),2000,43(Sup.):1-68.
    Klammer D. Mass change during extreme acid-sulphate hydrothermal alteration of aTertiary latite, Styria, Austria. Chemical Geology.1997,141(1):33~48
    Large R.R., Bull S.W., Maslennikov V.V. A Carbonaceous Sedimentary Source-RockModel for Carlin-Type and Orogenic Gold Deposits. Economic Geology.2011,106(3):331~358
    Large R., Thomas H., Craw D., et al. Diagenetic pyrite as a source for metals inorogenic gold deposits, Otago Schist, New Zealand. New Zealand Journal ofGeology and Geophysics.2012,55(2):137~149
    Large R.R., Maslennikov V.V., Robert F., et al. Multistage Sedimentary andMetamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, LenaGold Province, Russia. Economic Geology.2007,102(7):1233~1267
    Large R.R., Danyushevsky L., Hollit C., et al. Gold and Trace Element Zonation inPyrite Using a Laser Imaging Technique: Implications for the Timing of Gold inOrogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology.2009,104(5):635~668
    Loftus~Hills G., Solomon M. Cobalt, nickel and selenium in sulphides as indicatorsof ore genesis. Mineralium Deposita.1967,2(3):228~242
    Longerich H.P., Jackson S.E., Günther D. Inter-laboratory note. Laser ablationinductively coupled plasma mass spectrometric transient signal data acquisitionand analyte concentration calculation. Journal of Analytical AtomicSpectrometry.1996,11(9):899~904
    MacLean W., Kranidiotis P. Immobile elements as monitors of mass transfer inhydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami,Quebec. Economic Geology.1987,82(4):951~962
    Mattauer M., Matte P., Malavieille J., et al. Tectonics of the Qinling belt: Build-upand evolution of eastern Asia. Nature.1985,317(6037):496~500
    Meng QR, Zhang GW. Timing of collision of the North and South China blocks;controversy and reconciliation. Geology,1999,27(2):123-126.
    Meng QR, Zhang GW. Geologic framework and tectonic evolution of the Qinlingorogen, central China. Tectonophysics,2000,323:183-196.
    Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology.1972,67(5):551~578
    Ohmoto H., Rye R.O. Isotopes of sulfur and carbon. In: Barnes H.L., eds.Geochemistry of hydrothermal ore deposits. New York: John Wiley and Sons,1979,509~567
    Pettke T., Diamond L.W. Oligocene gold quartz veins at Brusson, NW Alps: Srisotopes trace the source of ore-bearing fluid to over a10-km depth. EconomicGeology and the Bulletin of the Society of Economic Geologists.1997,92(4):389~406
    Pitcairn I.K., Teagle D.A.H., Craw D., et al. Sources of metals and fluids in orogenicgold deposits: Insights from the Otago and Alpine schists, New Zealand.Economic Geology.2006,101(8):1525~1546
    Pitcairn I.K., Olivo G.R., Teagle D.A.H., et al. Sulfide evolution during progrademetamorphism of the Otago and Alpine schists, New Zealand. CanadianMineralogist.2010,48(5):1267~1295
    Ridley JR and Diamond LW. Fluid chemistry of orogenic lode gold deposits andimplications for genetic models. SEG Reviews.2000,(13):141-162
    Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archeansupracrustal rocks in southwestern Finland. Government Press,1953
    Taylor HP.1974. The application of oxygen and hydrogen isotope studies to problemof hydrothermal alteration and ore deposition. Economic Geology.69:843-883
    Wang ZL, Yang LQ, Guo LN, Wang JP, Liu Y, Zhang C, Li RH, Zhang L, Zheng XLand Zhao H. Origin and evolution of ore fluids in the Xincheng granitoid-hostedorogenic gold deposit, Jiaodong district, China: Evidence from fluid inclusions inquartz and calcite. Ore Geology Reviews.2013.(submitted)
    Wyman D, Kerrich R. Alkaline magmatism, majors tructures, and gold deposits:implications for greenstone belt gold metallogeny. Economic Geology,1988,83:451-458.
    Yang LQ, Deng J, Ge LS, et al. Metallogenic epoch and genesis of the gold depositsin Jiaodong Peninsula, Eastern China: a regional review. Progress in NatureSciences,2007,17:138-143.
    Yang LQ, Deng J, Gong QJ, Zhang J, Wang QF and Yuan WM. Using isotopegeochemsity to trace the origin of oreforming materials in the Jiaodong goldprovince, China. Geochimica et Cosmochimica Acta.2007,71(Spec. Supp.):A1139
    Yang LQ, Deng J, Ge LS, Wang QF, Zhang J, Gao BF, Jiang SQ and Xu H.Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula,Eastern China: a regional review. Progress in Nature Sciences.2007b,17(2):138-143
    Yang LQ, Deng J, Zhang J, et al. Preliminary studies of Fluid Inclusions inDamoqujia Gold Deposit along Zhaoping Fault Zone, Shandong province, China.Acta Petrologica Sinica,2007,23:153-160.
    Yang LQ, Deng J, Zhang J, et al. Decrepitation thermometry and compositions offluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China:Implications for metallogeny and exploration. Journal of China University ofGeosciences,2008,19:378-390.
    Yang LQ, Deng J, Guo CY, et al. Ore-forming fluid characteristics of theDayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology,2009,59:182-195.
    Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ and Wang QF.Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodonggold province, China. Resource Geology.2009,59(2):182-195
    Yang LQ, Deng J, Goldfarb R J, Zhang J, Gao BF and Wang ZL.40Ar/39Argeochronological constraints on the formation of the Dayingezhuang golddeposit: new implications for timing and duration of hydrothermal activity in theJiaodong gold province, China. Gonwana Research.2013, doi:10.1016/j.gr.2013.07.001
    Zhang G., Meng Q., Yu Z., et al. Orogenesis and dynamics of the Qinling orogen.Science in China (Ser.D).1996,39(3):225~234
    Zheng Y. and Hoefs J. Stable isotope geochemistry of hydrothermal mineralizationsin the Harz mountains: II. Sulfur and oxygen isotopes of sulfides and sulfate andconstraints on metallogenetic models. Monograph Series on Mineral Deposits.1993,30:211~229
    Zheng Y. and Hoefs J. Stable isotope geochemistry of hydrothermal mineralizationsin the Harz mountains: II. Sulfur and oxygen isotopes of sulfides and sulfate andconstraints on metallogenetic models. Monograph Series on Mineral Deposits.1993,30:211~229
    陈虹,胡健民,武国利,等.西秦岭勉略带陆内构造变形研究.岩石学报.2010,26(4):1277~1288
    陈书铬,余国贞,肖新元.陕西南部主要成矿带控矿条件初步分析(续).陕西地质.1987(02):51~58
    陈衍景,张静,张复新,等.西秦岭地区卡林-类卡林型金矿床及其成矿时间,构造背景和模式.地质论评.2004,50(02):134~152
    陈勇敢,刘桂阁,王美娟,等.甘肃阳山金矿区遥感地质特征及成矿预测.黄金科学技术.2009(01):1~5
    程斌,张复新,贺国芬.甘肃文县地区阳山超大微细浸染型金矿床的成因与类型.地质通报.2006(11):1354~1360
    程伟基,支霞臣.热液系统的物理化学性质和硫同位素演化——lgfo2-pH-δS34i图解的原理、用途与使用方法.地质与勘探.1983(09):21~29
    储雪蕾.热液矿床共生矿物的硫同位素平衡分馏模式.科学通报.1984,3(24):923-928
    邓军,方云.剪切带构造-流体-成矿系统动力学模拟.地学前缘.1999,6(1):115~127
    邓军,方云,杨立强,等.剪切蚀变与物质迁移及金的富集——以胶东矿集区为例.地球科学.2000,25(4):428~432
    邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论.地质科技情报.2000(01):41~45
    邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化.地质科技情报,2005,24(1):49-54.
    邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报.2010(06):1633~1645
    邓军,杨立强,葛良胜,等.胶东矿集区形成的构造体制研究进展.自然科学进展,2006,16(5):513-518.
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报.2011(09):2501~2509
    邓军,杨立强,翟裕生,等.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学.2000(01):71~78
    邓军,杨立强,翟裕生,等.胶东招掖矿集区巨量金质来源和流体成矿效应.地质科学,2000,36(3):257-268.
    邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用.矿床地质,2010,29(1):37-42.
    丁振举,刘从强,姚书振,周宗桂.1999.碧口群铜矿床的成矿时限及其意义.大地构造与成矿学,23:368-372
    董瀚.南秦岭三河口地区三河口群的解体和时代厘定.地层学杂志.2004(01):59~63
    董云鹏,周鼎武,张国伟,等.1998.秦岭造山带南缘早古生代基性火山岩地球化学特征及其大地构造意义.地球化学,27(5):432-441
    杜远生,盛吉虎,冯庆来.南秦岭勉略古缝合带非史密斯地层和古海洋新知.现代地质,1998,12(1):25-31.
    杜远生.秦岭造山带泥盆纪沉积地质学研究.武汉:中国地质大学出版社,1997,1-130.
    杜子图,吴淦国,王义强.微细粒浸染型金矿的构造动力成矿作用研究,现代地质,1998,12(1):75-82.
    杜子图,吴淦国.西秦岭地区构造体系及金成矿构造动力学.北京:地质出版社,1998
    杜子图,吴淦国.西秦岭地区构造体系及金成矿构造动力学.地质出版社,1998,1-145.
    范永香,刘伟,曾键年,等.甘肃文县阳山超大型金矿床成矿地质特征及找矿方向.见:第二届全国成矿理论与找矿方法学术研讨会.广州:2004
    郭俊华,李建忠,吴春俊,等.陕甘川“金三角”金矿地质特征及找矿前景分析,黄金科技技术,2009,17(6):6-11.
    郭俊华,齐金忠,孙彬,等.甘肃阳山特大型金矿床地质特征及成因.黄金地质,2002,8(2):15-19.
    韩吟文,马振东,张宏飞,等.地球化学.北京:地质出版社,2003
    何学贤,朱祥坤,杨淳,等.多接收器等离子体质谱(MC-ICP-MS) Pb同位素高精度研究.地球学报.2005,26(S1):19~22
    侯明兰,蒋少涌,姜耀辉,等.胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究.岩石学报.2006,22(10):2525r2533
    赖绍聪,李三忠,张国伟.陕西西乡群火山-沉积岩系形成构造环境火山岩地球化学约束岩石学报.2003,19(1):41-52.
    雷时斌,齐金忠.甘肃阳山金矿带地球动力学体制与多因耦合成矿作用.地质与勘探.2007(02):33~39
    雷时斌,齐金忠,朝银银.甘肃阳山金矿带中酸性岩脉成岩年龄与成矿时代.矿床地质.2010(05):869~880
    雷时斌,甘肃阳山金矿带构造-岩浆成矿作用及勘查找矿方向:[博士学位论文].北京:中国地质大学(北京),2011
    李春昱,王荃,刘雪亚.中国的内生成矿与板块构造.地质学报.1981,55(3):195~204
    李建忠,刘洪波,张亿其,等.甘肃省文县阳山金矿带控矿构造特征及找矿方向.四川地质学报.2008(01):13~17
    李晶,陈衍景,李强之,等.甘肃阳山金矿碳氢氧同位素与成矿流体来源.岩石学报.2008(04):817~826
    李楠,阳山金矿带成矿作用地球化学:[博士学位论文].北京:中国地质大学(北京),2013
    李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束.岩石学报.2012(05):1577~1587
    李曙光,孙卫东.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学.中国科学(D),1996,26(3):223-230.
    李永飞,赖绍聪,秦江锋,等.碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成——晋宁期扬子北缘裂解的证据.中国科学(D辑):地球科学.2007,37
    李志宏,杨印,彭省临,等.甘肃阳山超大型热液金矿床的成矿特征.大地构造与成矿学.2007(01):63~77
    刘桂阁,陈勇敢,张玉杰.松潘-摩天岭成矿带金矿资源潜力评价及找矿方向研究.廊坊:武警黄金地质研究所,2006
    刘红杰,陈衍景,毛世东,等.西秦岭阳山金矿带花岗斑岩元素及Sr-Nd-Pb同位素地球化学.岩石学报.2008(05):1101~1111
    刘建明,赵善仁,沈洁,姜能,霍卫国.1998.成矿流体活动的同位素定年方法评述.地球物理学进展,13(3):46-55
    刘铁庚,叶霖.碧口群形成的地质构造环境探讨.矿物学报.1999,19(4):446~451
    刘伟,范永香,齐金忠,等.甘肃省文县阳山金矿床流体包裹体的地球化学特征.现代地质.2003(04):444~452
    刘伟,马瑛,范永香.甘肃文县阳山金矿床成矿流体特征.资源环境与工程.2007(02):87~94
    卢焕章,范宏瑞,倪培.流体包裹体.北京:科学出版社,2004
    罗锡明,齐金忠,袁士松,等.甘肃阳山金矿床微量元素及稳定同位素的地球化学研究.现代地质.2004(02):203~209
    罗锡明,齐金忠,袁士松,等.甘肃阳山金矿床微量元素及稳定同位素的地球化学研究.现代地质.2004(02):203~209
    毛世东,杨荣生,秦艳,等.甘肃阳山金矿田载金矿物特征及金赋存状态研究.岩石学报.2009(11):2776~2790
    孟庆任,于在平,梅志超.秦岭南缘晚古生代裂谷&有限洋盆沉积作用及构造演化,中国科学(D),1996,26(增刊):28-33.
    裴先治.南秦岭碧口群岩石组合特征及其构造意义.长安大学学报(地球科学版).1989(02):46~56
    裴先治,张国伟,赖少聪,等.西秦岭勉略构造带主要地质特征.地质通报,2002,21(8-9):486-494.
    齐金忠,赵小坡,陈样.甘肃省文县阳山金矿带成矿规律与找矿方向研究.见:中国西部地区金矿地质学术讨论会.北京:冶金工业出版社,2001
    齐金忠,袁士松,李莉,等.甘肃省文县阳山特大型金矿床地质特征及控矿因素分析.地质论评.2003(01):85~92
    齐金忠,李莉,杨贵才.甘肃省阳山金矿床成因及成矿模式.矿床地质.2008(01):81~87
    齐金忠,李莉,袁士松,等.甘肃省阳山金矿床石英脉中锆石SHRIMP U-Pb年代学研究.矿床地质.2005(02):141~150
    齐金忠,杨贵才,李莉,等.甘肃省阳山金矿床稳定同位素地球化学和成矿年代学及矿床成因.中国地质.2006(06):1345~1353
    齐金忠,杨贵才,李志宏,等.阳山金矿带构造-岩浆演化序列及构造控矿规律研究.2006
    秦艳,周振菊.甘肃省阳山超大型金矿床的有机地球化学特征研究.岩石学报.2009(11):2801~2810
    孙树浩.川北-甘南地区类卡林型金矿床的地质-地球化学特征.地质找矿论丛.2005,20(1):7
    陶维屏.中国非金属矿床成矿系列:矿床,含矿建造,成矿系列,形成模式.北京:地质出版社,1994
    王尚文.中国石油地质.北京:石油工业出版社,1983
    王湘,吴泽源.陕西南部勉略宁地区地质背景及成矿特点探讨.西北金属矿产地质.1988((2)):1~9
    王学明,邵世才,汪东波.甘肃文康地区金矿地质特征与找矿标志,有色金属矿产与勘查,1999,8(4):220-226.
    王宗起,陈海泓,李继亮,等.1998.南秦岭西乡群放射虫化石的发现及其地质意义.中国科学(D辑),29(1):38-44
    魏春景.陕甘川交界区碧口群的绿帘石及其岩石学意义.岩石矿物学杂志.1993,12(4):332~340
    文成敏.甘肃省阳山金矿带金矿成矿特征及矿床成因研究.四川地质学报.2006(04):223~227
    吴春俊,王金荣,喻光明,等.甘肃省阳山金矿田金的赋存状态和金矿物特征.矿产与地质.2008(04):353~356
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述.地质地球化学.2002(03):73~81
    许继锋,盛吉虎,韩吟文,等.1996.勉略地区蛇绿岩的初步研究,见:张旗主编.蛇绿岩与地球动力学研究,北京:地质出版社,163-166
    阎凤增,齐金忠,郭俊华,等.甘肃省阳山金矿地质与勘查.北京:地质出版社,2010
    杨贵才,齐金忠,董华芳,等.甘肃省文县阳山金矿床地质及同位素特征.地质与勘探.2007(03):37~41
    杨贵才,齐金忠.甘肃省文县阳山金矿床地质特征及成矿物质来源.黄金科学技术.2008(04):20~24
    杨进辉,周新华.胶东地区玲珑金矿矿石和载金矿物Rb/Sr等时线年龄与成矿时代.科学通报.2000,45(14):1547-1552
    杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨.岩石学报.2011(09):2519~2532
    杨立强,邓军,赵凯,等.滇西大坪金矿床地质特征及成因初探.岩石学报.2011,27(12):3800~3810
    杨立强,刘江涛,张闯,等.哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探.岩石学报.2010(06):1723~1739
    杨利亚,杨立强,袁万明.造山型金矿成矿流体来源与演化的氢-氧同位素示踪:夹皮沟金矿带例析.岩石学报.2013,11:4025~4035
    杨荣生,陈衍景,谢景林.甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究.岩石学报.2009(11):2791~2800
    杨永成,陈家义,李荣社,等.1996.陕西勉略蛇绿构造混杂结合带组成及演化.陕西地质,14(2):1-12
    殷鸿福,彭元桥.秦岭显生宙古海洋演化.地球科学,1995,20(6):605-611.
    喻光明,郭华.川陕甘地区卡林型金矿对比研究.四川地质学报.2010(02):163~169
    喻光明,刘洪波,郭俊华,等.甘肃阳山金矿床深部盲矿定位预测的构造叠加晕理想模型.黄金.2009(10):8~12
    袁士松,齐金忠,葛良胜,等.甘肃文县阳山特大型金矿田微量元素特征及其找矿意义.西北地质.2006(03):20~27
    袁士松,张继武,齐金忠,等.甘肃阳山金矿构造控矿模式.黄金地质.2004(04):23~27
    张闯,西秦岭阳山金矿带构造-流体耦合成矿动力学:[博士学位论文].北京:中国地质大学(北京),2013
    张存旺,甘肃省文县阳山超大型金矿床地质与地球化学特征及其矿床成因:[硕士学位论文].西安:西北大学,2007
    张复新,侯俊富,张存旺,等.甘肃阳山超大型卡林-类卡林型复合式金矿床特征.中国地质.2007(06):1062~1072
    张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识-兼论中国大陆主体的拼合.地质通报,2004,23(9-10):846-853.
    张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化.陕西地质.1997(02):1~14
    张国伟,孟庆任,于在平,等.秦岭造山带的选山过程及其动力学特征,中国科学(D),1996,26(3),193-200.
    张国伟,孟任庆,赖绍聪.秦岭造山带的结构构造,中国科学(D),1995a,25(9),994-1003.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001
    张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石矿报,1995b,11(2):101-114.
    张理刚.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿.西安:陕西科学技术出版社,1985,1-267.
    张莉,杨荣生,毛世东,等.阳山金矿床锶铅同位素组成特征与成矿物质来源.岩石学报.2009(11):2811~2822
    张连昌,沈远超,刘铁兵,曾庆动,李光明,李厚民.2002.山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代.中国科学,32(9):727-734
    张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学.2000(03):231~238
    张宗清,唐索寒,王进辉,张国伟,陈家义,杨永成.1996.秦岭蛇绿岩的年龄:同位素年代学和古生物证据,矛盾及其理解.见:张旗主编,蛇绿岩与地球动力学.北京:地质出版社,146-149
    赵成海.甘肃阳山超大型金矿成因研究评述.矿物岩石地球化学通报.2009(03):286~293
    赵祥生,马少龙,邹湘华,等.秦巴地区碧口群时代层序,火山作用及含矿性研究.西北地质科学.1990,29:1~117
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    周乐尧.甘肃省西成铅锌矿田矿源层的确定及其Pb-Zn活化机理研究.地球科学.1991,16(2):199~206
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报.2003,19(2):314~318
    陕西省地质局区凋队,文县幅区域地质调查报告(1:200000),1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700