用户名: 密码: 验证码:
鸭绿江河口最大浑浊带水动力特征与悬沙输运
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口最大浑浊带受潮汐动力、河口环流、径流等影响,动力条件复杂。了解最大浑浊带内的水动力与悬沙输运,对沉积物输运过程、沉积动力学研究有着重要的科学意义,可为当地自然资源开发利用、海岸工程建设等提供数据支撑。2009年8月及2010年7月和8月在鸭绿江中水道进行了定点长周期观测,上下游同步全潮观测,及断面走航观测,获取水体的流速、悬沙浓度、温度、盐度数据。基于观测数据,本文分析了鸭绿江河口的流速、温盐度及悬沙浓度的时空分布特征,并对河口悬沙进行通量分解,研究其输运机制,以探讨不同动力机制及径流变化对悬沙输运的影响,在此基础上分析最大浑浊带的成因机制。
     实测结果显示,鸭绿江河口受往复流控制,落潮时间大于涨潮时间,潮差最大可达6.0m,属于强潮型河口。最大垂线平均流速出现在涨潮、落潮中后期,最大可达1.2ms-1,涨潮和落潮的垂线平均最大流速相差不大,一般在0.9-1.2mS-1。底部三角架测量结果显示,涨潮底部最大流速大于落潮,最大流速差可达0.5ms-1。这与垂线平均流速落潮期间大于涨潮的现象截然不同,主要与径流的存在有重要关系。
     计算结果显示,拉格朗日余流除Y02站(最大浑浊带上游)小潮向陆外,其余站点方向均向海,欧拉余流均为向海,斯托克斯漂流则全为向陆。大潮期间各项余流较小潮明显增大。Y01作为长时间序列观测站,余流计算结果比较有代表性。Y01站拉格朗日余流为5.5cms-1方向向海,欧拉余流为15.2cms-1,方向向海,斯托克斯漂流为9.7cms-1,方向向陆。
     Y01站涨落潮期间悬沙浓度垂向分布有明显差异,涨急时刻垂向混合强烈,水体上下悬沙差异不大,平均可达1000mgL-1,落急时底部出现高值中心,最高可达1600mgL-1以上,水体中上部悬沙浓度则较低,往往低于400mgL-1。Y01站涨落潮悬沙垂向分布的差异主要与径流有关。在盐淡水锋面存在的重力环流对悬沙在水体中的扩散有着重要影响,涨潮期间盐淡水锋面往往可到达Y01站,因此而产生的重力环流加快了底部悬沙向上扩散的速度,悬沙垂向分布均匀;相反,落潮期间,锋面下移,底部悬沙向上扩散缓慢,因而只在底部出现高值中心。
     悬沙输运机制分解结果显示,向海的欧拉余流项,向陆的斯托克斯漂流项和潮汐捕捉项对鸭绿江河口的悬沙输运起着重要作用。Y01站平流输运占泥沙输运的很大比例,但潮泵贡献项与泥沙输运相关系数显著,R2达到0.82。可以说平流输运是泥沙输运的主导机制,但潮泵效应对悬沙输运的影响十分强烈,其贡献大小变化决定了泥沙输运的变化趋势。
     底部边界层观测表明,同一个潮周期内100cm处悬沙浓度落潮远大于涨潮,悬沙浓度最大值在涨潮期间往往小于1000mgL-1,落潮期间则常常大于2000mgL-1。底部悬沙涨落潮差异主要与涨落潮底部再悬浮时间差异有关,落潮期间底部再悬浮时间为涨潮期间底部再悬浮时间两倍以上。
     观测期间水库放水,径流增大,底部再悬浮并未受到显著影响,但悬沙在水体中的扩散受到抑制,特别是涨潮,因而导致放水期间水体整体悬沙浓度降低,通量分解各项瞬间量变化幅度也相应降低,同时向海的悬沙输运增多。
     强烈的底部再悬浮作用是鸭绿江河口最大浑浊带形成的主要因素。最大浑浊带内的底部再悬浮一方面提高了水体的悬沙浓度,另一方面也可为上下游分别向陆和向海的泥沙输运提供充足的物源。
Turbidity maximum(TM) zone of estuaries is suffered from complex dynamic conditions, and affected by many processes, such as tide, estuarine circulation, runoff et al.. Well understanding the sediment dynamics are not only beneficial to study the hydrodynamic and suspended sediment transport in the TM, but also helpful to the coastal engineering and management of local resources exploitation. In this study, several observations in different position of the Estuary of Yalu River were carried out. During the August,2009, synchronization data including current, salinity, temperature and suspended sediment concentration (SSC) at both upstream and downstream of TM zone (Y02, Y03) were collected during both spring and neap tides. A mooring observation within long-term period (Y01) was observed from19th Jun. to2nd Aug,2010, and the same haydrodynamic parameters were obtained in station Y02and Y03. In addition, a cross-section observation from the upstream to the entrance of Yalu River was explored on2nd Aug,2010. Subsequently, the distribution of velocity, SSC, salinity and temperature were analyzed. Using method of flux decomposition of suspended sediment transportation, the mechanism of sediment transport was discussed. Finally, the TM forming mechanisms of the Yalu River Estuary were discussed.
     The analysis results of these observations showed that the Yalu River estuary, with a maximum tidal range of6m, was characterized by reversing current, and the ebb duration was longer than the flood duration. The maximum depth-averaged velocity were observed3-4hours before and2-3hours after the flood slack, with a range from0.9m s-1to1.2m s-1. Contrasting to the depth-averaged velocity, the flood current which was much greater than that the ebb current were recorded in the near sea bed current. The max difference between the bottom velocity between ebb and flood reach0.5m s-1, which was quite different with the depth-averaged velocity induced by the runoff.
     Lagrangian, ulerian and stokes residual current were caculted. The results showed that, lagrangian residual current was seaward, except during the neap tide of Y02. Ulerian residual current was seaward and Stokes residual current was landward for all the stations. All the three kinds of residual current were much larger during the spring tides rather than that during the neap tides. Y01was a long-term observation station. The lagrangian residual current, ulerian residual current and the stokes residual current was5.5cm s-1(seaward),15.2cm s-1(seaward), and9.7cm s-1(landward), respectively.
     The SSC distribution during the flood was different from that during the ebb. The maximum flood velocity were always connected with the uniformly vertical distribution of suspended sediment concentration, and the corresponding maximum SSC was up to1000mg L-1. Contrastly, high SSC were only observed in the bottom layer, in terms of high quantity of1600mg L-1, when maximum ebb velocity occurred; however, The SSC of upper water body was quite small, which was always smaller than400mg L-1. This phenomenon may be caused by the bottom suspended sediment diffusion blocked by stratification. During the flood phase, the saltwater wedge could reach station Y01, which accelerate the diffusion of bottom suspended sediment. In contrast, during the ebbs, there was no saltwater wedge, and the diffusion was slow down, causing a high value of SSC only in the bottom water body.
     The result of flux decomposition of sediment transport showed that, the items of Eulerian Residual current (seaward), stokes residual current (landward) and tidal trapping played important roles on the suspended sediment transport in the Yalu River Estuary. In the Y01, the suspended sediment transport was dominated by Advection transport. However, tidal pumping show a high linear correlation with the suspended sediment transportation (R2=0.82), implying that the variation of suspended transport was determined by that of tidal pumping.
     The bottom boundary observation showed that, SSC of100cm was much bigger during ebb than that during flood. The maximum SSC was always smaller than1000mg L-1during the flood phase, and larger than2000mg L-l during the ebb phase, which may be related with the difference of the resuspension time between the ebb and flood phase. Calculation result showed that resuspension time during the ebb was more than two times of resuspension time during the flood.
     During the observation of Y01, flood discharge of upstream reservoir increased the quantity of runoff. Although the resuspension of bottom sediment was not significantly influenced, the bottom suspended sediment diffusion was strongly restained, especially during the flood phase. Therefore, the decreased diffusion resulted to the lowerening of the total SSC. Furthermore, the variation ranges of instantaneous item of flux decomposition was also reduced, and the landward sediment transport was correspondly decreased..
     Strong resuspension of bottom sediment is the most important factor that maintain TM of Yalu River. The resuspension in TM not only increases the SSC of water body, but also supply rich sediment source which transported landwards and seawards, respectively.
引文
Ackers, P. and White, W.R.,1973. Sediment transport:new approach and analysis, J. Hydraulics Div., ASCE, Vol.99, HY11, November, pp 2041-2060
    Allen G.P., Salomon J.C., Bassoulet P., et al.,1980. Effect of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology,26: 69-90
    Athanasios N., Papanicolaou, Mohamed Elhakeem,2010泥沙输运模拟综述一现状及其发展趋势.力学进展,40(3):323-339
    Althausen Jr,J D,Kjerfive B. Distribution of suspended sediment in a partially mixed estuary, Charleston Harbor, South Carolina, U.S.A. Estuarine,Coastal and Shelf Science[J].1992, (35):517-531.
    Bagnold, R.A.,1963. Mechanics of marine sediments. In:Hill, M.N.(Ed.), The Sea, vol.3. Wiley Interscience, New York, pp.507-528.
    Bagnold R.A.,1966. An approach to the sediment transportation problem from general physics. U.S. Geol. Sur. Prof. Paper 422-1
    Bowden, K.F. The mixing processes in tidal estuary[J].International Journal of Air and Water Pollution,1963,7:343-356
    Blanchard, B.J. and Learner, R.W.,1973. Spectral Reflectance of Water Containing Suspended Sediments. Remote Sensing and Water Resources Management, Kelth, P.B.et al.ed.:339-347
    Blumberg A F, Mellor G. L. A description of a three dimensional coastal ocean circulation model. In:Heaps N.,ed. Three-Dimensional Coastal Ocean Models. Coastal and Estuarine Sciences American Geophysics Union,1987,4:1-16
    Casulli V. Cheng, R. T.,1992. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal of Numerical Methods in Fluids, (15):629-648
    Casulli V., Cattani E.,1994. Stability, accuracy and efficiency of a semi-implicit method for three dimensional shallow water flow. Computers and Mathematics with Application,27(4):99-112
    Ccalmr, ELCIRC. WWW Page hhttp:www.ccalmr.ogi.edu/CORIE/modeling/ercirc, Center for Coastal and Land-Margin Research (CCALMR), Oregon Health &Science University, OR. USA.
    Chen C.S., Liu H.D., Robert C.,2003. An unstructured Grid, Finite-Volume, Three Dimensional, Primitive Equation Ocean Model:Application to Coastal Ocean and Estuaries,20:159-186
    Dbereiner C, McManus J. Turbidity maxium migration and harbor siltation in the Tay Estuary[J]. Can.J. Fish Aquat, Sci,1983, Vol.40(Suppl.1):117-129.
    Delft Hydraulics,1999. Delft 3D Users'Manual. The Nether-lands:Delft Hydraulics
    Dyer K.R.,1974. The salt balance in stratified estuaries. Estuarine and Coastal Marine Science,2:275-281·
    Dyer K.R.,1988. Fine sediment particle transport in estuaries. In:Physical Processes in Estuary (JDronkers and WVan Leussen), Spring-Verlag, New York,295-310
    DYER K R.,1997. Estuaries——A Physical Introduction (2nd edition)[M]. Singapore: John Wiley & Sons
    Einstein, H.A.,1947. Formulas for the transportation of bed load Transactions. American Society of Civil Engineers 107:561-597
    Einstein, H.A.,1953. The bed-load function for sediment transportation in open channel flows.
    Einstein, H.A., N. Chien,1955. Effects of heavy sediment concentration near the bed on velocity and sediment distribution, Univ. of Cal., Berkeley, and US Army Corps of Engr., Missouri River Div., Rept. No.8, pp.96
    Engelund, F., Hansen, E.,1959. A Monograph on Sediment Transport in Alluvial Streams.62 p. Teknish Forlag. Copenhagen. Denmark.
    Engelund, F. & Fredsoe, J.,1976. A sediment transport model for straight alluvial channels. Nordic Hydrol,7,294-298.
    Fishes TR,1988. Phytoplankton nutrients and turbiding in the Chesapeake, Delaware and Hudson estuaries. Est Coast al Shelf Sci,27(1):61-93.
    Glangeaud,1938. Transport of Sedimentation Chlans 1'estuare et 1'embouchure de La Girronde, Bulletin of Geological Society of France,1938,8:599-630
    Gao J H, Gao S, Cheng Y, et al.,2003. Sediment transport in Yalu River estuary. Chinese Geographical Science,13(2):157-163
    Gao J H, Gao S, Cheng Y, et al.,2004. Formation of turbidity maxima in the Yalu River Esatury, China. Journal of Coastal Research,43(SI):134-146
    Gao S and Jia J J,2004. Accumulation of fine-grained sediment and organic carbon in a small tidal basin:Yurhu, Shangdong Peninsulu, China. Regional Environmental Change,4:63-69
    Guillaud J F,1983. The flux of dissolved nutrients in the estuary of the Seine (France), the role and importance of furbrel by marimees duing miseing Can J Fish Aquat Sci,40(Suppl 1):180-187.
    Hamrick J H. A three-dimensional environmental °uid dynamics computer code: Theoretical and computational aspects. Special Rep. No.317, Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Science, Gloucester Point, Va,1992
    Hansen, D.V. Salt balance and circulation in partially mixed estuaries [J].American Association for the Advance ment of Science,1965,83:45-51.
    Jacobsen F, Rasmussen E B. MIKE 3 MT:A3-dimensional mud transport model. Technical Rep DG-12 to the Commission of the European Communities,1997
    Klemas, V, Borchardt, J.F. and Ttreasure, W.M.1973. Suspended Sediemnt Observation from ERTS-1. Remote Sensing of Environtment,2:205-221
    Kritikos, H., Yorinks, Smith, H.,1974. Suspended Solids Analysis Using ERTS-1 Data. Remote Sensing of Environtment,3:69-78
    Liu J P, Liu C S, Xu K H, et al.,2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait,. Marine Geology, doi:10.10.16/j.margeo.2008.09.07
    Luettich R A,Westerink J J, Sche(?)ner N W. ADCIRC:An advanced three-dimensional circulation model for shelves, coasts, and estuaries:Report 1, theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical Rep DRP-92-6, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, 1992
    Miller, M.C., McCave, I.N., Komar, P.D.,1997. Threshold of sediment motion under unidirectional currents. Sedimentology,24,507-527
    Milliman J, Syvistski J.P.M.,1992. Geomorphiic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers. Journal of Geology,100:522-544
    Minh Duc B, Wenka T, Rodi W. Depth-average numerical modeling of flow and sediment transport in the Elbe River. In:Proc 3rd Int Conf on Hydroscience and Eng, Berlin,1998
    Onishi Y,1994. Sediment transport models and their testing. In:Chaudhry M H, Mays L W eds. Computer Modeling of Free-Surface and Pressurized Flows. US Government, Washington DC.281-312
    Pionk, S.H.B, Blanchard, B.J.,1975. The Remote Sensing of suspended Sediment Concentration of Small Impoundment. Water, Air and Soil Pollution,5:19-32
    Ritchie, J.C., Mchenry, J.R. Schiebe, F.R., Wilson, R.B.,1976. The Relationship of Reflected Solar Radiation and the Concentration of Sediment in Surface Water of Reservoir. Remote Sensing of Earth Resources, Vol.3:57-72
    Schuchandt B, Schirmer M,1991a. Intratidal variability of living and detrital Aesten components in the inner part of the Weser estuary. Arch Hydrobiol,121(1):21-41.
    Schuchardt B, SchirmerM,1991b. Phyt oplankton maxima in the tidal freshwater, reaches of two coastal plain estuaries. Est Coastal Shelf Sci,32(2):187-206.
    Seylen P, Hartin J H,1990. Distribut ion of arsenite and fat al dissolved arsenic in Majon Frekch esmanes. Mar Chem,29(2~3):27-294.
    Soltanpon-Gargosi A, Weller Shaees S,1984. Euryremora offnis the eotueisineplankton copepod in the cueser, Vero eff Inst. Meeresforsch Bremerh, 20(1):103-117.
    Song Y T, Haidvogel D. A semi-implicit primitive equation ocean circulation model using a generalized topography- following coordinate system. J Comput Phys, 1994,115:228-244
    Spasojevic M, Holly F M. Three-dimensional numerical imulation of mobile-bed hydrodynamics. Contract Rep
    Trisula,1993. A program for the computation of non-steady flow and transport phenomena on curvilinear coordinates in 2 or 3 dimensions. Delft Hydraulics, Delft.
    Walters W H, Ecker R M, Onishi Y. Sediment and radionuclide transport in rivers, Phase 2:Field sampling program for Cattaraugus and Buttermilk Creeks, New York. Technical Rep. No. PNL-3117, Vol.2, Pacific Northwest Lab, Richland, Wash,1982
    Wertz, D.L., Mealor, WT. Steele, M.L. Pinson, J.W.,1976. Correlation between Multispectral Photography and Near-surface Water Turbidity. Photogrammetric Engineering and Remote Sensing,42:659-701.
    Yalin, M. S.1963. An expression for bed-load transportation.
    J. Hydraul. Div. ASCE 89(HY3):221-250.
    Zhang J, Liu S M,Xu H., et al.,1998. Riverine Sources and Estuarine of Particulate Organic Carbon from North China in Late Summer. Estuarine, Coastal and Shelf Science,46(3):439-448
    白凤龙,高建华,2007.悬沙浓度分布对鸭绿江河口流速结构的影响.海洋地址动态,23(10)6-12
    白凤龙,高建华,汪亚平等,2008.鸭绿江河口的潮汐特征.海洋通报,27(3):7-1 3
    毕敖洪,孙志林,1984.椒江河口过程初步研究.泥沙研究,(3):12-26
    陈吉余、挥才兴、徐海根等,1979.两千年来长江河口发育模式,海洋学报,1(1):
    陈吉余,陈沈良,2007.中国河口研究五十年:回顾与展望.海洋与湖沼,38(6):481-486
    陈鸣,李士鸿,1989.应用Landsat和NOAA遥感资料联合检测杭州湾的悬浮泥沙.泥沙研究,(3):29-34
    陈西庆,严以新,童朝锋等,2007.长江输入河口段床沙粒径的变化及机制研究.自然科学进展,17(2):233-239
    程鹏,高抒,2001ADCP测量悬沙浓度的可行性法纳西与现场标定.海洋与湖沼,32(2):168-176
    程声通,杜文涛,张天柱,1987.鸭绿江下游水质模型研究.环境污染与防治,(6):12-21
    程岩,1988.鸭绿江河口地貌的形成、演变与港口建设.海岸东城,7(1):28-36
    程岩,张毅,1990.鸭绿江下游河道演变及其对港口的影响.泥沙研究,(2):77-84
    程岩,毕连信,2002.鸭绿江河口浅滩的基本特征和动态变化.泥沙研究,(3):59-63
    程岩,刘月,李富祥等,2010,29(11):鸭绿江口及邻近浅海碎屑矿物特征与无缘辨识.地理研究,29(11):1950-1960
    窦国仁,1960.论泥沙启动流速.水力学报,(4):44-60
    窦国仁,万声淦,1995.三峡工程变动回水区泥沙淤积的试验研究.水利水运科学研究,(4):527-536
    窦国仁,1999a.长江口深水航道泥沙回淤问题的分析.水运工程,(10):36-39
    窦国仁,1999b.再论泥沙启动流速.泥沙研究,(6):1-9
    窦国仁,窦希萍,2001.波浪作用下泥沙的启动规律.中国科学,31(6):566-573
    杜启明,郭纬东,2006.鸭绿江河道演变分析.中古科技信息,(19):
    段志科,王延贵,戴清,1994.水库泥沙数学模拟与物理模型成果比较及其应用.泥沙研究,(4):76-85
    费尊乐,1988.利用水色遥感资料估算河口近岸水域叶绿素及悬浮泥沙含量的研究.海洋学报,5(5):586-593
    傅德健,朱建荣,沈焕庭,2004.河口形状对最大浑浊带形成的影响.华东师范大学学报,(4):72-78
    符宁平,毕敖洪,1989.椒江悬沙运动若干问题的探讨.泥沙研究,(3):51-57
    付卫东,张立,2010.鸭绿江上游河道沙量平衡分析.东北水利水电,(2):27-28
    高建华,高抒,董礼先等,2003.鸭绿江河口地区沉积物特征及悬沙输运.海洋通报,22(5):26-33
    高建华,汪亚平,王爱军等,2004ADCP在长江口悬沙输运观测中的应用.地理研究,23(4):455-462
    高建华,汪亚平,潘少明等,2005.长江口枯水期最大浑浊带形成机制.泥沙研究,(5):66-73高建华,李军,王珍盐等,2008.鸭绿江河口及近岸地区沉积物中重金属分布的影响因素分析.地球化学,37(5):430-438
    高建华,李军,汪亚平等,2009.鸭绿江河口及近岸海域沉积物中重矿物组成、分布及 其沉积动力学意义.海洋学报,31(3):84-94
    高磊,李道季,王延明等,2006.长江口最大浑浊带潮滩沉积物间隙水营养盐剖面研究.环境科学,27(9):1744-1752
    高抒,2006.亚洲地区的流域——海岸相互作用:APN近期研究动态.地球科学进展,21(7):680-686
    贺松林,1983.瓯江河口内外堆积带的形成分析.海洋学报,5(5):612-622
    贺松林,孙介民,1996.长江口最大浑浊带的悬沙输移特征.海洋与湖沼,27(1):60-66
    何文社,曹叔尤,刘兴年等,2003a.泥沙启动临界切应力研究.力学学报,35(3):326-331
    何文社,方铎,曹叔尤等,2003.泥沙启动判别标准探讨.水科学进展,14(2):143-146
    金惜三,李炎,2001.鸭绿江洪季的河口最大浑浊带.东海海洋,19(1):1-10
    金魏芳,梁楚进,周蓓锋等,2009.应用走航式ADCP测量分析与验证金塘水道的高悬沙浓度.海洋学研究,27(3):31-39
    李保加,1991.我国河流泥沙物理模型的设计方法.水动力学研究与进展,6(增刊):113-122
    李伯根,谢钦春,夏小明等,1999.椒江河口最大浑浊带悬沙粒径分布及其对潮动力的相应.泥沙研究,(1):18-26
    李从先,杨守业,范代读等,2004.三峡大坝建成后长江输沙量的减少以及对长江三角洲的影响.第四纪研究,24(5):495:500
    李丹,魏晓林,2010.鸭绿江口及东港近海降水与旱涝分析,38*23):12586-12587
    李光天等,辽东潮间浅滩的综合特征,地理学报,22卷,1986,(3):???
    李国胜,王海龙,董超,2005.黄河入海泥沙输运及沉积过程的数值模拟.地理学报,60(5):707-716
    李家胜,高建华,李军等,2010.鸭绿江河口沉积物元素地球化学及其控制因素.海洋地质与第四纪.30(1):25-31
    李九发,时伟荣,沈焕庭,1994.长江河口最大浑浊带的泥沙特性和输移规律.地理研究,13(1):51-59
    李九发,何青,张琛,2000.长江口拦门沙河床淤积和泥沙再悬浮过程.海洋与湖沼,31(1):101-109
    李孟国,曹祖德,1999.海岸河口潮流数值模拟的研究与进展.海洋学报,21(1):111-125
    李孟国,2006.海岸河口泥沙数学模型研究进展.海洋工程,24(1):139-155
    李铭雪,程岩,1994.北黄海淤泥质海岸滩涂资的开发利用.国土与自然资源研究,(2):14-18
    李四海,恽才兴,2001.河口表层悬浮泥沙气象卫星遥感定量模式研究.遥感学报,5(2):154-160
    李炎、夏小明,董礼先.椒江河口浮泥的分布和调整[J].海洋学报,1998,No.20(4):69-82.
    林晶,吴莹,张经等,2009.最大浑浊带对长江口有机碳分布的影响初探.海峡科学,(6):150-152
    林天岩,1986.鸭绿江下游航道洪水前后浅滩变化分析.水运工程,(9):28-32
    刘大召,张晨光,付东洋等,2010.基于高光谱数据的珠江口表层水体悬浮泥沙遥感反演模.海洋科学,34(4):77-80.
    刘桂卫,黄海军,丘仲锋,2010.大风浪影响下海域泥沙输运异变数值模拟.水科学进展,21(5):701-707
    刘恒魁,王锡侯,物冠,1989a.鸭绿江西侧浅海区某些水文特增的初步分析.海洋通报,8(2):25-30
    刘恒魁,吴冠,1989b.鸭绿江口至老铁山岬水域海流特征分析.海洋湖沼通报,(3):1-5
    刘敬伟,李富祥,刘月等,2011.鸭绿江下游径流时序变化特征研究.人民黄河,33(10):34-36
    刘沛然,闻平,1998.河口最大浑浊带概述.中山大学研究生学刊自然科学版,19增刊:21-26
    刘月,程岩,李富祥等,2011a.鸭绿江口及毗邻浅海沉积物重金属的分布特征与风险评价.海洋污染与防治,33(7):1:5
    刘月,程岩,张春鹏等,201 1b.近百年来人类活动对鸭绿江河床演变影响的轻矿物沉积记录.辽东学院学报,18(2):140-144
    刘振夏,夏东兴,1983.潮流脊的初步研究.海洋与湖沼,14(1):286-296
    罗肇森等,1978.潮汐河口悬沙淤积和局部动床冲淤模型试验——射阳闸下载湾模 型实例.泥沙模型报告汇编
    茅志昌,沈焕庭,2001.长江河口与瓯江河口最大浑浊带的比较研究.海洋通报,20(3):8-14
    倪培桐,吴超羽,2000.河口最大浑浊带研究进展.人民珠江,(3):19-23
    庞重光,杨作升,张军等,2000.黄河口最大浑浊带特征及其时空演变.黄渤海海洋,18(3):41-46
    任景玲,吴莹,王江涛等,1999.鸭绿江口溶解态铝的行为.青岛海洋大学学报,增刊,167-172
    任美锷,1989.人类红多对密西西比河三角洲最近演变的影响.地理学报,44(2):221-229
    沈健,沈焕庭,潘安定等,1995.长江河口最大浑浊带水沙输运机制分析.地理研究,50(5):411-420
    沈焕庭,1984.长江河口最大浑浊带的变化规律及其成因探讨,海岸河口区东里、地貌、沉积过程论文集,科学出版社
    沈焕庭,贺松林,潘安定,1992.长江河口最大浑浊带的研究.地理学报,47(5):472-279
    沈焕庭,肖成猷,孙介民,1994.河口最大浑浊带数学模拟研究的进展.地球科学进展,9(5):20-25
    沈焕庭,1995.我国河口最大浑浊带研究的新认识.地球科学进展,10(2):210-212
    沈焕庭,时伟荣,1999.国外河口最大浑浊带生物地球化学研究的动态.地球科学进展,14(2):205-206
    沈焕庭,贺松林,茅志昌等,2001.中国河口最大浑浊带刍议.泥沙研究,(1):23-29
    时伟荣,沈焕庭,李九发,1993.河口浑浊带成因.海洋学报,(4):32-34
    时伟荣,1993b.卢瓦尔河最大浑浊带内含沙量变化特征.泥沙研究,(2):97-104
    时钟,2000a.长江口底部边界层细颗粒泥沙过程.海洋科学,24(4):56-56
    时钟,陈伟明,2000b.长江口北槽最大浑浊带泥沙过程.泥沙研究(1):
    舒守荣,陈健,1982.水体悬浮泥沙含量遥感的模拟研究.泥沙研究,(3):43-51
    宋建潮,胡铁军,王恩德,贾三石,2009.鸭绿江断裂带两侧成矿条件对比剂对辽东地区未来寻找金属矿产资源的启示.矿床地质,28(4):449-461
    孙永根,吴桑云,2010.鸭绿江西水道口悬沙动力特征.海洋地质与第四纪地 址,30(1):33-38
    田向平,1986.珠江河口伶仃洋最大混浊带研究.热带海洋,5(2):28-32
    王芳,李国胜,2007.海洋悬浮泥沙二元特征参数MODIS遥感反演模型研究.地理研究,26(6):1186-1197
    王飞,张龙军,2004.高浑浊度河口沉积物的沉积机理评述.海洋护照通报,(2):21-29
    王吴,张志全,胡远满,2011.鸭绿江流域水利工程对河口三角洲的影响.生态绝杂志.30(8):1799-1804
    王厚杰,杨作升,毕乃双,2006.黄河口泥沙输运三维数值模拟I-黄河口切边锋.泥沙研究,(2):1-9
    王金秋,石椿,成功,2002.鸭绿江流域中国境内松江鲈鱼天然种群的同工酶分析.复旦学报,41(6):688-693
    王康墡,苏纪兰,1987.长江口南港环流及悬疑物质输运的计算分析.海洋学报,9(5):627-637
    王寿景,1989.九龙江水文泥沙断面输运的分析.台湾海峡,8(4):366-375
    王涛,李家春,1997长江口拦门沙地区泥沙输运.力学与实践,19(6):33-36
    汪亚平,高抒,李坤业,1999.用ADCO进行走航式悬沙浓度测量的初步研究.海洋与湖沼,30(6):758-763
    汪亚平,高抒,贾建军,2000.海底边界层水流结构及底移质搬运研究进展.海洋地质与第四纪.20(3):101-106
    汪亚平,高建华,2003.河口海岸区悬沙输运量的声学多普勒流速剖面(ADCP)观测技术的初步研究.科学技术与工程,3(5):467-470
    汪亚平,潘少明,H.V. Wang等,2006.长江口水沙入海通量的观测与分析.地理学报,61(1):35-46
    王子臣,冯天琼,1983.鸭绿江流域的水文概况.水文,47-51
    魏守林,郑漓,杨作升,1990.河口最大浑浊带的数值模拟.海洋湖沼通报,(4):14-22
    吴冬铭,李玮,李玉龙,2008.关于鸭绿江深断裂带北延的重力场证据.极力抵制,27(1):56-60
    吴祥柏,汪亚平,潘少明,2008.长江河口悬沙与盐分输运机制分析.海洋学研究,26(4):64-738-19
    夏东兴,刘振夏,1984.潮流脊的形成机制和发育条件.海洋学报,6(3):361-367
    夏福兴,陈敏,陈邦林等,1996.长江口最大浑浊带悬浮颗粒中有机重金属的异常.华东师范大学学报,(1):52-56
    夏怀宽,许东满,1993.鸭绿江断裂(南段)的特征、活动性与地震.地震研究,16(4):391-400
    熊辉,于志刚,陈洪涛等,1999.鸭绿江口溶解态P、Si的地球化学研究.海洋环境科学,18(2):1-6
    熊绍隆,1995.潮汐河口泥沙物理模型设计方法.水动力学研究与进展,10(4):398-404
    熊绍隆,曾剑,韩海骞,2010.潮汐河口泥沙物理模型若干问题探讨.水里水电科技进展,30(1):19-24
    徐海,李伯根,2009.椒江河口洪季最大浑浊带核部的悬沙分选机制.海洋通报,28(5):64
    徐文新,王浩,周祖吴等,2010.鸭绿江流域分布式水文模型开发及验证.水利水电技术,41(2):1-5
    许勇,张鹰,张东.基于Hyperion影响的悬浮泥沙遥感监测研究.光学技术,35(4):622-625
    薛鸿超等.长江口江心沙北泓河段淤积模型试验报告.华东水利学院,1979
    严杰,高建华,李军等,2010.鸭绿江课后及近岸地区稀土元素的物源指示意义.海洋地质与第四纪地质,30(4):95-103
    杨肠,汪亚平,高建华等,2006.长江口桔季水动力悬沙特征与再悬浮研究.南京大学学报,42(6):643-655
    杨树森,1990.营口港西水道泥沙淤积和局部动床模型试验研究.交通部天津水运工程科学研究所,1990,6.
    姚运达,沈焕庭,潘安定等,河口最大浑浊带若干机理的数值模拟研究.泥沙研究,(4):10-20
    尹照汉,张国枢,布仁仓等,2001.鸭绿江中下游地区生态环境演变分析,21(6):544-548
    远航,于定勇.2004.潮流与数值模拟回顾及进展.海洋科学进展.22(1):97-106
    于连生,宋家驹,唐宏寰,2005.长江口悬沙颗粒的现场测量.海洋技术,24(2):6-8
    于连生,宋家驹,唐宏寰等,2009.激光悬沙测量传感器研究.海洋技术,28(3):9-12
    张国仁,江淑娥,韩晓平等,2006.鸭绿江断裂带的主要特征及其研究意义.地质与资源,15(1):11-19
    张经,1996.中国主要河口的生物地球化学研究——化学物质的迁移与环境.北京:海洋出版社,241
    张文祥,杨世伦,杜景龙等,2008.长江口南槽最大浑浊带短周期悬沙浓度变化.海洋学研究,26(3):25-34
    张文祥,杨世伦,2008.OBS浊度标定与悬沙浓度误差分析.海洋技术,27(4):5-8
    张文祥,罗向欣,杨世伦,2010.ADP与OBS观测悬沙浓度实验对比研究.泥沙研究,(5):59-65
    张幸农,1994.常用模型沙及其特性综述.
    章华生,倪培桐,吴超羽,2000.河口最大浑浊带平面二维数值模拟.人民珠江,(6):10-12
    赵国敏,高长波,丑景俊等,1993.丹东地区基底构造与鸭绿江断裂带.地震学报,15(3):282-289
    周济福,李家春,2000.河口混合与泥沙输运.力学学报,31(5):523-531
    周淑青,沈志良,李峥等,2007.最大浑浊带及邻近水域营养盐的分布特征.海洋科学,31(6):34-42
    周永芝,郝静,李淑媛,1986.鸭绿江——澄沙河潮间带沉积物的地球化学特征.海洋通报,5(8):49-54
    朱来东,悬浮泥沙在天津蓟运河下游遥感研究中的应用.泥沙研究,(4):81-87
    朱建荣,傅德健,吴辉等,2004.河口最大浑浊带形成的动力模式和数值试验.海洋工程,22(1):55-73
    朱建荣,戚定蛮,肖成猷等,2004.径流量和海平面对河口最大浑浊带的影响.海洋学报,26(5):12-22
    朱鹏程,1984.盐水楔、最大浑浊带与河床冲淤.海洋通报,3(1):79-86
    朱玉荣,1999.不同泥沙输运公式在以潮流为主的浅海、陆架环境中的适用性探讨.海洋科学,(2):32-35
    左书华,李九发,万新宁等,2006.长江河口悬沙浓度变化特征分析.泥沙研究,(3):68-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700