用户名: 密码: 验证码:
基于AHP-模糊评价方法的莱州湾西部人工岛稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱州湾是我国重要的浅海油气区,随着海洋资源和海洋空间的开发利用,对莱州湾西部工程地质环境需要一个全面的认识。本文在实测资料和实验数据的基础上,从地壳稳定性、海床稳定性、地基稳定性和海洋环境四方面着手,对人工岛的安全稳定性进行系统研究,采用理论分析计算和数值模拟的方法对人工岛及工程地质环境稳定性进行研究,采用模糊综合评价方法对人工岛稳定性做出评价。
     莱州湾西岸区域地壳属于次稳定区域,工程区所在的莱州湾西岸附近,断裂主要有东侧的NNE向郯庐断裂带西支;北侧的NW向张家口-蓬莱强断裂带,晚更新世-全新世垂向运动强烈;北侧的NEE-EW向弱断裂带,规模小,数量多。海域内未有原发性强震出现,周围地区地震大都为浅源地震,北部断裂交汇带有7级以上地震发生,工程区周边陆域地震烈度为Ⅶ度。
     工程区域海底,地貌单一,坡度约为0.6‰。海床以粉土和粉质粘土为主,较稳定,表层及上部的粉土层和粘性土层不易滑坡,不易发生剪切破坏;但是粉土层及粘性土层中的粉土夹层易发生液化,三角洲沉积粉土层粘粒含量较高不易液化。三角洲沉积层下部的工程软弱层承载力较强(≥200kpa),对工程影响不大;埋藏古河道位于拟建工程区北,要特别注意埋藏古河道边缘的地基强度差异。
     一般情况下,潮流作用对人工岛影响较小,达到平衡状态需要较长时间,距人工岛90m处冲蚀最深达3m;一般的波浪作用对人工岛的影响也较少,根脚冲蚀较弱;风暴潮对人工岛影响作用较大,一次风暴潮作用能在平衡的人工岛根脚底床上冲蚀3m左右。要特别注意人工岛的护底工程。
     人工岛稳定性评价研究以区域工程地质为基础,以灾害地质为对象,根据莱州湾西岸工程地质环境特点采用地壳稳定性、海床稳定性、地基稳定性和海洋环境稳定性四大类13个因素作为评价指标,采用基于AHP的模糊综合评价方法,建立“稳定”、“较稳定”、“较不稳定”、“不稳定”四级评价体系,最终得出人工岛所处区域,工程地质环境条件“较稳定”。影响稳定性的主要因素为持力层性质、工程软弱层、海床液化和风暴潮,在设计及施工过程中一定要做好应对。
The Laizhou Bay is an important shallow water oil and gas region, with the development of marine resources and spaces and the constructions of offshore engineerings, it’s necessery to get a comprehensive understanding of the engineering geological environment in the western Laizhou Bay.
     Based on the measured data and experimental data, the paper systemly analysed the engineering geological environment which contents the crust stability, seabed stability, foundation stability, and marine environment. The results of this study are as follows:
     Characteristics of regional crustal stability: the crusal stability of the engineering is substable according to the activities of the faults and earthquake and the land subsidence.
     Shallow strata: mainly silt and silty clay. the top floor is silt and silty clay interbedded stratum, and extremely unstable; upper silt floor is the Yellow River deltatic deposits, with low density ,high water content, high compressibility, where there are obvious weak layers; the lower floor is a fluvial and lacustrine sedimentary stratum with high density, this is a good engineering bearing layer. The upper silt floor is not easy landslide, but is easy liquefation, the liquefaction risk of the improved foundation exists; the engineering soft stratum has a fine bearing capacity, impacting little on the engineering.
     In general, tidal affects little on the artificial island, it needs a long time for the seabed to reach a equilibrium, the biggest erosion can reach 3m; normal waves affect little on the artificial island, too; storm surges affect on the artificial island much, the balanced seabed can be eroded 3m or so by a storm surge action. So it should pay special attention to bottom protection projects.
     The stability evaluation of the artificial island is based on regional engineering geology and sets geological disasters as objects, according to engineering geological environment characteristics of the west Laizhou Bay, Using the fuzzy comprehensive evaluation method, the stability of engineering geological environment of an artificial island was evaluated, and an evaluation system for assessing the stability of artificial islands was established. Thirteen influential factors were selected as the evaluation index, which were classified into four categories, i.e.: regional crustal stability (including geologic structure features, seismic intensity, and ground subsidence), seabed stability (including topography, liquefaction, and scouring), foundation stability (including bearing stratum, engineering soft stratum, and buried ancient channel), and marine environment stability (including storm surges, tidal current, wave height, and water depth). The AHP method was used to weigh those factors. The research results would be helpful to the construction and safety estimation of artificial islands
引文
[1]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(l)
    [2]俞聿修.波浪对建筑物和海底的作用.港工技术,2001,(2)
    [3]金刚峰.波浪荷载作用下海堤动力响应[硕士论文].浙江大学,2005
    [4]李兵.海堤漫坝风险分析研究[硕士论文].广西大学,2002
    [5]罗英华.直立式防波堤失稳风险分析研究[硕士论文].天津大学,2004
    [6]范红霞.斜坡式海堤越浪量及越浪流试验研究[硕士论文].河海大学,2006
    [7]许旺.平板与立板型防波堤水动力特性研究[硕士论文].大连理工大学,2009
    [8]孙宁松,孙永福,等.海洋平台桩基冲刷及影响因素分析[J].海岸工程2004 ,23(4)
    [9]孙永福,宋玉鹏,等.潮流作用下海洋平台桩基冲刷过程及冲刷深度计算[J].海洋科学进展2006,24(3)
    [10]刘润,闫澍旺,等.海洋工程中桩身自由站立稳定性影响因素分析[J].海洋工程2006,24(3)
    [11]马红艳,刘书田,等.随机波浪作用下海洋平台响应分析和结构优化设计[J].工程力学,2005,22(1)
    [12]沐建飞,潘斌.海洋平台风荷载的分析计算[J].中国海洋平台,1999,14(2)
    [13]何雷.海洋平台波浪荷载计算及瞬态动力响应灵敏度分析的伴随法[硕士论文].大连理工大学,2001
    [14]谷凡,周晶,等.海底管线局部冲刷机理研究综述[J].海洋通报,2009,28(5)
    [15]任艳荣,刘玉标.弹塑性海床上的海底管道沉降特性分析[J].中国海洋平台,2010,25(3)
    [16]栾茂田,曲鹏.波浪引起的海底管线周围海床动力响应分析[J].岩石力学与工程学报,2008,27(4)
    [17]韩艳,拾兵,海底管线冲刷问题研究综述[J].中国海洋平台,2007,22(4)
    [18]任艳荣,刘玉标,顾小芸.海底管土相互作用研究概述[J].中国海洋平台2004,19(1)
    [19]史慧杰,褚宏宪.进海路及人工端岛工程对滩海地貌变迁的影响及预测[J].海岸工程,2006,25(4)
    [20]方伟,蔡正银.波流共同作用下滩海人工岛工程周边冲淤分析[J].水运工程,2008,3
    [21]韩西军,杨树森,曹祖德.粉沙质海床上人工岛周围波流冲刷实验[J].水运工程,2009,1
    [22]竺艳蓉.矩形人工岛波浪爬高的数值模拟[J].海洋学报,1995,17(2)
    [23]胡殿才.人工岛岸滩稳定性分析[硕士论文].浙江大学,2009
    [24]孔祥鹏,张波.浅水区斜坡人工岛海冰危害及减灾措施[J].大连海事大学学报,2007,33(4)
    [25] Anne D,Jacuqes B,et al.Slope instabilities at an active continental margin:lalge-scale Polyphase submarine slides along the northen Peruvian margin[J].Marine Geology,1995,122:303-328
    [26] Cochonat P,Cadet J P ,et al.Slope instabilities and gravity Processes in fluid migration and tectnoically active environment in the eastern Nankai accretionary wedge[J].Marine Geology,2002, 187:193-202
    [27] Imbo Y,Batist M D,et al.The Gebra slide:a submarine slide on the Triniy Peninsula Mgarin,Antarctica[J].Marine Geology,2003,193:235-252
    [28] Canals M,Lastras G,et al.Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data:case studies from the costa Project[J].Marine Geology,2004,213:9-72
    [29] James M S,Tor I T. In situ pore pressures:What is their significance and how can they bereliably measured[J],Marine and Petroleum Geology, 2005,Vol.22:275-285
    [30]杨子庚主编.海洋地质学.山东教育出版社,2000,372-373
    [31] Hesthammer J and Fossen H.Evolution and geomerties of gravitational collapse surtcurtes with examples from the Statljord Field,northern North Sea[J]. Marine and Petroleum Geology,1999,16:259-281
    [32] Lee H,Locat J,et al.Regional variabiliy of slope stabiliy: application to the Eel margin,California[J].Marine Geology ,1999,154:305-321
    [33] Biscontin G,Pestana J M,Nadim F,Seismic triggering of submarine slides in soft cohesive soil deposits[J].Marine Geology,2004,203:341-345
    [34] Petter B,Kjell B,et al.Explaining the Storegga Slide [J].Marine and Pertoleum Geology,2005,22:11- 19
    [36]宋海斌.天然气水合物体系动态演化研究:海底滑坡[J].地球物理学进展,2003,18(3)
    [35] McAdoo B G,Praston,et al.Submarine landslides geomorphology continental slope,Marine Geology,2000,69:103-136
    [37] Prior D B ,Coleman J N.Disintegrating,retrogressive landslides in very low angle subauqeous slopes,Mississippi delta[J].Marine Geotechnology,1978,3:37-60
    [38] Prior D B and Suhayda J N.Application of infinite slope analysis to submarine sediment instabilities,Mississippi delta[J].Engineering geology1979,14:l-10
    [39]许国辉.波浪导致粉质土缓坡海底滑动的研究[博士论文].青岛:中国海洋大学,2006,6-7
    [40] Henkle D J.The role of wave in causing submarine landslides[J].Geotechnique,1970,20(1):75-80
    [41] Wright S G.,Dunham R S.Bottom stability under wave induced loading. Proceedings 4th Annual Offshore Technology Conference,Houston,1972.853–862
    [42]Mitchell J K,Tsui K K,Sangrey D A.Failure of submarine slopes under wave action.Proceedings 13th International Conference on Coastal Engineering,ASCE,1972.2,1515-1539
    [43] Rahman M S,Jaber W Y .A simplified drained analysis for wave-induced liquefaction in ocean floor sands[J].Soils and Foundations,1986,26(1),57–68
    [44]王建华,陈诚等.波浪作用下海洋浅层软土弱化与场地稳定性[J].水利学报,1998,2
    [45]林缅,李家春.波浪海洋土参数对海床稳定性影响[J].应用数学和力学,2001,22(8)
    [46]吴梦喜,楼志刚.波浪作用下海床的稳定性与液化分析[J].工程力学,2002,19(5)
    [48]张民生.波浪作用下黄河三角洲海床稳定性研究[硕士论文].青岛:中国海洋大学,2006,6-7
    [47] Berrum J.Geotechnical problem involved in foundations of structures in the North Sea[J].Geotechnique,1973,23(3)
    [49] Clukey E,et al.Liquefaction potention of the Yukon Prodelta,bering See.Proc.12th Annual Offshore Technology Conf,1980.2:315-26
    [50] Ishihara K, Yamazaki A. An alysis of wave-induced liquefaction in seabed deposit of sand[J]Soil and Foundations,1984, 24( 3) : 85-100.
    [51]Zen K, Umehara Y, Finn W D L. A case study of the waveinduced liquefaction of sand layers under damaged breakwater [J] . Proceedings 3rd Canadian Conference on Marine Geotechnical Engineering . 1985. 505-520.
    [55]卫聪聪.波浪导致黄河水下三角洲粉质土滑动控制及影响要素分析研究[硕士论文].青岛:中国海洋大学,2009,15-16
    [52]Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading[ J] . Journal of SMFD, ASCE, 1966, 92( 6) .
    [53] Okusa S . Wave-induced stresses in unsaturated submarine sediments[J] . Geotechnique, 1985, 35( 4) : 517-532.
    [54]Zen K, Yamazaki H. Wave-induced liquefaction in a permeable seabed[ R] .Report of the Portand Harbour Research Institut, 1993. 155-192.
    [59]王莎.飞来峡水利枢纽排漂坝段安全稳定性研究[硕士论文].武汉:武汉大学,2005,3-4
    [56] JETRO.Feasibility Study of the Construetion of an Artifieial Island at the Pacific Entrance to the Panama Canal,2004
    [57] Bayyinah Salahuddin.The Marine Environmental Impaets of Artifieial Island Construetion.Dubai,UAE,2006
    [60]胡殿才.人工岛岸滩稳定性研究[硕士论文].杭州:浙江大学,2009,2-3
    [58]秦崇仁,肖波等.波浪水流共同作用下人工岛周围局部冲刷的研究[J].海洋学报,1994,18(2)
    [61]陈可锋,陆培东等.江苏如东人工岛建设对周边水动力及泥沙冲淤的影响[J].中国港湾建设,2008,1
    [62]蔡正银,陈海军等.波浪荷载作用下滩海人工岛工程稳定性评价[J].水利学报,2007,增刊
    [63]蒋伟,梁小华等.滩海区人工岛场地地震安全性评价[J].工程地质学报,1998,6(1)
    [64]方伟,李凯双等.滩海工程环境因子与人工岛工程相互作用初探[J].中国港湾建设,2008,3
    [66] Prior D B, Yang Z S, et al.Active slope failure sediment collapse and silt flows on the modern subaqueous Hua nghe ( Yellow River ) delta[J].Geomarine Letters , 1986, ( 6)
    [67] Prior D B, Suhayda J N, et al . Storm wave reactivation of a submarine landslide [ J] . Geomarine Letters, 1990, 10
    [68]杨作升, Kellor G H,陆念祖等.现行黄河口水下三角洲海底形貌及不稳定性[J].青岛海洋大学学报, 1990,20(1)
    [65]成国栋,薛春汀.黄河三角洲沉积地质学[M].地质出版社,1997:36-40
    [69]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性[J] .海洋地质与第四纪地质,2000,20(2)
    [70]周良勇,刘健等.现代黄河三角洲滨浅海区的灾害地质[J] .海洋地质与第四纪地质,2004,24(3)
    [71]张卫明,梁瑞才等.埕岛油田海域海底沉积特征与工程地质特性[J] .海洋科学进展,2005,22(3)
    [72]冯秀丽,沈渭铨,杨荣民等.现代黄河水下三角洲砂土液化模型[J] .青岛海洋大学学报, 1995,25( 2)
    [74]杨少丽,沈渭铨,杨作升.波浪作用下海底粉砂液化的机制分析[J] .岩土工程学报, 1995, 17( 4)
    [75]林霖,冯秀丽等.埕岛海域粉土地震液化分区[J] .海洋科学,2003,7(6)
    [76]李安龙,杨荣民,等.近代黄河水下三角洲底坡土体的差异侵蚀及土工特性[J].青岛海洋大学学报,2001,31(3)
    [77]中国海湾志(第三分册),海洋出版社,1991, 1-25
    [78]青东5区块1#人工岛和路由数值模拟研究报告
    [79]薛春汀.现代黄河三角洲叶瓣划分和识别[J] .地理研究,1994,13(2)
    [89]徐永臣.黄河三角洲沉积体系工程性质控制因素的研究[硕士论文].青岛:中国海洋大学,2004,7-8
    [80]青东5块区产能建设工程可行性研究报告
    [81]陈清华,刘池阳,等.黄河三角洲地区浅层沉积序列及构造沉降特征[J].大地构造与成矿学,2002,26(4)
    [82]鲜本忠,姜在兴.黄河三角洲地区全新世环境演化及海平面变化.海洋地质与第四纪地质,2005,25(3)
    [83]青东5区块1#人工岛进海路可研阶段路由工程地质调查报告
    [91]李兴唐,许冰,等.区域地壳稳定性研究理论与方法.北京:地质出版社,1987
    [92]孙叶,谭成轩,等.中国区域地壳稳定性定量化评价与分区.地质力学学报,1997,3(3)
    [84]唐辉明.工程地质学基础.北京:化学工业出版社,2008
    [85]李西双.渤海活动构造特征及其与地震活动的关系研究[博士论文].青岛:中国海洋大学,2008
    [86]尤少燕,吴孔兵.渤海与黄河三角洲地震活动性差异初探.山东国土资源,2005,21(6-7)
    [88]谢卓娟,吕悦军,等.渤海海域地震震源深度的分布特征.震灾防御技术,2008,3(3)
    [87]吕悦军,彭艳菊,沙海军.渤海及邻区地震活动环境.地壳构造与地应力文集,2002,(15)
    [90]马杏垣等.中国岩石圈动力学地图集.北京:中国地图出版社,1989
    [93]胜利油田信科海洋勘察测绘有限公司,青东5人工岛海洋工程勘察报告,2009
    [94]谢世楞.直立式防波堤前护底宽度设计的新方法[J].海岸工程,1982(1)
    [95]谢世楞.直立式防波堤前的冲刷形态及其对防波堤整体稳定的影响[J].海洋学报,1983,5(6)
    [96] H. Katsui and T. Toue, Methodlogy of Estimation of Scouring around Large- Scale Offshore Structures, Proc. Of The 3rd Intern. Offshore and Polar Engrg. Conf.,1993
    [97]冯秀丽,沈渭铨,等.现代黄河水下三角洲埕北地区晚更新世纪及全新世纪地层的物理力学性质[ J].海洋与湖沼通报, 1990,(3)
    [98]刘桂卫,黄海军,等.现代黄河三角洲近期地面沉降监测及诱发因素研究[J].环境保护与循环经济2009,11:66
    [99]汪应洛.系统工程.北京:机械工业出版社.1996,192-203
    [100]黄灏然,俞守华,周玉意.基于AHP的模糊综合评价方法在方案评价中的应用[J].价值工程,2007(1)
    [101]许树柏.层次分析法原理.天津:天津大学出版社.1998:22-46
    [102]倪绍样.土地类型与土地评价概论.北京:高等教育出版社.1999,282-293
    [103]武卫东,伍贻文,景国勋等.应用AHP法确定通风系统指标优化的权重[J].上海理大学学报.2002,24(2):127-130
    [104]秦波涛,李增华.改进的AHP在矿井安全性综合评价中的应用[J].煤矿安全.2002,33(4):21-23
    [105]张明顺,钟杰青.层次分析法在城市环境规划指标体系研究中的应用[J].环境科学研究.1995,8(5):9
    [106]谭周地.城市工程地质环境质量评价与区划,水文地质工程地质论丛,北京,地质出版艺工作者社,1988,41-50
    [107]田德培,王兰化,等.环渤海地区区域地壳稳定性分区与评价[J].地质调查与研究,2005,28(1)
    [108]谭成轩,胡道功.长江三峡工程库首区地壳稳定性模糊数学综合评价[J].工程地质学报,1997,5(3)
    [109]杜建军,马寅生,等.京津地区区域地壳稳定性评价[J].地球学报,2009,29(4)
    [110]杨勤业,马欣,等.黄河下游地区地壳稳定性评价[J].科学通报,2001,51,增刊
    [111]林振宏,杨作升,等.现代黄河水下三角洲底坡的不稳定性[J].海洋地质与第四纪地质,1995,15(3)
    [72]冯秀丽,沈渭铨,杨荣民等.现代黄河水下三角洲砂土液化模型[J] .青岛海洋大学学报, 1995,25( 2)
    [112]边淑华,胡泽建,等.淤泥质粉砂质海底典型平台桩基冲刷[J].海洋测绘,2006,26(2)
    【113】张长生,张伯友,王连元,等.天津市滨海新区工程地质适宜性研究[J].中山大学学报(自然科学版),2004,43
    【114】刘文涛.莱州湾西岸工程地质环境及桩基的适宜性研究[硕士论文].青岛:中国海洋大学,2010
    [115]高小惠.辽东湾浅海油气资源开发灾害地质环境特征及风险评价[硕士论文].青岛:海洋局一所,2010
    [116]贾永刚,孙永福等.胶州湾工程地质环境质量综合评价[J].海洋地质与第四纪地质1999,19(3)【117】史键辉,王名文,王永信,等.风暴潮和风暴灾害分级问题的探讨[J].海洋预报,2000,17(2)【118】谢季坚,刘承平.模糊数学方法及其应用。华中科技大学出版社,2006,28-40【119】陈桥,胡克,刘玉英等.正态分布函数在层次分析法判断矩阵建立中的应用[J].吉林大学学报(地球苦学版),2004,34:152-164
    [120]贾同彬,许国辉.黄河水下三角洲土体失稳研究现状与展望[J].海岸工程,2005,24(3),36-42
    [121]刘文彬.模糊综合评价系统研究与实现[硕士论文].河北工业大学, 2003, 7- 9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700