用户名: 密码: 验证码:
黄河三角洲地区地面沉降和风暴潮灾害特征及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于复测水准数据、地下水开采资料、沉积物物理力学参数、水文观测资料、水深资料、沉积物调查取样资料、遥感影像及前人文献资料等,从沉积学和水动力学的角度出发,运用遥感技术、GIS方法及数值模拟等手段,系统地研究了黄河三角洲地区地面沉降原因、机理及其对三角洲发育演变和环境的影响,并提出了地面沉降对黄河下游流路变迁和现行河道稳定性的影响模式。此外,研究了风暴潮天气下岸滩演化和泥沙输运变化特征,并在此基础上探讨了其对河口拦门沙演化的影响。研究结果表明:黄河三角洲地区地面沉降在小清河以北地区主要受构造沉降和浅地层沉积物自然固结沉降影响,沉降速率在4~5mm/a之间。而小清河以南地区主要受地下水开采影响,地面沉降速率在10~25mm/a之间。目前已经形成大王镇和营里两大快速沉降区,沉降面积达203km~2。地面沉降对黄河三角洲的发育和环境产生了多方面的影响,不仅使钓口附近海岸侵蚀加剧,而且影响着黄河口流路变迁的整个过程。从地面沉降对现行河道的影响模式看,现阶段清水沟流路处于较为稳定的中期阶段。风暴潮对该区岸滩稳定性影响较大,使自然海岸侵蚀严重,潮滩上潮沟变化剧烈。利用全潮水文观测资料对ECOMSED模型水动力和输沙率模拟结果进行检验,对比分析表明计算值与实测值吻合良好。风暴潮等大风浪影响下,近岸海域泥沙输运变化较大,悬浮体浓度可达一般天气的10倍左右,而底床冲淤变化可达平时的百余倍。风暴潮期间剧烈的底床冲淤变化对河口拦门沙演化影响较大。总体上看,地面沉降和风暴潮灾害对黄河三角洲环境和发育演化影响较大。未来40年黄河三角洲绝对海平面将上升16~18cm,全球变暖使得黄河三角洲地面沉降和风暴潮危害变得更为严峻。
This paper addresses the land subsidence and sediment transport under large wind and waves in the Huanghe River delta, including the causes and mechanisms of land subsidence and the effects on the deltaic evolution and environment, the effects of storm surge on the coastal zone and sediment transport, in light of repeated leveling data, groundwater withdrawal information, hydrological records, sediment mechanics parameters, field measurements, water depth data, remote sensing interpretation and so on, integrated with RS and GIS technologies and the 3D model ECOMSED with the wave parameters from the wave model SWAN. The main reasons of land subsidence in the northern Xiaoqing River areas are tectonic subsidence and shallow strata sediment consolidation with the subsidence rate of 4~5mm/a. Groundwater withdrawal is the main factor for the land subsidence in southern Xiaoqing River irrigation areas with the subsidence rate of 10~25mm/a. In recent years, there have been two rapid subsidence areas named Dawang town and Yingli town with the areas of 203km~2. Land subsidence impacts not only on the regional environment but also the changing patterns of estuary channel. It not only pricks up the coastline erosion of Diaokou River mouth, but also affects the whole process of flow channel evolution. From the mode that how the land subsidence treat on the current channel it can be seen that the Qingshuigou channel is in a relatively stable at this stage. The storm surge can make great damage on the coastal areas with the clay bank serious erosion and tidal creeks change greatly. The water depth, tidal current, suspended sediment and historical meteorological data were used to estimate the changes of the suspended sediment concentrations (SCC) and the bed scour and siltation (BSS) caused by the large wind and waves. Comparing the simulations with the in situ data found that the simulation results were reliable. The results showed that the sediment transport changed greatly in the near-shore areas under large wind and waves, with the SCC 10 times and the BSS one hundred times larger than those under the normal weather. The results also showed that the changes of the BSS have taken a great impact on the river estuary sandbar evolution under large wind and waves. Overall, the land subsidence and storm surge disasters have made great impacts on the environment and evolution of Yellow River Delta. The sea-level rise will reach 16~18cm in the next 40 years, global warming makes the land subsidence and storm surge hazards more severe in this areas.
引文
[1] Abidin Z H, Andreas H, Gamal M. Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling[J]. GPS Survey and InSAR Techniques, 2005, 128:561-566.
    [2] Ali A. Vulnerability of bangladesh to climate change and sea level rise through tropical cyclones and storm surges[J]. Water, Air & Soil pollution, 1996, 92(1-2):171-179.
    [3] Allen, J R L. Geological impacts on coastal wetland landscapes: some general effects of sediment autocompaction in the Holocene of northwest Europe[J]. The Holocene, 1999, 9:1-12.
    [4] Amelung F, Galloway D, Bell J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27:483-486.
    [5] Anfuso G, Martínez P J. Towards management of coastal erosion problems and human structure impacts using GIS tools: case study in Ragusa Province, Southern Sicily, Italy[J]. Environmental Geology, 2005, 48(4):646-659.
    [6] Asselen S, Stouthaner E, Asch T. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling[J]. Earth-Science Reviews, 2009, 92(1-2): 35-41. [7] Blaas M, Dong C M, Marchesiello P, et al. Sediment-transport modeling on Southern Californian shelves: A ROMS case study[J]. Continental Shelf Research, 2007, 27(6): 832-853.
    [8] Bao Yun, Zhang Wen-yan. Numerical simulation on the water-sediment characteristics and foreshore evolution of the linding estuary[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 198-202.
    [9] Blumberg A F, Mello G L. A description of a three-dimensional coastal ocean circulation model[R]. In: Three Dimensional Coastal Ocean Models (Edited by N. S. Heaps), American Geophysical Union, 1987, 1-16.
    [10] Blmnberg, A F, Goodrich, D M. Modeling of wind—induced destratifieation in Chesapeake Bay[J]. Journal of Estuaries, 1990, 13(3): 236-249.
    [11] Camec C, Massonnet D, King C. Two examples of the use of SAR interferometry ondisplacement fields of small spatial extent[J]. Geophysical Research Letters, 1996, 23(4): 3579-3582.
    [12] Carbognin L, Teatini P, Tosi L. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium[J]. Journal of Marine Systems, 2004, 51(1-4): 345-353.
    [13] Casulli V, Cattani E. Stability, accuracy and eficiency of a semiimplicit method for three-dimensional shallow water flow[J]. Comput. Math. App1., 1994, 27(4): 99-112.
    [14] Chen Bin, Wang Kai. Suspended sediment transport in the offshore near Yangtze estuary[J]. Journal of Hydrodynamics, 2008, 20(3): 373-381.
    [15] Dabrowski T, Hartnett M. Modelling travel and residence times in the eastern Irish Sea[J]. Marine Pollution Bulletin, 2008, 57(1-5): 41-46.
    [16] Damien C. Structural control of sinkholes and subsidence hazards along the Jordanian Dead Sea coast[J]. Environmental Geology, 2005, 47: 290-301.
    [17] Ezer, T, Mellor, G L. A numerical study of the variability and the separation of the Gulf Stream, induced by surface atmosphere forcing and lateral boundary flows[J]. Journal of Physical Oeeanography, 1992, 22: 660-682.
    [18] Ferronato M, Gambolati G, Teatini P, et al. Stochastic poromechanical modeling of anthropogenic land subsidence[J]. International Journal of Solids and Structures, 2006, 43: 3324-3336.
    [19] Fielding J, Blom R G, Goldstein R M. Rapid subsidence over oil fields measured by SAR interferometry[J]. Geophysical Research Letters, 1998, 25(17): 3215-3218.
    [20] Figueroa-vega G E. Case history no.9.8, Mexico, D F, Mexico[M]// Poland J F. Guidebook to studies of land subsidence due to groundwater withdrawal. UNESCO, Paris, France, 1984: 217-232.
    [21] Finol A, Sancevic Z A. Subsidence in Venezuela[M]// Chilingarian G V, et al. subsidence due to fluid withdrawal, Amsterdam, Netherlands: Elservier Scicence B V.1995:337-372.
    [22] Gabrysch R K, Neighbors R j. Land-surface subsidence and its control in the Houston Galveston Region[C] //Carbognin L, et al. Proc 6th int symp on land subsidence, vol 2, La Garangola, Padova, Italy, 2000:81-92.
    [23] Galloway D, Riley F S. San Joaquin Valley, California: Largest human alteration of the Earth’s surface[M]// Galloway L, et al. Land subsidence in the united states. US GeologicalSurbey Circular, 1999, 1182:23-34.
    [24] Gambolati G, Gatto P, Freeze R A. Mathematical simulation of the subsidence of Venice 2, Results[J]. Water Resour Res,1974, 10:563-577.
    [25] Gambolati G, Teatini P, Tomasi L, et a1. Coastline regression of the Romagna region, Italy, due to sea level rise and natural and anthropogenic land subsidence[J].Water Resour. Ras., 1999, 35(1): 163-184.
    [26] Gambolati G, Ricceri G, Bertoni W, et al. Mathematical simulation of the subsidence of ravenna[J]. Water Resour Res, 1991, 27:2899-2918.
    [27] Gao S. Modeling the growth limit of the Changjiang Delta[J]. Geomorphology, 2007, (885): 225-236.
    [28] Gao Zhi gang, HAN Shu-zong, et al. Numerical Simulation of the influence of mean sea level rise on typhoon storm surge in the east China Sea[J]. Marine Science Bulletin, 2008, 10(2): 36-48.
    [29] Glenn S M, Grant W D. A suspended sediment stratification correction for combined wave and current flows[J]. Journal of Geophysical Research, 1987, 92(8): 8244-8264.
    [30] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. J. Geophys. Res., 1979, 84(4): 1797-1808.
    [31] Guerrero O, Rudolph D L, Cherry J A. Analysis of long-term land subsidence near Mexico City: field investigations and predicative modeling[J]. Water Resources Research, 1999, 35(11): 3327-3341.
    [32] Hasanuddin Z A, Andreas H, Djaja R, et al. Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys[J]. Gps Solutions, 2008, 12(1):23-32.
    [33] Hasanuddin Z A, Rochman D, Duly D, et al. Land Subsidence of Jakarta(Indonesia) and its Geodetic Monitoring System[J]. Natural Hazards, 2001, 23:365-387.
    [34] Hermansen H, Landa H A, Sylte J E, et al. Experiences after 10 years of waterflooding the Ekofish Field, Norway[J]. J Pet Sci Eng, 2000,26:11-18.
    [35] Hou C S, Hu J C, Shen L C,et al. Estimation of subsidence using GPS measurements, and related hazard: thePing tung Plain, southwestern Taiwan[J]. C.R.Geoscience, 2005, (337): 1184-1193.
    [36] Hu R L, Wang S J, Lee C F, et al. Characteristics and trends of land subsidence in Tanggu,Tianjin, China[J]. Bull Eng Geol Env, 2000, 61:213-225.
    [37] Joseph F P. Guidebook to studies of land subsidence due to ground-water withdrawal[M]. United Nations Educational, Scientific and Cultural Organization, 1984.
    [38] Kahma K K, Calkoen C J. Reconciling discrepancies in the observed growth of wind-generated waves[J]. Journal of Physical Oceanography, 1992, 22: 1389-1405.
    [39] Kang H G, Zhang H W, Qu X T. Numerical study of effect of wave around single break-water with the SWAN model[J]. Journal of Hydrodynamics, 2009, 21(1): 136-141.
    [40] Kooi H. Land subsidence due to compaction in the coastal area of the Netherlands: the role of lateral fluid flow and constraints from well-log data[J]. Global and Planetary Change, 2000, 27(1-4): 207-222.
    [41] Larson K J, Basagaoglu H, Marino. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model[J]. Journal of Hydrology, 2001, 242:79-102.
    [42] Li C J, Tang X M, Ma T H. 2006. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China[J]. Hydrogeology Journal, 14: 1652–1665.
    [43] Li Guo-sheng, Dong Chao, Wang Hai-long. Numerical simulation of transportation of SPM from Yellow River to the Bohai Sea[J]. China Ocean Engineering, 2006, 20(1): 133-146.
    [44] Liu C H, Pan Y W, Liao J J, et al. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan[J]. Environmental Geology, 2004, 45(8): 1154-1166.
    [45] Liu H, Tu F L, Huang C T, et al. Current status of land subsidence in Taiwan[C]// Carbognin L, et al. Proc of 6th int. symp. on land subsidence, vol2. La Garangola, Padova, Italy, 2000: 205-212.
    [46] Lou J, Ridd P V. Modeling of Suspended Sediment Transport in Coastal Areas under Waves and Currents[J]. Estuarine Coastal and Shelf Science, 1997, 45: 1-16.
    [47] Malcherek A, Lenormant C, Peltier E, et al. Three dimensional modeling of estuarine sediment transport[A]. Estuarine and Coastal ModelingⅢ. Proceedings of the Conference[C], Eds.M.L.Spaulding etc, 1993: 43-57.
    [48] Marfai M A, King L. Monitoring land subsidence in Semarang, Indonesia[J]. Environ Geol, 2007, Environment Geology, 2007, 53(3):651-659.
    [49] Massonnet D, Holzer T, Vadon H. Land subsidence caused by the East Mesa geothermalfield, Calfornia, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24(8): 901-904.
    [50] Mcanally W H, Leter J W, Tomas W A. Two and three-D modeling systems for sedimentation[C]. Proceedings of 3rd International Symp.on River Sedimentation. The University of Mississippi, 1986.
    [51] Mead C T. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries[J]. Journal of Hydraulic Research, 1999, 37(4): 444-464.
    [52] Mellor G L. Users guide for a three diumnsional, primitive equation, numerical ocean model [R]. Princeton University, Princeton, NJ 08544-0710, 1998.
    [53] Miura N, Taesiri Y, Sakai A. Land subsidence and its influence to geotechnical aspect in Saga plain[A]//Proceedings of the international symposium on shallow sea and lowland[C], Saga, Japan: ILT, Saga University, 1988.
    [54] Nakagawa H, Murakami M, Fujiwara S, et al.. Land subsidence of the northern Kanto Plains caused by ground water extraction detected by JERS-1 SAR inteferometry[J]. International Geoscience and Remote Sensing Symposium, 2000, 5: 2233-2235.
    [55] Niekerk V A, Vogel K R, Slingerland R L, Bridge J S. Routing of Heterogeneous Sediments over Movable Bed: Model Development[J]. Journal of Hydraulic Engineering, 1992, 118(2): 246-262.
    [56] Nikola P P. Land subsidence along Delta-Mendota Canal, California[J]. Rock Mechanics and Rock Engineering, 1969, 1(2): 134-144.
    [57] Ohowa B O. Evaluation of the effectiveness of the regulatory regime in the management of oil pollution in Kenya[J]. Ocean & Coastal Management, 2009, 52(1): 17-21.
    [58] Ou S H, Liau J M, Hsu T W, et al. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan[J]. Ocean Engineering, 2002, 29(8): 947-971.
    [59] Pereira L, Jiménez J, Medeiros, et al. Use and Occupation of Olinda Littoral (NE, Brazil): Guidelines for an Integrated Coastal Management[J]. Environmental Management, 2007, 40(2): 210-218.
    [60] Phien-wej N. Giao P H, Nutalaya P. Land subsidence in Bangkok, Thailand[J]. Engineering Geology, 2006,82:187-201.
    [61] Prokopovich N P. Land subsidence along Delta-Mendota Canal, California[J]. Rock Mechanics and Rock Engineering, 1969, 1: 134-144.
    [62] Rahnama M, Moafi H. Investigation of land subsidence due to groundwater withdraw in Rafsanjan plain using GIS software[J]. Arabian Journal of Geosciences, 2009, 2: 241-246
    [63] Rajchl M, Uli?ny D, Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic) [J]. Sedimentology, 2005, 52: 601-626.
    [64] Rossi A,Calore C, Pizzi U. Land subsidence of pisa plain, Italy: experimental results and preliminary modeling study[A]. 1and Subsidence: Proceedings of 6 Inter-national Symposium on land Subsidence, Italy[C]. C. N. R, 2000: 91-104.
    [65] Sharp J M, Hill D W. Land subsidence along the northeastern Texas Gulf coast: Effects of deep hydrocarbon production[J]. Environment Geology, 1995, 25:181-191.
    [66] Sheng Y P. On modeling three dimensional estuarine and marine hydrodynamics[J]. Three-Dimensional Model of Mafine and Estuarine Dynamics. Elsevier Science Publishers, 1987: 35-54.
    [67] Shepard, F. P. Submarine Geology (2nd edition)[M]. Harper&Row, New York, 1963.
    [68] Shi X Q, Xue U Q, Ye S J, et al. Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China[J]. Environmental Geology, 2007, (52):27-40.
    [69] Silvio J, Martinus F. Coastal management in Brazil-A political riddle[J]. Ocean & Coastal Management, 2008, 51(7): 536-543.
    [70] Stathis C S. Subsidence of the Thessaloniki(northernGreece) coastal plain, 1960-1999[J]. Engineering Geology, 2001, (61): 243-256.
    [71] Strozzi T, Wegmuller U, Tosi L, et al. 2001. Land subsidence monitoring with differential SAR interferometry[J]. Photogrammetric Engineering and Remote Sensing, 67(11): 1261-1270.
    [72] Teatini p, Bau D, Gambolati G. Water-gas dynamics and coastal land subsidence over chioggia Mare field, northern Adriatic Sea[J]. Hydrogeology Journal, 2000, 8: 462-479.
    [73] Teatini P, Ferronato M, Gambolati G, et a1. A century of land subsidence in Ravenna, Italy[J]. Environ. Geo1., 2005, (47): 831-846.
    [74] Teatini P, Tosi L, Strozzi T, et al. Mapping regional land displacements in the Venicecoastland by an integrated monitoring system[J]. Remote Sensing of Environment, 2005, 98(4): 403-413.
    [75] Teisson C. Cohesive suspended sediment transport: ability and limitations of numerical modeling[J]. Journal of Hydraulic Research, 1991, 29: 755-769.
    [76] Terzaghi K. Theoretical Soil Mechanics[M]. New York.: John Wiley and Sons, 1943.
    [77] Thomas J B. The influence of faults inbasin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA[J]. Hydrogeology Journal, 2002, 10:525-538.
    [78] Tosi L, Carbognin L, Teatini P, et al. Evidences of the present relative stability of Venice, Italy, from land, sea and space observations[J]. Geophysical Research Letters, 2002, 29(12): 1562, doi:10.1029/2001GL013211.
    [79] Tosi L, Teatini P, Carbognin L, et al. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy[J]. Tectonophysics, 2009, 474(1-2): 271-284.
    [80] Tripathi N, Singh R S, Singh j S. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India[J]. Environmental Research, 2009, 109(3):258-266.
    [81] Trisula. A program for the computation of non-steady flow and transport phenomena on curvilinear coordinates in 2 or 3 dimensions[R]. Delft Hydraulics, Delft, 1993.
    [82] Valerio C, Sabrina C, Alessandro M M, et al. Land subsidence and Late Glacial environmenta levolution of the Comourban area (Northern Italy)[J]. Quaternary International, 2007, 67: 173-174.
    [83] Van Rijn L C. Sediment transport, part II: suspended load transport[J]. J. of hydraulic Engineering, ASCE 110(11), 1984.
    [84]Van Rijn L C, Nieuwjaar M W C. Transport of fine sands by currents and waves[J]. ASCE.J. Hydr.Engr., 1993, 119(2): 123-143.
    [85] VAN A S, STOUTHAMER E, VAN ASCH T W J. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling[J]. Earth-Science Reviews, 2009, 92: 35-51.
    [86] Wang K H. Characterization on circulation and salinity change in Galveston Bay[J]. Engrg. Mech., 1994, 120(3): 557-579.
    [87] Wegmuller U, Strozzi T, Wiesmann A, et al. Land subsidence mapping with ERS interferometry: evaluation of maturity and operational readiness[J]. FRINGE’99. Belgium, 1999, 10-12.
    [88] Xu Y S, Shen S L, Cai Z Y, et al. The state of land subsidence and prediction approaches due to groundwater withdrawal in China[J]. Natural Hazards, 2008, 45(1): 123-135.
    [89] Xue Y Q, Zhang Y, Ye S J, et al. Land subsidence in China[J]. Environ Geol, 2005, 48:713-720.
    [90] Yanamoto S. Recent trend of land subsidence in Japan[M]// Barends F B J, et al. land subsidence[M]. Iahs Publ, 1995(234):487-492.
    [91]别君,黄海军,樊辉,等.现代黄河三角洲地面沉降及其原因分析.海洋地质与第四纪地质, 2006, 26(4): 29-35.
    [92]陈炳安. 1982.小清河河口近海区泥沙动态分析.海洋通报, (05): 57-70.
    [93]陈戈,阎世骏,李铁锋.天津市深层粘性土对地面沉降的影响及其沉降量计算.北京大学学报, 2001, 37(6): 804-809.
    [94]陈希村,张胜平,崔着义,等.莱州湾“10.11”特大温带风暴潮分析.海洋预报. 2004, 21(4): 88-92.
    [95]陈义兰,周兴华,刘忠臣.应用InSAR进行黄河三角洲地面沉降监测研究.海洋测绘, 2006, 26(2): 16-19.
    [96]成国栋.黄河三角洲现代沉积作用及模式[M].北京:地质出版社, 1991.
    [97]成国栋,薛春汀.黄河三角洲沉积地质学[M].北京:地质出版社, 1997.
    [98]程三友,刘少峰,申旭辉.差分干涉雷达测量在地面沉降中的应用研究.东华理工学院学报, 2004, 27(4): 355-360.
    [99]程先琼,朱介寿,蔡学林.全球地幔垂直流动速度研究[J].地球物理学报, 2006, 49: 1022-1028.
    [100]程义吉,高箐.莱州湾海域水文特征及冲淤变化分析.海岸工程, 2006, 25(3): 2-6.
    [101]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报, 2007, 29(3): 276-278.
    [102]丁东,任于灿,李绍全,等.黄河三角洲及邻区的风暴潮沉积[J].海洋地质与第四纪地质, 1995, 15(3): 25-34.
    [103]丁东,周永青,李绍全,等.风暴潮与地质环境[J].海岸工程, 1996, 15(2): 9-14.
    [104]丁平兴,孔亚珍,朱首贤,等.波-流共同作用下的三维悬沙输运数学模型.自然科学进展, 2001, 11(2): 148-152.
    [105]董鸿闻.利用平均海面推定青岛水准原点地区的地壳垂直运动[J].黄渤海海洋, 2000, 18: 25-28.
    [106]董龙桥.应用GPS技术进行大面积地面沉降监测.测绘通报, 2006, (2): 39-41.
    [107]杜廷芹.现代黄河三角洲地区地面沉降特征研究.中国科学院博士学位论文, 2009.
    [108]丰爱平,夏东兴,谷东起,等.莱州湾南岸海岸侵蚀过程与原因研究.海洋科学进展, 2006, 24(1): 83-89.
    [109]冯浩鉴,顾旦生,张莉,等.中国东部地区地壳垂直运动规律及其机制研究[J].测绘学报, 1998, 27(1): 16-23.
    [110]冯秀丽,沈渭栓,杨荣民,等.现代黄河水下三角洲软土沉积物工程地质特性[J].青岛海洋大学学报, 1994, sp: 132-137.
    [111]龚士良,杨世伦.地面沉降对上海城市防汛安全的影响.人民长江, 2008, 39(6): 1-3.
    [112]韩景敏.山东省地面沉降及其防治对策.中国地质灾害与防治学报,1998, 9(2): 33-35.
    [113]韩美.莱州湾地区海水入侵与地貌的关系.海洋与湖沼, 1996, 27(4): 414-420.
    [114]胡刚,刘健. 2006.河口岸滩侵蚀研究进展,海洋地质动态, 22(6): 5-9.
    [115]胡惠民,黄立人,王若柏.黄河三角洲及其邻近地区现代地壳垂直运动与地面变形.黄河三角洲研究, 1993, (3): 17-20.
    [116]胡克林,丁平兴,朱首贤,等.长江口附近海域台风浪的数值模拟[J].海洋学报, 2004, 26(5): 23-33.
    [117]黄海军,李凡. 2004.黄河三角洲海岸带陆海相互作用概念模式.地球科学进展, 19(5): 808-815.
    [118]假冬冬,邵学军,王虹,等.考虑河岸变形的三维水沙数值模拟研究.水科学进展, 2009, 20(3): 311-317.
    [119]贾三满,王海刚,赵守生,等.北京地面沉降机理研究初探.城市地质, 2007, 2(1): 20-26.
    [120]江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系.海洋与湖沼, 2005, 36(2): 97-102.
    [121]金珍林,叶国晨.结合特殊工程分析地面沉降对高程测量的影响.现代测绘, 2008,31(4): 30-31.
    [122]李本臣,杨树森.小清河口冲淤演变规律研究.水道港口, 1999, (3): 27-31.
    [123]李德仁,周月琴,马洪超.卫星雷达干涉测量原理与应用.测绘科学, 2000, 25(1): 9-12.
    [124]李殿魁,杨玉珍,程义吉,等.延长黄河口清水沟流路行水年限的研究.第一版.郑州:黄河水利出版社, 2003.
    [125]李东风,张红武,钟德钰,等.黄河口潮流和泥沙淤积过程数值分析研究.水利学报, 2004, (11): 1-9.
    [126]李峰,宋建军,董来启,等.基于混沌神经网络理论的城市地面沉降量预测模型.工程地质学报, 2008, 16(5): 715-720.
    [127]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性[J].海洋地质与第四纪地质, 2000, 20: 21-26.
    [128]李广雪,庄振业,韩德亮.末次冰期晚期以来地层序列与地质环境特征-渤海南部地区沉积序列研究.中国海洋大学学报, 1998, 28(1): 161-166.
    [129]李国和,孙树礼,许再良,等.地面沉降对高速铁路桥梁工程的影响及对策.铁道工程学报, 2008, (4): 37-41.
    [130]李延兴,杨国华,杨世东,等.根据现代地壳垂直运动划分中国大陆活动地块边界的尝试[J].地震学报, 2001, 23: 11-16.
    [131]李征,周潮洪,任必穷,等.天津市地面沉降及其对行洪河道的影响.海河水利, 2009, (1): 23-25.
    [132]刘安国,张德山.环渤海的历史风暴潮探讨[J].青岛海洋大学学报, 1991, 21(2): 21-36.
    [133]刘桂仪,张兴乐.黄河三角洲油气资源开发的环境地质问题与经济可持续发展.上海地质, 2001, (B12): 36-38.
    [134]刘国亭,阎新兴.小清河口地貌调查及沉积物分析.水道港口, 1998,第3期.
    [125]刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报, 2001, 4-6(14): 1224-1228.
    [136]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究.岩土工程学报, 2002, 24(2): 142-146.
    [137]刘毅.地面沉降研究的新进展与面临的新问题.地学前缘, 2001, 8(2): 273-278.
    [138]刘媛媛.黄河三角洲潮滩表层沉积物非均匀固结机理研究.中国海洋大学硕士学位论文, 2004: 24-25.
    [139]陆永军,左利钦,王红川,等.波浪与潮流共同作用下二维泥沙数学模型[J].泥沙研究, 2005, (6): 1-12.
    [140]陆永军,左利钦,季荣耀,等.渤海湾曹妃甸港区开发对水动力泥沙环境的影响[J].水科学进展, 2007, 18(6): 793-800.
    [141]马振兴.渤海湾滨岸风暴潮沉积.天津师大学报(自然科学版), 1998, 18(3): 62-66.
    [142]庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报, 2001, 31(5): 762-768.
    [143]庞家珍,司书亨.黄河河口演变—1近代历史变迁.海洋与湖沼, 1979, 10(2): 136-141.
    [144]庞家珍,司书亨.黄河河口演变—3河口演变对黄河下游的影响.海洋与湖沼, 1982, 13(3): 219-224.
    [145]庞家珍,姜明星.黄河河口演变(Ⅰ)—(一)河口水文特征.海洋湖沼通报, 2003, (3): 1-13.
    [146]庞家珍,姜明星.黄河河口演变(Ⅱ)—(二)1855年以来黄河三角洲流路变迁及海岸线变化及其他.海洋湖沼通报, 2003, (4): 1-13.
    [147]彭涛,孙铁,宋晶,等.城市地面沉降对给排水管道变形的影响—以天津市塘沽区响螺湾地区为例.地质通报, 2008, 27(11): 1882-1887.
    [148]秦伟颖,庄新国,黄海军.现代黄河三角洲地区地面沉降的机理分析.海洋科学, 2008, 32(8): 38-43.
    [149]丘仲锋,何宜军. Topex/Poseidon高度计资料用于中国近海M2分潮的同化反演[J].海洋与湖沼, 2005, 36(4): 376-384.
    [150]任美锷.风暴潮对淤泥质海岸的影响[J].海洋地质与第四纪地质, 1983, 3(4): 26-31.
    [151]任美锷.海平面上升与地面沉降对黄河三角洲影响初步研究.地理科学, 1990, 10(1): 48-57.
    [152]任美锷.黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测.地理学报, 1993, 48(5): 385-393.
    [153]任美锷.海平面上升对海岸带影响研究的现状及问题.黄河三角洲研究, 1993, (3): 1-7. [33]山东省地质矿产局第一水文地质队.第三调查区水文地质调查报告(山东省海岸带及海涂资源综合调查), 1985.
    [154]山东省科学技术委员会编.山东省海岸带和海涂资源综合调查报告集—黄河口调查区综合调查报告.第一版.北京:中国科学技术出版社, 1991.
    [155]邵传青,郭家伟,王洁,等.地面沉降预测的灰色-马尔柯夫模型.中国地质灾害与防治学报, 2008, 19(3): 69-72.
    [156]师长兴,尤联元,李炳元.黄河三角洲沉积物的自然固结压实过程及其影响.地理科学, 2003, 23(2): 175-181.
    [157]师长兴,章典,等.黄河口泥沙淤积估算问题和方法——以钓口河亚三角洲为例.地理研究, 2003, 22(1): 49-59.
    [158]施雅风.我国海岸带灾害的加剧发展厦其防御方略.自然灾害学报, 1994, 3(2): 3-15.
    [159]史文静.黄河口悬浮泥沙扩散规律及其数值模拟.中国海洋大学博士学位论文,2008.
    [160]宋波,王德生,王锦丽.东营地面沉降监测.地矿测绘, 2004, 20(1): 34-36.
    [161]田洪水,肖俊华,赵淑慧,等.黄河三角洲软土的特征及地基处理方法[J].山东建筑工程学院学报, 2003, 18: 24-27.
    [162]王超,张红,于勇,等.雷达差分干涉测量[J].地理学与国土研究, 2002, 18(3): 13-17.
    [163]王殿志,张庆河,时钟.渤海湾风浪场的数值模拟[J].海洋通报, 2004, 23(5): 10-17.
    [164]王光谦.河流泥沙研究进展[J].泥沙研究, 2007, (2): 64-80.
    [165]王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟Ⅰ—黄河口切变锋.泥沙研究, 2006, (2): 1-9.
    [166]王若柏,孙东平,耿世昌,等.天津地区地面沉降及其对地理环境的影响.地理学报, 1994, 49(4): 317-323.
    [167]王艳红.江苏沿海相对海面变化及其对辐射沙洲的影响.南京师范大学硕士学位论文, 2003.
    [168]魏光兴,孙昭民.山东省自然灾害史[M].北京:地震出版社, 2000.
    [169]夏东兴,武桂秋,杨鸣,等.山东省海洋灾害研究.北京:海洋出版社, 1999, p.3.
    [170]辛春英,何良彪.上新世晚期以来黄河三角洲地区的沉积作用.黄渤海海洋, 1991, 9(1):33-41.
    [171]徐福敏,张长宽.一种浅水波浪数值模型的应用研究[J].水动力学研究与进展,2000, 5(4): 429-434.
    [172]徐永臣.黄河三角洲沉积体系工程性质控制因素的研究.中国海洋大学硕士学位论文,2005.
    [173]薛春汀.现代黄河三角洲叶瓣的划分和识别.地理研究, 1994, 13(2): 59-66.
    [174]薛禹群,张云,叶淑君,等.中国地面沉降及其需要解决的几个问题.第四纪研究, 2003, 23(6): 585-593.
    [175]薛禹群,张云,叶淑君,等.我国地面沉降若干问题研究.高校地质学报, 2006, 12(2): 153-160.
    [176]颜世强.黄河三角洲生态地质环境综合研究.吉林大学博士学位论文,2005.
    [177]杨德周,尹宝树,徐艳青,等. SWAN浅水波浪模式在渤海的应用研究—Phillips线性增长比例系数的改进[J].水科学进展, 2005, 16(5): 710-714.
    [178]杨桂山.中国沿海风暴潮灾害的历史变化及未来趋向[J].自然灾害学报, 2000, 9(3): 23-30.
    [179]杨作升,Keuer G H.现行黄河口水下三角洲海底地貌及不稳定性.青岛海洋大学学报, 1990, 20(1): 7-21.
    [180]姚荣江,杨劲松,刘广明.黄河三角洲地区典型地块地下水特征的空间变异性研究.土壤通报, 2006, 37(6):1071-1075.
    [181]姚荣江,杨劲松.黄河三角洲典型地区地下水位与土壤盐分空间分布的指示克立格评价[J].农业环境科学学报, 2007, 26: 2118-2124.
    [182]叶安乐,梅丽明.渤黄东海潮波数值模拟[J].海洋与湖沼, 1995, 26(1): 64-70.
    [183]叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型.人民珠江, 1986, 6: 7-15.
    [184]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究.中国地质灾害与防治学报, 2005, 16(2):1-8.
    [185]尹宝树,徐艳青,任鲁川,等.黄河三角洲沿岸海浪风暴潮耦合作用漫堤风险评估研究.海洋与湖沼, 2006, 37(5): 457-463.
    [186]尹明泉,韩淑萍.黄河三角洲地区软土的初步研究.山东地质, 1993, 9(2): 2-19.
    [187]应绍奋,沈永坚,郭良迁.渤海沿岸地区的现代构造运动.中国地震, 1986, 2(1): 29-34.
    [188]于治通.莱洲湾南岸淄河下游咸水入侵调查与研究.中国海洋大学硕士学位论文, 2006.
    [189]袁瑞强.黄河三角洲地下水特征及其向海输送.中国海洋大学硕士学位论文, 2006.
    [190]曾庆华,张世奇,胡春宏,等.黄河口演变及政治.第一版.郑州:黄河水利出版社, 1997.
    [191]张存德,向家翠.华北地区的现代构造运动.地震地质, 1990, 12(3): 265-271.
    [192]张胜平,徐振山,王军,等.莱州湾温带风暴潮预报研究.海洋预报, 2002, 19(1): 64-71.
    [193]张世奇.黄河口输沙及冲淤变形计算研究.水利学报, 1990 (1): 23-33.
    [194]张晓龙,李培英,刘月良.黄河三角洲风暴潮灾害及其对滨海湿地的影响.自然灾害学报, 2006,15(2):10-13.
    [195]张修忠,王光谦.浅水流动及输运三维数学模型研究进展.水利学报, 2002, (7): 1-7.
    [196]张迎珍.地面沉降危害及防治对策.科技情报开发与经济, 2007, 17(1): 288-290.
    [197]张振克.黄渤海沿岸海岸带灾害,环境变化趋势及其持续发展对策的研究.海洋通报, 1996, 15(5): 91-96.
    [198]赵保仁,方国洪,曹德明.中国东部边缘海潮汐潮流的数值模拟[J].海洋学报, 1994, 16(4): 1-10.
    [199]赵文涛,李亮.苏锡常地区地面沉降机理及防治措施.中国地质灾害与防治学报, 2009, 20(1): 88-93.
    [200]郑铣鑫,应玉飞等.中国沿海地区相对海平面上升的影响及地面沉降防治策略.科技通报, 2001, 17(6):51-55.
    [201]朱建军.环渤海地区地面沉降成因分析与对策研究.灾害学, 2000, 15(2):52-55.
    [202]朱建荣,傅德健,吴辉,等.河口最大浑浊带形成的动力模式和数值试验[J].海洋工程, 2004, 22(1): 66-73.
    [203]宗先国,刘志雨,陈翠英,等.渤海湾东南海岸风暴潮成因分析及预报.水文, 2007, 27(1): 40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700