用户名: 密码: 验证码:
长江河口及邻近海域表层水体关键动力参数的遥感反演研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江河口海岸地区各种水动力综合作用塑造了复杂多变的河口地貌形态,促进了河口的不断演变。泥沙运动正是动力作用与地貌演变之间的纽带。如何更好地利用不同时相、不同空间分辨率、不同电磁波波段和主、被动遥感数据相结合的方式,进行长江河口及邻近海域不同尺度、不同性质水体动力参数的常规持续监测是对海洋遥感应用提出的全新挑战。据此,本文以遥感学、物理海洋学、地理信息系统等相关学科的理论为指导,基于3S技术、数值模拟技术等,选取多源遥感数据,深入研究河口及邻近海域表层水体参数(海表风场、海表流场及海表悬浮泥沙浓度)的遥感成像特征和成像机理,构建表层水体参数的遥感反演模型,实现表层水体参数的快速、大面积常规持续观测。在此基础上,辅以长江河口及邻近海域的气象数据、数值模拟数据和实测数据等,研究长江入海泥沙在各种水动力综合作用下引起的河口及邻近海域悬浮泥沙时空分布特征,探讨悬浮泥沙的扩散范围和动力机制。此项研究将有助于更好地理解河口陆海相互作用特点,为河口海岸工程、沉积地貌演变及生态环境保护等提供基础科学数据。主要研究内容包括以下4个方面:
     1)SAR海表风场反演
     选取ERS2-SAR, ENVISAT-ASAR微波雷达数据,通过改进基于2D FFT的风向反演算法,结合CMOD4风速反演模型,获取高精度高空间分辨率的海表风场。SAR风场反演结果与QuikSCAT风场产品及WRF模型风矢量结果表现了很好的一致性,风速相关系数分别为0.92和0.87,风向相关系数分别为0.95和0.85。高相关关系证明了SAR用于海表风场反演的能力,其高空间分辨率的独特优势更有利于揭示复杂多变的海岸带风场。联合开阔海域QuikSCAT风产品与海岸带地区SAR风场反演结果,可以获得全球范围内的高质量海表风场数据。定性定量评估CMOD4模型用于SAR风速反演的主要误差源,发现由于NRCS不精确导致风速相对误差最大值为45%;由于风向不精确导致的风速相对误差最大值为24%;当格网单元大小小于0.5km时,NRCS的变化很大程度上是由噪声引起的,从而影响SAR风速的精确估算。对于诸如台风这样的高风速海面风场,通过实例证实了采用CMOD5反演模型可准确的确定台风中心位置、台风空间结构及台风风速,这对于海洋灾害性天气预报预警具有非常重要的现实意义。在此基础上,SAR风场与数值模拟数据结合进行海洋动态研究是一次很好的尝试,证实了海洋遥感参数有利于数值模拟精度的提高,同时对海洋遥感数据源提出了高时相分辨率的需求。
     2) ASAR海表流场反演
     选取ENVISAT-ASAR微波雷达数据,基于多普勒质心频率异常理论反演海表多普勒流场。经方位向、距离向误差校正及去除海表风矢量对多普勒质心频率的贡献可获取海表多普勒流场。多普勒频率异常方法反演海表流速的分辨率在方位向为8km,距离向为4km。下行轨道ENVISAT-ASAR成像定位特征更适合获取长江入海及长江口邻近海域表层流场的空间变化特征。定性定量探讨了NRCS方位向剧烈梯度变化、低入射角、不精确的风矢量以及雨对多普勒流速估算的影响。当雷达入射角低于30°时,ASAR多普勒速率的误差会出现增长拐点;采用ASAR自身反演的海表风场,可降低海表风矢量对多普勒频率异常造成的误差;雨的出现导致雷达NRCS增加/降低,从而对多普勒质心频率异常产生偏差。ASAR多普勒流场与FVCOM数值模拟的海表流场吻合较好,存在较为一致的流速和流向,证实了基于多普勒质心异常理论反演ASAR海表流场的可行性和可靠性。ASAR海表流场能够反映局地海洋环境状况,对于揭示中国东海海域多尺度的海洋动态至关重要;也将有助于更好地理解ASAR影像的成像机理,提高定量化解释ASAR影像上海表流场特征的能力。
     3) MERIS海表悬浮泥沙浓度反演
     MERIS海表悬浮泥沙浓度反演结果与实测数据吻合较好,论证了基于MERIS数据的半经验半分析SERT模型用于高浊度水体泥沙反演的适用性和可靠性。洪季时,长江河口表层悬浮泥沙浓度最大可达3.0kg/m3,出现在南汇嘴及杭州湾附近;枯季时,长江河口表层悬浮泥沙浓度最大可达1.2-1.6kg/m3,出现在杭州湾及洋山港附近;汊道内表层悬沙浓度受径流和潮流影响较大,浓度出现较大波动。通常情况下,长江河口及邻近海域从徐六泾至最大浑浊带至杭州湾,表层悬浮泥沙浓度整体上呈现递增趋势,纵向上相对于上游河段、下侧海域而言,高悬浮泥沙浓度出现在最大浑浊带区域,横向上从长江口至杭州湾表层悬浮泥沙浓度不断增加。整体而言,大潮期间表层悬沙浓度大于寻常潮期间大于小潮期间;表层悬沙浓度的季节性变化显著,自徐六泾至口门表层悬沙浓度夏高冬低;南北槽汊道,表层悬沙浓度的季节性变化幅度较弱,时有转换趋势,即有时表现为夏高冬低,有时为夏低冬高;口外海滨及杭州湾区域表现为冬高夏低。
     4)长江河口及邻近海域表层悬浮泥沙驱动机制研究
     基于多源遥感数据,辅以气象数据、数值模拟数据和实测数据,探讨了长江河口及邻近海域表层悬浮泥沙驱动因子,结果表明径流对悬浮泥沙的影响主要表现在以径流作用为主的口内河段:潮流是长江口外及杭州湾的主要动力因子,制约着悬浮泥沙的分布;风向风速是控制浑水带扩散范围的一个主要因素,其变化可引起浑水带宽度大幅度的变动。
The evolution characteristics of estuarine and coastal morphology are being moulded by the complicated hydrodynamic factors. The transport of sea surface sediment is the bridge between kinetic factors and geomorphology development. Therefore, how to use the combination of different temporal, spatial-resolution, electromagnetic wave and active and passive remote sensing images to routinely observe and analyze various environment kinetic parameters? This is a new challenge for the application of oceanic remote sensing. Based on these issues, multi-source remote sensing images, auxiliary meteorological data, in situ data and numerical simulation data are selected to construct the retrieval algorithms of various sea surface parameters in the estuarine and coastal area. In addition, the retrieved products are validated with the numerical simulated results in order to demonstrate the reliability of the algorithms. We further analyze and discuss the temporal and spatial distribution of SSC (Suspended Sediment Concentration) under comprehensive effect of various hydrodynamic interactions and its dynamic mechanism from the point of multi-source remote sensing. This study will consequentially help to better understand the features of land-ocean interactions; and provide scientific and reasonable data for estuarine and coastal engineering, sedimentary geomorphic evolution and ecological environmental protection. The major research contents are as follows.
     1) Sea surface wind retrieval based on SAR
     ERS2-SAR, ENVISAT-ASAR data are selected to extract high-resolution and high-precision sea surface wind through the improved2D FFT and CMOD4model. SAR-retrieved wind fields are validated with collocated measurements from QuikSCAT and products from the atmospheric Weather Research Forecasting model (WRF). In general, we found good agreement between the datasets, indicating the reliability and applicability of SAR-retrieved algorithms under different atmospheric conditions. Although QuikSCAT can only produce wind vectors with resolution up to12.5km, it is still best suited for open ocean measurements. In coastal regions, where wind fields can vary dramatically over a few km, SAR images are able to offer sub-km resolution. Therefore, we can obtain an improved global wind product by combining QuikSCAT wind products in open ocean areas with high-resolution SAR-retrieved wind fields in coastal areas. Moreover, we discussed the main inherent error sources in the process, and conducted sensitivity analyses using CMOD4to estimate the error caused by the effect of speckle, uncertainty in wind direction, and inaccuracy in normalized radar cross section (NRCS). For the high speed wind, e.g., typhoon, CMOD5model is applied and demonstrated to have the strong capability, including determination of typhoon center position, typhoon spatial structure and typhoon wind speed. These will be very helpful for the marine severe weather prediction. Finally, SAR-retrieved wind fields were applied to simulate the salinity distribution off the Changjiang estuary. The findings of this study will be valuable for wind resource assessment and development of future numerical ocean models based on SAR images.
     2) Sea surface velocity retrieval based on ASAR
     Based on the Doppler centroid anomaly theory, ENVISAT-ASAR images are applied to derive the sea surface Doppler velocity. Yet, biases contaminate the Doppler centroid shift that, in turn, affect the retrieval of the range Doppler velocity. Careful corrections and bias removal is therefore highly needed to retrieve reliable signals. Azimuth bias removal from the scene NRCS gradients and range bias removal from reference data have been presented for three different ASAR scenes at Yangtze Estuary. The RMS offset of the corrected Doppler anomaly is approximately to6.0Hz, corresponding to a horizontal Doppler velocity of29cm/s at35°incidence angle. In this study, the Doppler method yields estimates with a resolution (azimuth, range) of about8km×4km and substantial overlaps. The orientation of the ENVISAT-ASAR tracks with respect to the Changjiang River outflow implies that the descending tracks are most attractive for the range Doppler shift observation. Uncertainty analysis of ASAR Doppler velocity are also discussed with regard to the strong azimuthal NRCS gradients, low radar incidence angle, inaccuracy in wind field and the presence of rain cells. The ASAR surface current velocities are particularly sensitive to inaccuracies in the wind correction. Using wind fields accurately retrieved from the ASAR images yield the most accurate retrieval of the ASAR surface current. The inter-comparison and validation of the ASAR-derived Doppler velocities against the surface velocity field derived from numerical ocean model simulations shows promising results. The Doppler measurements therefore have the capability to derive innovative estimates of surface velocities at Yangtze Estuary. These Doppler based velocity retrievals from ASAR images of the Yangtze Estuary area are valuable as they reveal the multi-scale dynamics around the East China Sea. Furthermore, the ASAR Doppler velocities have the capability to provide sufficiently accurate spatial information for validation of high resolution coastal models.
     3) Suspended Sediment Concentration retrieval based on MERIS
     The SERT model coupled with a multi-conditional algorithm scheme is introduced and validated with in situ measurements using MERIS-in situ data matchups. The results are considerably accurate and reliable. Spatially, the SSC from Xuliujing downward to the turbidity maximum to Hangzhou Bay increases constantly under normal conditions; SSC during spring tide is larger than that in ordinary tide than that in neap tide. SSC in Yangtze estuary presents significant seasonal changes, in the inner estuary it showing higher concentration during summer than during w. inter; while in the outer estuary it presenting higher concentration during winter than during summer. In the North Passage and South Passage regions, SSC reveals unobvious seasonal changes and exists a transformation trade; sometimes it shows higher concentration during winter than during summer, sometimes it is the other way around. Temporally, the SSC show a neap-spring tidal cycle and seasonal fluctuations.
     4) Driving factors research on Yangtze suspended sediment distribution
     Based on multi-source remote sensing data, meteorological data and in situ data, we discuss the main driving factors of Yangtze suspended sediment distribution. It is concluded that Yangtze runoff control sediment distribution in the inner estuary; tidal currents are the predominant factors related to sediment distribution in the outer estuary and Hangzhou Bay areas; wind direction and wind speed control the diffusion area of SSC.
引文
[1]高彦春,牛铮,王长耀.遥感技术与其全球变化的研究[J].地球信息科学.2000(02):42-46.
    [2]符淙斌,董文杰,温刚,等.全球变化的区域响应和适应[J].气象学报.2003(02):245-250.
    [3]Ipcc. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Z]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007996.
    [4]陈吉余.中国河口海岸研究与实践[M].北京:高等教育出版社,2007,129.
    [5]河口海岸环境变异和资源可持续利用学术讨论会.“河口海岸环境变异和资源可持续利用”学术讨论会[Z].2000.
    [6]Ericson J P V C, Dingman S L W L, Meybeck M. Effective sea-level rise and deltas:Causes of change and human dimension implications.[J]. Global and Planetary Change.2006,50(1-2):63-82.
    [7]陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态.2002(01):1-5.
    [8]Loicz. Annual Rorport[R]. Texel, the Nertherlands:LOICZ International Project Office,1999.
    [9]Licin Sain B K R W. Integrated Coastal and Ocean Management[M]. Island Press,1998:70-71.
    [10]杨世伦,赵庆英,朱骏.长江口岸滩近期演变及南水北调工程的可能影响[J].上海地质.2001(02):7-11.
    [11]陈斌.长江口附近海域三维悬浮泥沙的数值模拟研究[D].中国科学院研究生院(海洋研究所),2008.
    [12]郜昂,赵华云,杨世伦,等.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨——以杭州湾和长江口交汇处的南汇嘴为例[J].海洋科学进展.2008,26(1):44-50.
    [13]徐元,王宝灿,章可奇.上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J].地理研究.1994(03).
    [14]徐元,王宝灿.淤泥质潮滩潮锋的形成机制及其作用[J].海洋与湖沼.1998(02):148-155.
    [15]Moore R K. Radar scatterometry-An active remote sensing tool[R]. NASA,1966.
    [16]Goodberlet M A, Swift C T, Wilkerson J C. Remote sensing of ocean surface winds with the special sensor microwave/imager[J]. Journal of Geophysical Research.1989,94(C10):14547-14555.
    [17]Goldhirsh J, Dobson E B. A recommended algorithm for the determination of ocean surface wind sped using satellite-borne radar altimeter[Z]. JHU/APL SIR-85-U005,Johns Hopkins Univ.,Appl. Phys. Lab., Laurel, Md:1985.
    [18]Witter D L, Chelton D B. A Geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development J]. Journal of Geophysical Research.1991,95(C5):8853-8860.
    [19]Gerling T W. Structure of the surface wind field from the Seasat SAR[J]. Journal of Geophysical Research-Oceans.1986,91(C2):2308-2320.
    [20]Weissman D E, King D B, Thompson T W. Relationship between hurricane surface winds and L-band radar backscatter from the sea surface[J]. Journal of Applied Meteorology.1979,18(8).
    [21]Jones W L, Delnore V E, Bracalente E M. The Study of Mesoscale Ocean [M]. Winds Spaceborne Synthetic Aperture Radar for Oceanography, Blatimore:Johns Hopkins University Press,1981,87-94.
    [22]Stoffelen A. Scatterometry[D]. Universtiy of Utrecht,1996.
    [23]Wentz F J, Smith D K. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations[J]. Journal of Geophysical Research-Oceans.1999,104(C5):11499-11514.
    [24]Lehner S, Schulz-Stellenfleth J, Schattler B, et al. Wind and wave measurements using complex ERS-2 SAR wave mode data[J]. IEEE Transactions on Geoscience and Remote Sensing.2000,38(5): 2246-2257.
    [25]Horstmann J, Schiller H, Schulz-Stellenfleth J, et al. Global wind speed retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing.2003,41(10):2277-2286.
    [26]Horstmann J, Koch W, Lehner S, et al. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization[J]. IEEE Transactions on Geoscience and Remote Sensing.2000,38(5): 2122-2131.
    [27]Shimada T, Kawamura H, Shimada M. An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR[J]. IEEE Transactions on Geoscience and Remote Sensing.2003,41(3): 518-531.
    [28]Stoffelen A, Anderson D. Scatterometer data interpretation:estimation and validation of the transfer function CMOD4[J]. Journal of Geophysical Research.1997,102(C3).
    [29]Hasager C B, Nielsen M, Astrup P, et al. Offshore wind resource estimation from satellite SAR wind field maps[J]. Wind Energy.2005,8(4):403-419.
    [30]Quilfen Y, Chapron B, Elfouhaily T, et al. Observation of tropical cyclones by high-resolution scatterometry[J]. Journal of Geophysical Research-Oceans.1998,103(C4):7767-7786.
    [31]Christiansen M B, Koch W, Horstmann J, et al. Wind resource assessment from C-band SAR[J]. Remote Sensing of Environment.2006,105(1):68-81.
    [32]Horstmann J, Koch W. Measurement of ocean surface winds using synthetic aperture radars[J]. IEEE Journal of Oceanic Engineering.2005,30(3):508-515.
    [33]Lin H, Xu Q, Zheng Q. An overview on SAR measurements of sea surface wind[J]. Progress in Natural Science.2008,18(8):913-919.
    [34]Brusch S, Lehner S, Schulz-Stellenfleth J. Synergetic use of radar and optical satellite images to support severe storm prediction for offshore wind farming[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2008,1(1):57-66.
    [35]Thompson D R, Beal R C. Mapping high-resolution wind fields using synthetic aperture radar[J]. Johns Hopkins APL Technical Digest.2000,21(1):58-67.
    [36]Elfouhaily T, Thompson D R, Vandemark D, et al. A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces[J]. Waves in Random Media.1999,9(3):281-294.
    [37]Thompson D R, Beal R C. Mapping high-resolution wind fields using synthetic aperture radar[J]. Johns Hopkins APL Technical Digest (Applied Physics Laboratory).2000,21(1):58-67.
    [38]Kim D, Moon W M. Estimation of sea surface wind vector using RADARS AT data[J]. Remote Sensing of Environment.2002,80(1):55-64.
    [39]Horstmann J, Thompson D R, Monaldo F, et al. Can synthetic aperture radars be used to estimate hurricane force winds?[J]. Geophysical Research Letters.2005,32:L22801.
    [40]Levy G, Brown R A. detecting planetary boundary layer rolls from SAR[M]. Brown R A,Ed.: Remote Sensing of the Pacific Ocean From Satellites,1998:128-134.
    [41]Gerling T W. Remote-sensing of the ocean surface wind filed with a scatterometer and a synthetic aperture radar[J]. Johns Hopkins APL Technical Digest.1985,6(4):320-329.
    [42]Fetterer F, Gineris D, Wackerman C C. Validating a scatterometer wind algorithm for ERS-1 SAR[J]. IEEE Transactions on Geoscience and Remote Sensing.1998,36(2):479-492.
    [43]杨劲松,黄韦艮,周长宝,等.合成孔径雷达图像的近岸海面风场反演[J].遥感学报.2001(1):13-16.
    [44]喻亮,丁晓松.利用星载ERS-2 SAR进行长江口海面风场反演研究[J].信息与电子工程.2005(3):172-175.
    [45]王铁.合成孔径雷达反演黄海海面风场[J].海洋湖沼通报.2007(4):10-13.
    [46]陈艳玲,黄珹,丁晓利,等ERS-2 SAR反演海洋风矢量的研究[J].地球物理学报.2007(6):1688-1694.
    [47]张毅,陈永强,朱敏慧.SAR海面风场反演研究[J].电子测量技术.2007(2):36-38.
    [48]Fichaux N, Ranchin T. Combined extraction of high spatial resolution wind speed and wind direction from SAR images:A new approach using wavelet transform[J]. Canadian Journal of Remote Sensing.2002,28(3):510-516.
    [49]Koch W. Directional analysis of SAR images aiming at wind direction[J]. IEEE Transactions on Geoscience and Remote Sensing.2004,42(4):702-710.
    [50]朱华波,文必洋,黄坚.基于尺度分离的SAR图像梯度反演海面风向[J].武汉大学学报(理学版).2005(03):375-378.
    [51]Du Y, Vachon P W, Wolfe J. Wind direction estimation from SAR images of the ocean using wavelet analysis[J]. Canadian Journal of Remote Sensing.2002,28(3):499-509.
    [52]张毅,蒋兴伟,宋清涛,等.基于小波分析的近岸海面风向反演研究[R].国家卫星海洋应用中心,2009.
    [53]Furevik B R, Korsbakken E. Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000,38(2):1113-1121.
    [54]Monaldo F M, Thompson D R, Pichel W G, et al. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds[J]. IEEE Transactions on Geoscience and Remote Sensing.2004,42(2):283-291.
    [55]Beaucage P, Glazer A, Choisnard J, et al. Wind assessment in a coastal environment using synthetic aperture radar satellite imagery and a numerical weather prediction model[J]. Canadian Journal of Remote Sensing.2007,33(5):368-377.
    [56]Portabella M, Stoffelen A, Johannessen J A. Toward an optimal inversion method for synthetic aperture radar wind retrieval[J]. Journal of Geophysical Research-Oceans.2002,107(C8):1-13.
    [57]Emergy W J, Thomas A C, Collins M J, et al. An objective method for computing advective surface velocities from sequential infrared satellite images[J]. Journal of Geophysical Research.1986,91(C11): 12865-12878,13086.
    [58]Kuo N, Yan X. Using the shape-matching method to compute sea-surface velocities from AVHRR satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing.1994,32(3):724-728.
    [59]贺明霞,管雷,赵朝方,等.九五科技攻关项目96-922-03-04专题--卫星数据反演海表流场、海面风场、海浪方向谱[R].,2000.
    [60]Romeiser R, Thompson D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing.2000, 38(12):446-458.
    [61]Romeiser R, Suchandt S, Runge H, et al. First Analysis of TerraSAR-X Along-Track InSAR-Derived Current Fields[J]. IEEE Transactions on Geoscience and Remote Sensing.2010,48(2):820-829.
    [62]Thompson D R, Jensen J R. Synthetic aperture radar interferometry applied to ship-generated internal waves in the 1989 Loch Linnhe experiment[J]. Journal of Geophysical Research.1993,98(C6): 10,259-269.
    [63]Young I R, Rosenthal W, Ziemer F. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents[J]. Journal of Geophysical Research. 1985,90(C1):1049-1059.
    [64]Senet C M, Seemann J, Ziemer F. An iterative technique to determine the near surface current velocity from time series of sea surface images[C]. Halifax, Canada:1997.
    [65]Chapron B, Collard F, Kerbaol V. Satellite synthetic aperture radar sea surface Doppler measurements[Z]. Svalbard, Norway:ESA SP-565,2004.
    [66]Chapron B, Collard F, Ardhuin F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research-Oceans.2005,110(C07008C7).
    [67]Kerbaol V, Collard F. SAR-derived coastal and marine applications:From research to operational products[J]. IEEE Jouranl of Oceanic Engineering.2005,30(3):472-486.
    [68]Johannessen J A, Chapron B, Collard F, et al. Direct ocean surface velocity measurements from space:Improved quantitative interpretation of Envisat ASAR observations[J]. Geophysical Research Letters.2008,35(L2260822).
    [69]Dagestad K, Hansen M W, Johannessen J A, et al. Inverting consistent surface current fields from SAR[R]. ESA,2010.
    [70]Rouault M J, Mouche A, Collard F, et al. Mapping the Agulhas Current from space:An assessment of ASAR surface current velocities[J]. Journal of Geophysical Research-Oceans.2010,115(C 10026).
    [71]Hansen M W, Collard F, Dagestad K F, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing.2011, 49(1OSI1):3582-3592.
    [72]Mouche A A, Collard F, Chapron B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing.2012,50(72):2901-2909.
    [73]Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnol. Oceanogr.1977,22(4):709-722.
    [74]Holyer R J. Toward universal multispectral suspended sediment algorithms[J]. Remote Sensing of Environment.1978,7(4):323-338.
    [75]Klemas V, Srna R, Treasure W M, et al. Satellite studies of turbidity and circulation patterns in Delaware Bay[J]. American Society of Photogrammetry Fall Convention and Symposium on Remote Sensing in Oceanography.1973:848-871.
    [76]Gallie E A, Murtha P A. Specific absorption and backscattering spectra for suspended minerals and chlorophyll-a in chilko lake, British Columbia[J]. Remote Sensing of Environment.1992,39(2):103-118.
    [77]Aranuvachapun S, Walling D E. Landsat-MSS radiance as a measure of suspended sediment in the Lower Yellow River (Hwang Ho)[J]. Remote Sensing of Environment.1988,25(2).
    [78]Jensen J R, Kjerfve B, Ramsey E W I, et al. Remote sensing and numerical modeling of suspended sediment in Laguna de Terminos, Campeche, Mexico[J]. Remote Sensing of Environment.1989,28.
    [79]Doxaran D, Froidefond J M, Lavender. S, et al. Spectral signature of highly turbid waters-Application with SPOT data to quantify suspended particulate matter concentrations[J]. Remote Sensing of Environment.2002,81(PⅡ S0034-4257(01)00341-81):149-161.
    [80]Li Y, Huang W, Fang M. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data[J]. Continental Shelf Research.1998,18(5):487-492.
    [81]Miller R L, Mckee B A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J]. Remote Sensing of Environment.2004,93(1-2):259-266.
    [82]恽才兴,蔡孟裔,王宝全.利用卫星象片分析长江入海悬浮泥沙扩散问题[J].海洋与湖沼. 1981(5):391-401.
    [83]何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析[J].自然科学进展.1999(2):66-70.
    [84]高建阳,陈炳涛.闽江口泥沙运动遥感分析[J].福州师专学报,2000(3):54-57.
    [85]梁文,黎广钊.应用遥感技术分析廉州湾悬沙的动态特征[J].地理学与国土研究.2002(2):49-51.
    [86]杨华,许家帅,侯志强.洋山港海区悬浮泥沙运动遥感分析[J].水道港口.2003(3):126-128.
    [87]左书华,李蓓,杨华.长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J].水道港口.2010(5):384-389.
    [88]刘小丽,沈芳,朱伟健,等MERIS卫星数据定量反演长江河口的悬沙浓度[J].长江流域资源与环境.2009(11):1026-1030.
    [89]况润元.长江口水色遥感参数模拟研究田].华东师范大学,2010.
    [90]Shen F, Verhoef W, Zhou Y X, et al. Satellite estimates of wide-Range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data[J]. Estuaries and Coasts.2010,33(6): 1420-1429.
    [91]刘小平,邓孺孺,彭晓鹃.悬浮泥沙定量遥感综合模式及其在珠江口的应用[J].中山大学学报(自然科学版).2005(03):109-113.
    [92]张亭禄,邱国强.基于辐射传递模拟及人工神经网络技术的二类水体光学组分的反演[J].湖泊科学.2009(02):173-181.
    [93]林秉南,黄菊卿,李新春.钱塘江河口潮流输沙数学模型[J].泥沙研究.1981(2):16-29.
    [94]陈吉余,沈焕庭,恽才兴.长江河口动力过程和地貌演变[M].上海:上海科学出版社,1988:216-288.
    [95]上海市科学技术委员会海岸带与海涂资源综合调查办公室.上海市海岸带与海涂资源综合调查报告[R].上海:上海科学技术出版社,1988.
    [96]谷国传.长江口外水域悬沙分布特征[J].东海海洋.1986(1):12-20.
    [97]谷国传,胡方西.我国沿海近岸带水域的悬沙分布特征[J].地理研究.1989(2):1-15.
    [98]赵棣华,谭仁忠,谭维炎.长江口南支河段悬移质含沙量计算模型[J].泥沙研究.1990(2):54-62.
    [99]陈鸣,李士鸿,刘小靖.长江口悬浮泥沙遥感信息处理和分析[J].水利学报.1991(5):47-51.
    [100]李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律[J].地理研究.1994(1):51-59.
    [101]徐健益,陶学为,方良田,等.长江口南支非均匀沙垂向分层的数学模型[J].泥沙研究.1995(2):74-79.
    [102]匡翠萍.长江口盐水入侵三维数值模拟[J].河海大学学报.1997(4):56-62.
    [103]丁平兴,史峰岩,孔亚珍.波-流共同作用下的三维悬沙扩散方程[J].科学通报.1999(12):1339-1342.
    [104]周济福,王涛,李家春,等.径流与潮流对长江口泥沙输运的影响[J].水动力学研究与进展(A辑).1999(1):92-102.
    [105]陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟[J].泥沙研究.2000(5):45-50.
    [106]时钟,周洪强.长江口北槽口外悬沙浓度垂线分布的数学模拟[J].海洋工程.2000(3):57-62.
    [107]李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟[J].水道港口.2000(4):36-41.
    [108]金缪,谈泽炜,李文正,等.长江口深水航道的回淤问题[J].中国港湾建设.2003(3):5-9.
    [109]陈沈良,张国安,杨世伦,等.长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报. 2004(2):260-266.
    [110]吴传庆,王桥,杨志峰,等.长江口及南北海域泥沙遥感分析[J].遥感技术与应用.2007(6):707-709.
    [111]张金善,孔俊,章卫胜,等.长江河口动力与风暴潮相互作用研究[J].水利水运工程学报.2008(4):1-7.
    [112]郜昂,赵华云,杨世伦,等.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨[J].海洋科学进展.2008,26(1):44-49.
    [113]赵建春,李九发,李占海,等.长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J].海洋学报(中文版).2009(4):103-111.
    [114]高抒,程鹏,汪亚平,等.长江口外海域1998年夏季悬沙浓度特征[J].海洋通报.1999(6):44-50.
    [115]万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征[J].地理研究.2006(2):294-302.
    [116]陈斌,刘健,白大鹏.长江口外海域含沙量的变化特征[J].海洋地质前沿.2011(2):39-44.
    [117]Hansen M W, Johannessen J A, Dagestad K F, et al. Monitoring the surface inflow of Atlantic Water to the Norwegian Sea using Envisat ASAR[J]. Journal of Geophysical Research-Oceans.2011, 116(C12008).
    [118]张文祥.ADP和OBS观测支持下的长江口悬沙动力过程研究[D].华东师范大学,2006.
    [119]沈焕庭,李九发,朱慧芳,等.长江河口悬沙输移特性[J].泥沙研究.1986(1):1-13.
    [120]刘高峰.长江口水沙运动及三维泥沙模型研究[D].华东师范大学,2011.
    [121]刘桂卫,黄海军,丘仲锋.大风浪影响下海域泥沙输运异变数值模拟[J].水科学进展.2010(05):701-707.
    [122]高建华,汪亚平,潘少明,等.长江口悬沙动力特征与输运模式[J].海洋通报.2005(5):8-15.
    [123]孙凤琴.厦门环东海域整治过程悬浮泥沙变化遥感监测[J].厦门理工学院学报.2009(2):62-66.
    [124]刘健,余坤勇,洪桢华,等.遥感数据应用于悬浮泥沙反演及动态变化监测[J].北京林业大学学报.2008(S1):94-97.
    [125]赵华云.三峡工程蓄水前后长江三角洲前缘悬沙浓度的监测分析[D].华东师范大学,2006.
    [126]戴志军,韩震,恽才兴,等.茂名海域水体表层悬浮泥沙浓度时空分布特征的遥感分析[J].海洋科学进展.2006(4):455-462.
    [127]中华人民共和国水利部.中国河流泥沙公报2010[M].北京:中国水利水电出版社,2010.
    [128]蒋智勇.长江口底沙再悬浮及其影响[D].华东师范大学,2004.
    [129]杨世伦,赵庆英,丁平兴,等.上海岸滩动力泥沙条件的年周期变化及其与滩均高程的统计显示[J].海洋科学.2002,26(2):37-41.
    [130]陈吉余,沈焕庭,恽才兴.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1988.
    [131]陈吉余等.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1989:91-96,317.
    [132]左书华,李九发,万新宁,等.长江河口悬沙浓度变化特征分析[J].泥沙研究.2006(3):68-75.
    [133]周济福,王涛,李家春,等.径流与潮流对长江口泥沙输运的影响[J].水动力学研究与进展(A辑).1999(1):92-102.
    [134]王静,齐义泉,施平.南海海面风、浪场的EOF分析[J].海洋学报(中文版).2001(05):136- 140.
    [135]毛园,沙文钰.海面风场对环台湾岛海域温跃层的影响[J].海洋预报.2002(03):33-43.
    [136]丁赞,管长龙.风浪状态对海面风应力影响的初步研究[J].海洋科学.2007(03):54-57.
    [137]张金善,钟中,胡轶佳.热带气旋风暴潮模拟中的海面风场特征对比研究[J].水动力学研究与进展A辑.2008(06):687-693.
    [138]官满元.海风与谷风环流对万宁气候的影响[J].广西气象.2005(01):33-34.
    [139]李晓玮.海面风场对极化SAR图像舰船目标检测的影响研究[D].中国科学院研究生院(电子学研究所),2007.
    [140]许燕华,钱谊,陈雁,等.东沙沙洲离岸潮间带风电场建设对鸟类的影响[J].环境监测管理与技术.2010(02):19-23.
    [141]刘良明.卫星海洋遥感导论[M].武汉:武汉大学出版社,2005.
    [142]Jet Propulsion Laboratory, California Institute of Technology [Z].1999.
    [143]Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[R]. Boulder, Colorado, USA:National Center for Atmospheric Research,2008.
    [144]Wright J. A new model for sea clutter [J]. IEEE Transactions on Antennas and Propagation.1968, 16(2):217-223.
    [145]Vachon P W, Dobson F W. Validation of wind vector retrieval from ERS-1 SAR images over the ocean[J]. The Global Atmosphere and Ocean System.1996,5(2).
    [146]Hersbach H, Stoffelen A, de Haan S. An improved C-band scatterometer ocean geophysical model function:CMOD5[J]. Journal of Geophysical Research-Oceans.2007,112(C03006C3).
    [147]Lehner S, Horstmann J, Koch W, et al. Mesoscale wind measurements using recalibrated ERS SAR images[J]. Journal of Geophysical Research-Oceans.1998,103(C4):7847-7856.
    [148]Staff E S A. EnviSat ASAR Product Handbook[M].2.2 ed.2007:564.
    [149]Laur H, Bally P, Meadows P, et al. Derivation of the Backscattering Coefficient in ESA ERS SAR PRI Products[M]. Frascati, Italy (Nov 2004):European Space Agency,2004.
    [150]Meadows P J, Rosich B, Fernandez D E. The performance of the ERS-2 Synthetic Aperture Radar[Z]. Goteborg, Sweden:2000.
    [151]裘杭培,李恭彪.台风卡努路径及其风雨特征分析[J].浙江气象.2007(03):6-10.
    [152]台风年鉴系统[Z].
    [153]Chang P H, Isobe A. A numerical study on the Changjiang diluted water in the Yellow and East China Seas[J]. Journal of Geophysical Research-Oceans.2003,108(3299C9):1-17.
    [154]Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research.1985,4(1-2):57-76.
    [155]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼.1963(3):183-206.
    [156]朱建荣,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟[J].海洋与湖沼.1997(1):72-79.
    [157]Moon J, Hirose N, Yoon J, et al. Offshore Detachment Process of the Low-Salinity Water around Changjiang Bank in the East China Sea[J]. Journal of Physical Oceanography.2010,40(5):1035-1053.
    [158]沈焕庭,朱建荣,肖成猷.夏季长江冲淡水扩展的数值模拟[J].海洋学报(中文版).1998(5):13-22.
    [159]Wu H, Zhu J. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary[J]. Ocean Modelling.2010, 33(1-2):33-51.
    [160]Rung Z, Li M. Tidal effects on the bulge region of Changjiang River plume[J]. Estuarine Coastal and Shelf Science.2012,97:149-160.
    [161]Wu H, Zhu J, Shen J, et al. Tidal modulation on the Changjiang River plume in summer[J]. Journal of Geophysical Research-Oceans.2011,116(C08017).
    [162]Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data-Algorithms and Implementation[M]. Norwood, MA:Artech House,2005.
    [163]Madsen S N. Estimating the Doppler centroid of SAR data[J]. IEEE Transaction on Aerospace and Electornic Systems.1989,25(2):134-140.
    [164]Jin M Y. Optimal range and Doppler centroid estimation for a ScanSAR system[J]. IEEE Transactions on Geoscience and Remote Sensing.1996,34(2):479-488.
    [165]Chang C Y, Curlander J C. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing. 1992,30(5):941-949.
    [166]Li F K, Held D N, Curlander J, et al. Doppler parameter estimation for spaceborne synthetic-aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing.1985, GE-23(1):47-56.
    [167]Raney R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing.1986,7(9):1153-1162.
    [168]Rosich B. Preliminary Doppler analysis on ASAR products[Z]. London, United Kingdom:2002.
    [169]Chen C S, Huang H S, Beardsley R C, et al. A finite volume numerical approach for coastal ocean circulation studies:Comparisons with finite difference models[J]. Journal of Geophysical Research-Oceans.2007,112(C03018C3).
    [170]Chen C, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography.2006(19):78-89.
    [171]Ge J Z, Ding P X, Chen C S, et al. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics[J]. Ocean Dynamics.2013,63(8): 881-900.
    [172]Ge J Z, Chen C S, Qi J H, et al. A dike-groyne algorithm in a terrain-following coordinate ocean model (FVCOM):Development, validation and application[J]. Ocean Modelling.2012,47:26-40.
    [173]Collard F, Mouche A, Chapron B, et al. Routine high resolution ovservation of selected major surface currents from space[Z]. Frascati, Italy:ESA,2008.
    [174]U S Department Of Commerce. Synthetic Aperture Radar marine user's manual[M]. National Oceanic and Atmospheric Administration,2004.
    [175]Graber H C, Thompson D R, Carande R E. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar[J]. Journal of Geophysical Research-Oceans.1996, 101(C11):25813-25832.
    [176]Kobayashi H, Toratani M, Matsumura S, et al. Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters[J]. International Journal of Remote Sensing.2011,32(23):8393-8420.
    [177]刘志国,周云轩,蒋雪中,等.近岸Ⅱ类水体表层悬浮泥沙浓度遥感模式研究进展[J].地球物理学进展.2006(1):321-326.
    [178]陈夏法.应用遥感技术研究杭州湾秋季悬沙的动态特征[J].东海海洋.1988(2):37-43.
    [179]赵洪波,钱敏.江苏如东附近海域泥沙运动遥感分析[J].水道港口.2004(1):34-37.
    [180]MERIS Reduced Resolution Geolocated and Calibrated TOA Radiance[Z].
    [181]Berk A, Anderson G P, Acharya P K, et al. MODTRAN4 users manual[M]. USA:Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA01731-3010.2000.
    [182]Lira J, Morales A, Zamora F. Study of sediment distribution in the area of the Panuco river plume by means of remote sensing[J]. International Journal of Remote Sensing.1997,18(1):171-182.
    [183]Forget P, Ouillon S. Surface suspended matter off the Rhone river mouth from visible satellite imagery[J]. Oceanologica Acta.1998,21(6):739-749.
    [184]Ruhl C A, Schoellhamer D H, Stumpf R P, et al. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California[J]. Estuarine Coastal and Shelf Science.2001,53(6):801-812.
    [185]Cao W X, Yang Y Z, Liu S, et al. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China[J]. Progress in Natural Science.2005,15(4):342-350.
    [186]左书华,杨华,赵群,等.温州海区近岸表层水体悬沙分布及运动规律的遥感分析[J].地理与地理信息科学.2007(2):47-50.
    [187]陈夏法.杭州湾悬浮泥沙多时相遥感分析[J].环境遥感.1989(2):128-135.
    [188]张明,冯小香,郝媛媛.辽东湾北部海域悬浮泥沙时空变化遥感定量研究[J].泥沙研究.2011(4):15-21.
    [189]中华人民共和国上海海事局.2004上海港杭州湾潮汐表[M].北京:人民交通出版社,2004.
    [190]中华人民共和国上海海事局.2005上海港杭州湾潮汐表[M].北京:人民交通出版社,2005.
    [191]中华人民共和国上海海事局.2006上海港杭州湾潮汐表[M].北京:人民交通出版社,2006.
    [192]中华人民共和国上海海事局.2007上海港杭州湾潮汐表[M].北京:人民交通出版社,2007.
    [193]中华人民共和国上海海事局.2008上海港杭州湾潮汐表[M].北京:人民交通出版社,2008.
    [194]中华人民共和国上海海事局.2003上海港杭州湾潮汐表[M].北京:人民交通出版社,2003.
    [195]中华人民共和国水利部.中国河流泥沙公报2003[M].北京:中国水利水电出版社,2003.
    [196]中华人民共和国水利部.中国河流泥沙公报2004[M].北京:中国水利水电出版社,2004.
    [197]中华人民共和国水利部.中国河流泥沙公报2005[M].北京:中国水利水电出版社,2005.
    [198]中华人民共和国水利部.中国河流泥沙公报2006[M].北京:中国水利水电出版社,2006.
    [199]中华人民共和国水利部.中国河流泥沙公报2007[M].北京:中国水利水电出版社,2007.
    [200]中华人民共和国水利部.中国河流泥沙公报2008[M].北京:中国水利水电出版社,2008.
    [201]高进.长江河口的演变规律与水动力作用[J].地理学报.1998(3):74-79.
    [202]Gerstengarbe F W, Werner P C. Estimation of the beginning and end of recurrent events within a climate regime[J]. Climate Research.1999,11(2):97-107.
    [203]Serrano A, Mateos V L, Garcia J A. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921-1995[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere.1999,24(1-2):85-90.
    [204]曹沛奎,谷国传,董永发,等.杭州湾泥沙运移的基本特征[J].华东师范大学学报(自然科学版).1985(3):75-84.
    [205]李九发.长江河口南汇潮滩泥沙输移规律探讨[J].海洋学报(中文版).1990(1):75-82.
    [206]中华人民共和国水利部.中国河流泥沙公报2009[M].北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700