用户名: 密码: 验证码:
海啸波作用下岸滩剖面演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海啸在近岸地区会引起剧烈的泥沙运动和岸滩演变。
     本文基于波浪水槽实验对海啸波作用下岸滩剖面和床沙组成变化开展研究。实验采用1/10和1/20的组合坡度,斜坡分别采用两种和三种粒径泥沙堆砌而成,并采用三种不同的水深,选取N波来模拟海啸波,同时进行了规则波和不规则波作用下的对比实验。实验对波浪的破碎、上爬、回落和水跃过程,每个波作用后的地形变化以及初始和最终的泥沙粒径组成进行了测量和记录。
     实验结果表明N波作用下岸滩发生了明显的冲刷和淤积,呈沙坝剖面,回落的水流使得前滩和滩肩发生冲刷,泥沙在离岸区域水跃发生处淤积,研究结果与其他学者的实验结果一致。当水深足够大时,N波几乎不会引起地形变化,这一实验结论与现场观测得到的结果一致,表明海啸中淤积的泥沙主要来源于近岸地区,而非深海。
     实验研究考虑床沙级配变化和岸滩坡度的影响,对海啸波作用下岸滩剖面变化和床沙组成变化规律进行深入分析。通过泥沙采样分析发现,淤积沙坝泥沙粒径呈粗化趋势,研究结果与海啸现场观测结果一致,实验首次揭示了海啸作用下非均匀输沙、粗化等独特现象。同时发现N波作用后得到的岸滩剖面的形状与部分规则波和非规则波作用后的实验结果相同,均为离岸淤积沙坝剖面,但是泥沙粒径变化结果却相反,而这些结果并不矛盾,均遵循(?)eliko(?)lu(2006)提出的泥沙运动的基本原则,细颗粒泥沙会在强烈的紊动作用下从床面中被筛选出来,并被搬运到低紊动地区,此过程造成了剧烈紊动区泥沙的粗化。
     在实验研究的基础上,本文基于Boussinesq方程耦合泥沙运动和地形演变模型,同时考虑了床沙组成变化计算,建立了海啸作用下岸滩和床沙级配变化平面二维数学模型。模型考虑波浪破碎和底部摩擦的作用,采用Wei (1999)原函数造波的方法,动边界处理采用线性外插法,地形演变方程采用WENO格式进行离散求解。
     通过一系列的验证和实验数据的比较,证明本文建立的数学模型能很好的模拟海啸波的传播、破碎、上爬和回落过程,能较好的模拟岸滩的冲淤变化过程,同时能较好的模拟床沙的组成变化过程,并对Engelund (1972)、Ackers (1973)和Van Rijn (1984)全沙输沙率经验公式进行对比研究。
     最后利用建立的数学模型分析了海啸波作用下岸滩和床沙级配变化特点,进一步获得了海啸波作用下岸滩剖面变化和床沙组成变化规律。
Tsunami waves may move a significant amount of coastal sediment and cause significant changes of beach profiles in the affected coastal regions.
     The 2D laboratory experiments were performed to investigate beach profile changes and sorting of sand grains under the tsunami waves on the fine beach. The incident wave was N-wave. The initial 1/10-1/20 combined beach slope mainly composed of two or three sediment grain sizes was exposed to the N-waves in three different water depths. The incident wave also used regular waves and irregular waves for comparative study. The wave breaking, uprush, back-wash, hydraulic jump, bed profiles, initial and final distributions of sediment grain size were measured.
     The experimental results show that the wave motion and sediment transport were not really affected by the bed profile changes that occurred after running waves on the bed profile. The strong down rush resulted in erosion on the foreshore and deposition seaward of wave run down. The results agreed qualitatively with other experimental results. These was no changes of beach profiles under N-wave action when the water depth enough. This result agreed qualitatively with coastal retreat field observed after tsunamis. Those were all suggested that the majority of the deposit sources were from the beach rather than the deep ocean floor.
     The influence of sorting of sand grains and beach slope were considered in this experimental study. The characteristics of beach profile changes and sorting of sand grains under the tsunami waves were obtained. The sands sampling was performed in ten different feature locations after 6 waves. It was shown that the mean grain size increased in the deposition region. The results agreed qualitatively with the post-tsunami field observations. The nonuniform sediment transport and coarsening of the bed were laboratorial investigated for the first time.
     Also our experimental final profile was similar to some regular wave experimental results which were classified into bar type. However, the N-wave experimental grain sorting was opposite to regular wave results. Two results were in accord with basic rules that finer grains are winnowed from the bed in the most energetic areas by a turbulent process and are carried away to less energetic areas, resulting in a coarsening of the bed in the more energetic areas ((?)eliko(?)lu, 2006).
     Based on experimental investigations, the comprehensive two dimension plane numerical model was developed with the capability of modeling tsunami wave, including the effects of sediment transport, morphological changes and changes of sediment grain size distribution. The hydrodynamic model adopts on highly nonlinear and weekly dispersive Boussinesq equations and couples the sediment transport and morphological evolution models. The Weighted Essentially Non-Oscillatory Schemes (WENO) was implemented for spatial discretization of morphological bed level equations. The wave breaking model, bottom friction, source function method (Wei, 1999) and moving boundary algorithm were all implemented in the numerical model.
     The combined model was validated using available laboratory experiments. The coupling numerical model could well resolve the solitary wave propagate, break, runup and rundown on the beach, also could simulate scouring process and sorting of sand grains. The Engelund (1972), Ackers (1973) and Van Rijn (1984) total load empirical formulas were also investigated.
     The changes of beach profile and sorting of sand grains by tsunami-like waves were investigated by this numerical model. The characteristics of beach profile changes and sorting of sand grains by tsunami-like waves were further obtained.
引文
[1]邱大洪,王永学. 21世纪海岸和近海工程的发展趋势[J].自然科学进展,2000,11: 982-987.
    [2]陈运泰,杨智娴,许力生.海啸、地震海啸与海啸地震[J].物理, 2005, 12(34):864-873.
    [3]任叶飞.基于数值模拟的我国地震海啸危险性分析研究[D].中国地震局工程力学研究所:硕士学位论文, 2007
    [4]陈颙,陈棋福,张尉.中国的海啸灾害[J].自然灾害学报, 2007, 16(2): 1-6.
    [5] Umitsu, M., Tanavud, C., Patanakanog, B.. Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand[J]. Marine Geology, 1993, 20,135-156.
    [6] Srinivasalu, S., Thangadurai, N., Switzer, A., Mohan, V., Ayyamperumal, T.. Erosion and sedimentation in Kalpakkam (N. Tamil Nadu, India) from the 26th December 2004 tsunami[J]. Marine Geology, 2007, 240, 65-75.
    [7]赵仕万.地震海啸的灾害及其对策[J].华南地震,1987,6:98-105.
    [8]崔秋文,李建一,董军等.印度洋大地震与海啸灾害综述[J].山西地震,2005,7:42-49.
    [9]王绍玉.印度洋地震和海啸灾害引发的若干思考[J].国际地震动态,2005,1:45-49.
    [10]张金凤.美国夏威夷州海啸灾害研究概述[J].海洋预报,2010,7(2):89-94.
    [11]陶春辉,戴黎明,孙耀等.印尼附近海域地震海啸发生的构造背景综述[J].海洋学研究,2008,6:59-69.
    [12]高继宗.地震海啸的成因和分布[J].中国减灾,2008,1:30,
    [13]魏柏林,何宏林,郭良田.试论地震海啸的成因[J].地震地质,2010, 3:150-163.
    [14]沈四林,陆丹,刘亚蕊.印度洋地震海啸产生原因及交通运输业的影响[J].中国水运,2008,6-8.
    [15]卢晓东.地震海啸对滨海核电厂影响的探讨[J].山东电力高等专科学校学报, 1999, 2:103-106
    [16]刘昌森.地震海啸及其对上海的影响[J].上海地质,1992,3:10-19.
    [17]董非非.海啸在东海大陆架传播的研究与识别[D].中国地震局兰州地震研究所:硕士学位论文, 2009.
    [18]潘文亮,王盛安,蔡树群.南海潜在海啸灾害的模拟[J].热带海洋学报, 2009, 11:7-17.
    [19]冯志泽,张建民,陈惠云.山东沿海地区地震海啸研究[J].华北地震科学, 2010, 3:26-31.
    [20]罗勇,江滢,董文杰等.气候变化与海平面上升及其对海啸灾害的影响[J].资源与环境, 2005, 3:41-43.
    [21]王发君.基于地理信息系统的海啸灾害模型[J].大连海事大学学报, 2002,8.
    [22]于福江,吴玮,赵联大.基于数值预报技术的日本新一代海啸预警系统[J].
    [23]温瑞智,公茂盛,谢礼立.海啸预警系统及我国海啸减灾任务[J].自然灾害学报,2006,6:1-7
    [24]王盛安,龙小敏,黎满球等.近岸海浪、风暴潮及海啸灾害远程实时监测系统的现场试验及应用[J].热带海洋学报,2009,1:19-24.
    [25]陈建涛,叶春明.建立南海地震海啸监测预警系统的构思[J].华南地震, 2010, 10: 145-164.
    [26]祝会兵,于颖,戴世强.海啸数值计算研究进展[J].水动力学研究与进展, 2006, 11:714-729.
    [27]姚远,蔡树群,王盛安.海啸波数值模拟的研究现状[J].海洋科学进展, 2007, 10:487-495.
    [28]温燕玲,朱元清.海啸传播模型与数值模拟研究进展[J].地震地磁观测与研究, 2007, 10:143-150.
    [29]于福江,叶琳,王喜年. 1994年发生在台湾海峡的一次地震海啸的数值模拟[J].海洋学报,2001,11:32-40.
    [30]姚远,蔡树群,王盛安.台湾海峡一次海啸的初步数值模拟[J].热带海洋学报,2009,3:1-6.
    [31]张怀,曹建玲.印尼地震海啸的三维数值模拟[C].中国地球物理第12届年会论文集,2005.
    [32]刘迎春,石耀霖,刘海龄.中国南海相邻海域地震海啸数值模拟[C].中国地球物理第13届年会论文集,2006.
    [33]温燕玲,朱元清,宋治平等.冲绳海槽地震海啸的数值试验研究[J].地球物理学进展,2008,4:327-336.
    [34]潘存鸿,于普兵,鲁海燕.海啸在滩面上传播的数值模拟[C].第十三届中国海洋(岸)工程学术讨论会论文集, 2007.
    [35]蔡永恩,赵志栋.利用流-固耦合模型模拟地震和海啸全过程[J].地震学报, 2008,11:594-607.
    [36]张金凤.海啸波近岸共振响应的数值模拟及分析[J].防灾减灾工程学报, 2010,4:147-152.
    [37]胡涛骏,叶银灿.滑坡海啸的预测模型及其应用[J].海洋学研究,2006,9:31-32.
    [38]王岗,董国海.滑坡海啸引起港池振荡的实验研究[C].第十四届中国海洋(岸)工程学术讨论会论文集,2009
    [39]张振克,谢丽,杨达源,余克服.国际海啸沉积研究进展与展望[J].海洋地质与第四纪地质,2010,30(6):132-140.
    [40] Carrier, G.F., Greenspan, H.P. Water waves of finite amplitude on a sloping beach[J].J. Fluid Mech, 1958. 4, 97-109.
    [41] Synolakis, C.E. The runup of solitary waves[J]. J. Fluid Mech., 1987, 185: 523-545.
    [42] Tadepalli, S., Synolakis, C.,. The run-up of N-waves on sloping beaches[J]. Proc. R. Soc.Lond. 1994, 445, 99-112.
    [43] Tadepalli, S., Synolakis, C.E.. Model for the leading waves of tsunamis[J]. Phys. Rev.Lett., 1996, 2141-2144.
    [44] Káno?lu, U., Synolakis, C.E.. Long wave runup on piecewise lineartopographies[J]. J. Fluid Mech. , 1998, 374, 1-28.
    [45] Carrier, G.F., Wu, T.T., Yeh, H.. Tsunami run-up and draw-down on a plane beach[J]. J. Fluid Mech., 2003 475, 79–99.
    [46] Madsen P. A. On the evolution and run-up of tsunamis[J]. Journal of Hydrodynamics, Ser. B, 2010, 22(5), supplement 1:1-6
    [47] Apotsos Alex, Bruce Jaffe, Guy Gelfenbaum. Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis[J]. Coastal Engineering, 2011,58(11): 1034-1048.
    [48] Synolakis, C.E.. The runup of solitary waves[J]. J. Fluid Mech., 1987, 185, 523-545.
    [49] Zelt, J.A.. The run-up of nonbreaking and breaking solitary waves[J]. Coast. Eng., 1991 15, 205-246.
    [50] Briggs, M.J., Synolakis, C.E., Harkins, G.S., Green, D.R.. Laboratory experiments of tsunami runup on a circular island[J]. Pure Appl. Geophys. , 1995,144, 569-593.
    [51] Briggs, M.J., Synolakis, C.E., Kanoglu, U., Green, D.R.. Benchmark problem: runup of solitary waves on a vertical wall, long-wave runup models[C]. International Workshop on Long Wave Modeling of Tsunami Runup, Friday Harbor, 1996.
    [52] Ying Li. Tsunamis: Non-Breaking and Breaking Solitary Wave Run-Up[D]. Doctoral Dissertation of California Institute of Technology, 2000.
    [53] Ting, F.C.K. Large-scale turbulence under a solitary wave[J]. Coastal Engineering, 2006, 53(5-6):441-462.
    [54] Ting, F.C.K. Large-scale turbulence under a solitary wave: Part 2. Forms and evolution of coherent structures[J]. Coastal Engineering, 2008, 55(6), 522-536.
    [55] Seelam, J.K., Guard, P.A., Baldock, T.E.Measurement and modeling of bed shear stress under solitary waves[J].Coastal Engineering, 2011, 58(9), pp. 937-947.
    [56] Tanaka, H., Winarta, B., Suntoyo, Yamaji, H. Validation of a new generation system for bottom boundary layer beneath solitary wave[J].DOI: 10.1016 /j.coastaleng.2011.07.003(Article in Press).
    [57] Hatori, Tokutaro, Aida, Isamu, Koyama, Morio, Hibiya, Toshiyuki.Field survey of the tsunamis inundating ofunato city - the 1960 chile and 1933 sanriku tsunamis[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1982,Volume 57, Issue 1, 133-150.
    [58] Baptista, A.M., Priest, G.R., Murty, T.S. Field survey of the 1992 Nicaragua tsunami[J]. Marine Geodesy, 1993, Volume 16, Issue 2, 169-203.
    [59] Wen, R., Sun, B., Zhou, B. Field survey of Mw8.8 feb. 27, 2010 Chile earthquake and tsunami[J]. Advanced Materials Research, 2011,Volume 250-253, 2102-2106.
    [60] Goff, J., P. Liu, B. Higman, R. Morton, B. Jaffe, H. Fernando, P. Lynett, H. Fritz, C. Synolakis, and S. Fernando. Sri Lanka field survey after December 2004 Indian Ocean Tsunami[J]. Earthq. Spectra, 2006, 22, S155-S172,doi:10.1193/1.2205897.
    [61] Fritz, H., J. Borrero, C. Synolakis, and J. Yoo. 2004 Indian Ocean flow velocity measurements from survivor videos[J]. Geophys. Res. Lett.,2006, 33, L24605, doi:10.1029/2006GL026784.
    [62] McAdoo, B., L. Dengler, G. Prasetya, and V. Titov. Smong:How an oral history saved thousands on Indonesias Simeulue Island during the December 2004 and March 2005 tsunamis[J]. Earthq. Spectra, 2006, 22, S661-S669, doi:10.1193/1.2204966.
    [63] Borrero, J. C.. Field survey of Northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004[J]. Seismol. Res. Lett., 2005, 76, 312-320.
    [64] Jaffe, B., et al., Northwest Sumatra and offshore islands field survey after the December 2004 Indian Ocean tsunami[J]. Earthq. Spectra, 2006, 22, S105-S135, doi:10.1193/1.2207724.
    [65] Gelfenbaum, G., D. Vatvani, B. Jaffe, and F. Dekker. Tsunami inundation and sediment transport in the vicinity of coastal mangrove forest[C]. Coastal Sediments 07, edited by N. C. Kraus and J. D. Rosati, 2007, pp. 1117-1129, Am. Soc. of Civ. Eng., Reston, Va.
    [66] Kahashi T., Shu To N, Imamura F, et al. Source models for t he 1993 Hokkaido Nansei-Oki earthquake tsunami[J] . Pure and Applied Geophysics, 1995, 144: 747-767.
    [67] Titov V V, Gonzalez F I. Implementation and testing of the Method of Splitting Tsunami(MOST) model[R].NOAA Technical Memorandum ERL, 1997.
    [68] Wang, X., Liu, P.L.-F..A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and Tsunami[J]. CMES - Computer Modeling in Engineering and Sciences, 2005, 10 (2), pp. 171-183
    [69] Lynett, P., and P. Liu. A numerical study of run-up generated by three dimensional landslides[J]. J. Geophys. Res., 2005, 110, C03006, doi:10. 1029/2004JC002443.
    [70] Stelling, G. S., and J. A. T. M. van Kester. On the approximation of horizontal gradients in sigma coordinates for bathymetry with steep bottom slopes[J]. Int. J. Numer. Methods Fluids, 1994, 18, 915-935, doi:10.1002 /fld.1650181003.
    [71] Wang, X., and P. L. Liu. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J]. J. Hydraul. Res., 2006, 44, 147-154, doi:10.1080/00221686.2006.9521671.
    [72] Arcas, D., and V. Titov. Sumatra tsunami: Lessons for modeling[J]. Surv. Geophys., 2006, 27, 679-705, doi:10.1007/s10712-006-9012-5.
    [73] Grilli, S. T., M. Ioualalen, J. Asavanant, F. Shi, J. T. Kirby, and P. Watts. Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami[J]. J. Waterw. Port Coastal Ocean Eng., 2007, 133, 414-428.
    [74] Ioualalen, M., J. Asavanant, N. Kaewbanjak, S. T. Grilli, J. T. Kirby, and P. Watts. Modeling the 26 December 2004 Indian Ocean tsunami: Case studyof impact in Thailand[J]. J. Geophys. Res., 2007, 112, C07024, doi:10. 1029/2006JC003850.
    [75]徐啸.二维沙质海滩的类型和冲淤判数[J].海洋工程, 1988, 11:51-63.
    [76]王谅.规则波与不规则波作用下二维砂质海滩冲淤演变规律的研究及其运用[J].海洋工程, 1992, 5:41-50.
    [77] Dalrymple, R.A. Prediction of storm/normal beach profiles[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1992, Volume 118, Issue 2, Pages: 193-200.
    [78]冯卫兵,李冰,王铮,蔡锋.二维沙质海滩剖面形态试验研究[J].海洋通报,2008,10:110-117.
    [79] Roberts, T.M., Wang, P., Kraus, N.C.. Limits of wave runup and corresponding beach-profile change from large-scale laboratory data[J]. Journal of Coastal Research, 2010, 26 (1), pp.184-19.
    [80]彭静萍.波浪与海底沙坝地形的相互作用[D].大连理工大学:硕士学位论文,2002.
    [81]尹晶,邹志利,李松.波浪作用下沙坝不稳定性实验研究[J].海洋工程, 2008, 2:40-52.
    [82]张海飞.海岸沙坝运动和相关泥沙运动的实验研究[D].大连理工大学:硕士学位论文, 2009.
    [83] Hwung, H.-H., Huang, Z.-C., Hwang, K.-S.. An experimental study of the cross-shore evolution of artificial submerged sand bars[J]. Coastal Engineering Journal, 2010, Volume 52, Issue 4, December, Pages: 261-285.
    [84] Pape, L., Plant, N.G., Ruessink, B.G..Cross-shore sandbar behavior and equilibrium states[J]. Nederlandse Geografische Studies.Issue 392, 2010, Pages: 109-127.
    [85] Wang, P., Ebersole, B.A. , Smith, E.R.. Beach profile evolution under plunging and spilling breakers[J]. Journal of Waterway, Port, Coastal and Ocean Engineering.Volume 129, Issue 1, January 2003, Pages: 41-46.
    [86] Leont'ev, I.O. Evolution of an accretion beach under sea-level changes: A mathematical model[J]. Oceanology, 1999, 39 (3), pp. 417-421.
    [87] Karambas,T.V..Modeling of sea-level rise effects on cross-shore coastal erosion[J]. Journal of Marine Environmental Engineering, 2003, 7 (1), pp. 15-24.
    [88] Trenhaile, A.S..Modeling cohesive clay coast evolution and response to climate change[J]. Marine Geology, 2010, 277 (1-4), pp.11-20.
    [89]肖政,蒋昌波,夏波.琼州海峡罗斗沙岛岸滩演变分析[J].水道港口, 2007, 2: 16-21.
    [90]陆永军,左利钦,季荣耀,等.渤海湾曹妃甸港区开发对水动力泥沙环境的影响[J].水科学进展, 2007, 18(6): 793-800.
    [91]季荣耀,陆永军,左利钦.岛屿海岸工程作用下的水沙动力过程研究[J].水科学进展, 2008, 15(8): 640-649.
    [92]刘桂卫,黄海军,丘仲锋.大风浪影响下海域泥沙输运异变数值模拟[J].水科学进展, 2010, 21(5):701-707.
    [93] Hanson, H., Larson, M., Kraus, N.C..Calculation of beach change underinteracting cross-shore and longshore processes[J]. Coastal Engineering, 2010, 57(6), 610-619.
    [94] Baldock T.E., Manoonvoravong P., Kim Son Pham. Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups[J]. Coastal Engineering, 2010, 57 (10), 898-916.
    [95] Baldock, T.E., Alsina, J.A., Caceres, I. et al..Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves[J]. Coastal Engineering, 2011, 58 (2), 214-227.
    [96] Kobayashi, N., Johnson B. D.. Sand suspension, storage, advection, and settling in surf and swash zones[J]. J. Geophys. Res., 2001,106, 9363-9376.
    [97] Atwater, B. F.. Evidence for great Holocene earthquakes along the outer coast of Washington State[J]. Science, 1987, 236, 942-944, doi:10.1126 /science. 236.4804.942.
    [98] Geist, E., and T. Parsons. Probabilistic analysis of tsunami hazards[J]. Nat. Hazards, 2006, 37, 277–314, doi:10.1007/s11069-005-4646-z.
    [99] Smith, D. E., I. D. L. Foster, D. Long, and S. Shi. Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits[J]. Sediment. Geol., 2007, 200, 362–371, doi:10.1016/j.sedgeo.2007.01.014.
    [100] Soulsby, R. L., D. E. Smith, and A. Ruffman. Reconstructing tsunami run-up from sedimentary characteristics-a simple mathematical model[C]. Coastal Sediments’07, edited by N. C. Kraus and J. D. Rosati, 2007, pp. 1075-1088, Am. Soc. of Civ. Eng., Reston, Va.
    [101] Morton, R. A., J. A. Goff, and S. L. Nichol. Hydrodynamical implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka[J]. Sediment. Geol., 2008, 207, 56–64, doi:10.1016/j.sedgeo.2008.03.008.
    [102] Choowong, M., N. Murakoshi, K. Hisada, P. Charusiri, et al.. 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand[J]. Mar. Geol., 2008, 248, 179-192, doi:10.1016/j.margeo.2007.10.011.
    [103] Kobayashi, N.,Lawrence,A..Cross-shore sediment transport under breaking solitary waves[J]. Journal of Geophysical Research, 2004,109, C030047.
    [104] Tsujimoto, G., Yamada, F., Kakinoki, T.. Time-space variation and spectral evolution of sandy beach profiles under tsunami and regular waves[C]. Proceedings of the International Offshore and Polar Engineering Conference, 2008, 523-527.
    [105] Alsina, J.M., Falchetti, S., Baldock, T.E. Measurements and modelling of the advection of suspended sediment in the swash zone by solitary waves[J]. Coastal Engineering, 2009, 56(5-6):621-631.
    [106] Young, Y.L., White, J.A., Xiao, H., Borja, R.I.. Liquefaction potential of coastal slopes induced by solitary waves[J]. Acta Geotechnica, 2009, 4(1), 17-34.
    [107] Young, Y.L., Xiao, H., Maddux, T.B.. Hyro- and morpho-dynamic modeling of breaking solitary waves over sand beach[J]. Part I: experimental study. Mar. Geol. , 2010, 269, 107-118.
    [108] Xiao, H., Young, Y.L., Prévost, J.H. Parametric study of breaking solitary wave induced liquefaction of coastal sandy slopes[J]. Ocean Engineering, 2010, 37 (17-18), 1546-1553.
    [109] Vu Thanh Ca, Yoshimichi Yamamoto and Nunthawath Charusrojthanadech. Improvement of Prediction Methods of Coastal Scour and Erosion due to Tsunami Back-flow[C]. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference,2010:1053-1062.
    [110] Mutlu Sumer B., Berke Sen M., Ioanna Karagali et al. Flow and sediment transport induced by a plunging solitary wave[J]. Gournal of geophysical research, VOL. 116, C01008, doi:10.1029/2010JC006435, 2011.
    [111] Tadepalli, S., and Synolakis C. E.. The run-up of N-waves on sloping beaches[J]. Proc. R. Soc. London, Ser. A, 1994, 445, 99-112.
    [112] Elfrink, B., Baldock, T.. Hydrodynamics and sediment transport in the swash zone: a review and perspectives[J]. Coastal Engineering, 2002, 45, 149-167.
    [113] Bakhtyar R., Barry D.A., Yeganeh-Bakhtiary A.. Numerical simulation of surf-swash zone motions and turbulent flow[J]. Advances in Water Resources, 2009, 32, 250-263.
    [114] Richmond, B.M., Watt, S., Buckley, M., Jaffe, B.E., Gelfenbaum, G., Morton, R.A.. Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai'i[J]. Marine Geology, 2011, 283 (1-4), 79-89.
    [115] Okayasu, A., Katayama, H.. Field experiments on temporal change of suspended sediment concentration and grain size distribution in surf zone[C]. Coastal Engineering 2000-Proceedings of the 27th International Conference on Coastal Engineering, ICCE, 2000, 276, 3359-3372.
    [116] ?eliko?lu, Y., Yüksel, Y., Kabda?li, M.S.. Longshore sorting on a beach under wave action[J]. Ocean Engineering, 2004, 31 (11-12), 1351-1375.
    [117] ?eliko?lu, Y., Yüksel, Y., Kabda?li, M.S.. Cross-shore sorting on a beach under wave action[J]. Journal of Coastal Research, 2006, 22 (3), 487-501.
    [118]刘金梅,王士强,王光谦.河流冲刷过程中表层床沙粗化对不平衡输沙的影响[J].水科学进展,2000,9:229-235.
    [119]牛占,和瑞勇,李静,袁东良.激光粒度分析仪应用于黄河泥沙颗粒分析的实验研究[J].泥沙研究,2002,10:6-15.
    [120]钟德钰,王光谦,丁赟.沙质河床冲刷过程中床沙级配的模拟[J].水科学进展[J], 2007, 18(2): 223-229.
    [121] Robert Weiss. Sediment grains moved by passing tsunami waves: Tsunami deposits in deep water[J]. Marine Geology, 2008, 250: 251-257.
    [122] Grasso, F., Michallet, H., Barthélemy, E.. Experimental simulation of shoreface nourishments under storm events:A morphological, hydrodynamic, and sediment grain size analysis[J]. Coastal Engineering, 2011, 58(2), 184 -193.
    [123] Okayasu, A., Katayama, H.. Field experiments on temporal change of suspended sediment concentration and grain size distribution in surf zone[C]. Coastal Engineering 2000-Proceedings of the 27th International Conferenceon Coastal Engineering, 2000, ICCE, 276, 3359-3372.
    [124] Udo, K., Mano, A.. Backshore coarsening processes triggered by wave-induced sand transport: The critical role of storm events[J]. Earth Surface Processes and Landforms, 2011, 35 (11), 1269-1280.
    [125] Kerry P. Black, John W. Oldman. Wave mechanisms responsible for grain sorting and non-uniform ripple distribution across two moderate-energy, sandy continental shelves[J]. Marine Geology, 1999, 162:121-132.
    [126] Lindino Benedet, Charles W. Finkla, Thomas Campbell, Antonio Klein. Predicting the effect of beach nourishment and cross-shore sediment variation on beach morphodynamic assessment[J]. Coastal Engineering, 2004, 51, 839-861.
    [127] Bartholom? A., Flemming B.W.. Progressive grain-size sorting along an intertidal energy gradient[J]. Sedimentary Geology, 2007, 202, 464-472.
    [128] Maarifa Ali Mwakumanya, Odhiambo Bdo. Beach Morphological Dynamics: A Case Study of Nyali and Bamburi Beaches in Mombasa, Kenya[J]. Journal of Coastal Research, 2007, 23(2): 374-379
    [129] Esteves L.S., Williams J.J., Lisniowski M.A., Perotto H.. Measured Cross-Shore and Vertical Variations in Grain Size, Sorting and Composition in Suspended Sediments Transported by Longshore Currents[C]. Journal of Coastal Research, Journal of Coastal Research (SPEC. ISSUE 50), 2007, 615-619.
    [130] Jonathan D. Griffin, Mark A. Hemer, Brian G. Jones. Mobility of sediment grain size distributions on a wave dominated continental shelf, southeastern Australia[J]. Marine Geology, 2008, 252,13-23.
    [131] Tarmo Soomere, Andres Kask, Jüri Kask, Terry Healy. Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia[J]. Journal of Marine Systems, 2008, 74: S133-S146.
    [132] Kazuhisa Goto, Kunimasa Miyagi, Hideki Kawamata, Fumihiko Imamura. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan[J]. Marine Geology, 2010, 269: 34-45.
    [133] Phantuwongraj, S., Choowong, M.. Tsunamis versus storm deposits from Thailand[J]. Natural Hazards , DOI: 10.1007/s11069-011-9717-8, 2011.
    [134] Paris, R., Lavigne, F., Wassmer, P., Sartohadi, J.. Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh(Sumatra,Indonesia)[J]. Marine Geology, 2007, 238, 93-106.
    [135] MacInnes, B.T., Bourgeois, J., Pinegina, T.K., Kravchunovskaya, E.A.. Tsunami geomorphology: Erosion and deposition from the 15 November 2006 Kuril Island tsunami[J]. Geology, 2009, 37 (11), 995-998.
    [136] Dan Matsumoto, Toshihiko Shimamoto, Takehiro Hirose et al.. Thickness and grain-size distribution of the 2004 Indian Ocean tsunami deposits in Periya Kalapuwa Lagoon, eastern Sri Lanka[J]. Sedimentary Geology, 2010, 230: 95-104.
    [137] Srisutam, C., Wagner, J.-F.. Tsunami sediment characteristics at the Thai Andaman Coast[J]. Pure and Applied Geophysics, 2010, 167 (3), 215-232.
    [138] Tomoyuki Takahashi, Nobuo Shuto, Fumihiko Imamura and Daisuke Asai. Modeling Sediment Transport due to Tsunamis with Exchange Rate between Bed Load Layer and Suspended Load Layer[C]. Coastal Engineering, ASCE Conf. Proc. doi:10.1061/40549(276)117, 2000.
    [139] Takenori Shimozono, Shinji Sato, Yoshimitsu Tajima. Numerical study of tsunami run-up over erodible sand dunes[C]. Coastal Sediments’07 Conference Proceeding Paper, 2000, 1089-1102.
    [140] Kabdasli M.S., Ozgur Kirca V.S., A. Aydingakko. 2D numerical modelling of bed profile changes due to tsunami effects on near shore coasts: Kadikoy case study[J].Water Science & Technology, 2005, 51(11): 231-238.
    [141] Guy Simpson, Sebastien Castelltort. Coupled model of surface water flow, sediment transport and morphological evolution[J]. Computers & Geosciences, 2006, 32:1600-1614.
    [142] David Pritchard, Laura Dickinson. Modelling the sedimentary signature of long waves on coasts: implications for tsunami reconstruction[J]. Sedimentary Geology, 2008, 206: 42-57.
    [143] Xiao H., Young Y.L. and Prévost J.H.. Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part II: Numerical simulation. Marine Geology, 2010, 269 (3-4), 119-131.
    [144] Alex Apotsos, Guy Gelfenbaum, and Bruce Jaffe. Process‐based modeling of tsunami inundation and sediment transport[J]. Journal of Geophysical Research, VOL.116, F01006, doi:10.1029/2010JF001797, 2011.
    [145] Tomoaki Nakamura, Solomon C. Yim. A Nonlinear Three-Dimensional Coupled Fluid-Sediment Interaction Model[J]. J. Offshore Mech. Arct. Eng., 2011,133(3): 031103, 1-14.
    [146] Pandoe, W.W., Edge, B.L.. Case study for a cohesive sediment transport model for Matagorda Bay, Texas, with coupled ADCIRC 2D-Transport and SWAN wave models[J]. Journal of Hydraulic Engineering, 2008, 134(3): 303-314.
    [147] Roelvink D., Reniers A., van Dongeren A., et al.. Modelling storm impacts on beaches, dunes and barrier islands[J]. Coastal Engineering, 2009, 56(11-12), 1133-1152.
    [148] Kenji S., Hiroo. K.. Use of tsunami waveforms for earthquake source study[J].Natural Hazards, 1991, 4:193-208.
    [149] Shevchenko, G.V., Chernov, A.G., Kovalev, P.D. et al.. The tsunamis of January 3, 2009 in Indonesia and of January 15, 2009 in Simushir as recorded in the South Kuril Islands[J]. Science of Tsunami Hazards, 2011, 30(1), 43-61.
    [150]南京水利科学研究院.波浪模型试验规程[S].北京:人民交通出版社, 2001
    [151] Hunt, I.A., Jr.. Design of seawalls and breakwaters[J]. Journal of the Waterways and Harbors Division, 1959, 83(3), 123-152.
    [152] Li, Y., Raichlen, F.. Solitary wave runup on plane slopes[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127 (1), pp. 33-44.
    [153] Muller, D.. Auflaufen und uberschwappen von impulswellen an Talsperren[M]. In: Vischer D (ed) VAW Mitteilung 137. Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH Zurich, 1995 (in German).
    [154] Kamphius, J.W.. Friction factor under oscillatory waves[J]. Journal of the Waterways, Harbors and Coastal Engineering, 1975, 101, 135-144.
    [155] Komar, P.D.. Beach Processes and Sedimentation[J]. Upper Saddle River, New Jersey: Prentice Hall, 1998, 544p.
    [156] Puleo, J.A. and Holland, K.T.. Estimating swash zone friction coefficients on a sandy beach[J]. Coastal Engineering, 2001, 43, 25-40.
    [157] Sato, H., Shimamoto, T., Tsutsumi, A., Kawamoto, E.. Onshore tsunami deposits caused by the 1993 southwest Hokkaido and 1983 Japan sea earthquakes[J]. Pure and Applied Geophysics, 1995, 144, 693-717.
    [158] Jaffe B., Gelfenbaum G., Rubin D. et al. Identification and interpretation of tsunami deposits from the June 23, 2001 Perútsunami. Proceedings of International Conference on Coastal Sediments 2003. World Scientific, 2003, pp. 1-13.
    [159] Morton, R., Gelfenbaum, G., Jaffe, B.. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Marine Geology, 2007, 200, 184-207.
    [160] Liu, P.L.-F.. Model equations for wave propagation from deep to shallow water[M]. In: Liu, P.L.-F. (Ed.), Advances in Coastal Engineering, 1994, vol. 1, pp. 125-157.
    [161] Nwogu, O.. Alternative form of Boussinesq equations for nearshore wave propagation[J]. J. Waterw. Port Coast. Ocean Eng. , 1993 119 (6), 618-638.
    [162] Kennedy A.B., Chen Q., Kirby J.T. and Dalrymple R.A.. Boussinesq Modeling of Wave Transformation, Breaking, and Runup: I. 1D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1), 39-47.
    [163] Galappatti, R., Vreugdenhil, C.B.. A depth integrated model for suspended transport[J]. J. Hydraul. Res. , 1985, 23 (4), 359-377.
    [164] Roelvink D., Reniers A., van Dongeren A., et al.. Modelling storm impacts on beaches, dunes and barrier islands[J]. Coastal Engineering, 2009, 56(11-12),1133 -1152.
    [165] Van Rijn L.C..Sediment Transport, Part II: Suspended Load Transport[J]. Journal of Hydraulic Engineering, 1984, Vol. 110, No. 11:1613-1641.
    [166] Soulsby R.L.. Dynamics of Marine Sands[M]. Thomas Telford, London, 1997: 203-205.
    [167] Engelund F., Hansen E..A monograph on sediment transport in alluvial streams[M]. 3rd edn. Technical Press, Copenhagen V, Denmark, 1972:1-63.
    [168] Monowar Hossain M., Lutfor Rahman M.. Sediment transport functions and their evaluation using data from large alluvial rivers of Bangladesh Modeling Soil Erosion[C]. Sediment Transport and Closely Related Hydrological Processes, IAHS Publ. NO. 249, 1998: 375-382.
    [169] Bhattacharya B., Price R.K., Solomatine D.P.. Data-driven modelling in the context of sediment transport[J]. Physics and Chemistry of the Earth, 2005,30: 297-302.
    [170] Ackers, P., White, W. R. Sediment transport: new approach and analysis[C]. Proc. ASCE, 1973, 99(11): 2041-2060.
    [171] White W.R., Bettess R.. The frictional characteristics of alluvial streams: a new approach[C]. Proceedings of Institution of Civil Engineers. Part 2,1980, 69: 737-750.
    [172] Van Rijn L.C.. Sediment Transport, Part III: Bed forms and Alluvial Roughness[J]. Journal of Hydraulic Engineering, 984, Vol.110, No. 12:1733-1754.
    [173] Van Rijn L.C.. Sediment Transport, Part I: Bed Load Transport[J]. Journal of Hydraulic Engineering, 1984, Vol. 110, No. 10:1431-1456.
    [174] Soulsby R.L., Whitehouse, R.J.S. Threshold of Sediment Motion in Coastal Environments[C]. Pacific Coasts and Ports '97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, 1997, Volume 1:145-150.
    [175] Wei, G., Kirby, J.T.. A time-dependent numerical code for extended Boussinesq equations[J]. J. Waterw. Port Coast. Ocean Eng, 1995, 120:251-261.
    [176] Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.. A fully nonlinear Boussinesq model for surface waves: Part I. Highly nonlinear unsteady waves[J]. J. Fluid Mech, 1995, 294:71-92.
    [177] Lynett P.J., Wu T.-R., Liu L.-F.P.. Modelling wave runup with depth-integrated equations[J]. Coastal Engineering, 2002, 46, 89-107.
    [178] Liu, X.-D., Osher, S., Chan, T.. Weighted essentially non-oscillatory schemes[J]. J. Comput. Phys, 1994, 115-200.
    [179] Jiang, G.-S., Shu, C.-W.. Efficient implementation of weighted ENO schemes[J]. J. Comput. Phys, 1996. 126-202.
    [180] Jiang, G.-S.,Wu, C.-C.. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 150: 561-594.
    [181] Shao, Z.Y., Kim, S., Yost, S.A.. A portable numerical method for flow with discontinuities and shocks. Proceedings of 17th Engineering Mechanics Conference, ASCE June 13-16. Paper, vol. 65. University of Delaware, Newark, DE, USA, 2004.
    [182] Harten, A.. High resolution schemes for hyperbolic conservation laws[J].J. Comput. Phys., 1983, 49, 357.
    [183] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.. Uniformly high-order accurate essentially non-oscillatory schemes, III[J]. J. Comput. Phys., 1987, 71, 231.
    [184] Wen Long, James T. Kirby, Zhiyu Shao. A numerical scheme for morphological bed level calculations[J]. Coastal Engineering, 2008, 55: 167-180.
    [185] Hudson, J., Damgaard, J., Dodd, N., Chesher, T., Cooper, A. Numerical approaches for 1D morphodynamic modeling[J]. Coast. Eng. , 2005. 52,691-707.
    [186] Shu,C.W..Essentially non-oscillatory and weighted essentially non -oscillatory schemes for hyperbolic conservation laws, lecture notes[M]. ICASE Report No. 97-65, NASA/CR-97-206253. November, 1997.
    [187] Lax, P.D., Wendroff, B.. Systems of conservation laws[J]. Commun. Pure Appl. Math. , 1960, 13, 217.
    [188] Johnson, H.K., Zyserman, J.A.. Controlling spatial oscillations in bed level update schemes[J]. Coastal Engineering, 2002 46, 109-126.
    [189] Kobayashi, N., Johnson, B.D.. Sand suspension, storage, advection and settling in surf and swash zones. J. Geophys. Res., 2001, 106 (C5), 9363-9376.
    [190] Richtmyer, R.D..A survey of difference methods for nonsteady fluid dynamics[C]. Natl. Cent. Atmos. Res. Tech. Note 63, 1962, 2.
    [191] MacCormack, R.W..The effect of viscosity in hypervelocity impact cratering[M]. AIAA, New York, 1969, pp. 69-354.
    [192] Warming R., Beam R. M. Upwind second-order difference schemes and applications in unsteady aerodynamic flows[C]. Proc. AIAA 2nd Comp. Fluid Dyn. Conf., Hartford, Conn., 1975.
    [193] Grass, A.J.. Sediment transport by waves and currents[M]. Cent. Mar. Technol, Report No: FL29. SERC, London, 1981.
    [194] Van Rijn, L.C.. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Aqua Publications, 1993.
    [195] Jensen, J.H.,Madsen, E.?., Freds?e, J.. Oblique flowover dredged channels:II. Sediment transport and morphology[J]. J. of Hydraul. Eng., 1999,125(11):1190-1198.
    [196] Ge Wei, James T. Kirby, Amar Sinha. Generation of waves in Boussinesq models using a source function method[J]. Coastal Engineering, 1999, 36:271-299.
    [197] Sielecki, A., Wurtele, M.G..The numerical integration of the nonlinear shallow-water equations with sloping boundaries[J]. J.Comput.Phys.,1970,6, 219-236.
    [198] Kowalik, Z., Bang, I.. Numerical computation of tsunami runup by the upstream derivative method[J]. Sci. Tsunami Hazards, 1987, 5(2), 77-84.
    [199] Craig Shipp R. Bedforms and depositional sedimentary structures of a barred nearshore system, eastern long island, new york[J].Marine Geology, 1984, 60:235-259.
    [200] Sitanggang, K.I.,Lynett,P.J.Multi-scale simulation with a hybrid Boussinesq -RANS hydrodynamic model[J]. International Journal for Numerical Methods in Fluids, 2010, 62(9): 1013-1046.
    [201] Narayanaswamy, M., Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A. SPHysics-FUNWAVE hybrid model for coastal wave propagation[J]. Journal of Hydraulic Research, 2010, 48(1): 85-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700