用户名: 密码: 验证码:
基于渗滤液沉积物的甲烷氧化反硝化耦合微生物学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期处于高浓度有机物和高浓度氨氮胁迫下的渗滤液收集池沉积物是一种极端环境。这种特殊的生境中可能存在着特异性代谢的微生物类群,尤其是耐高浓度有机质和氨氮的碳氮元素转化微生物。近年来,甲烷氧化反硝化耦合(Methane oxidation coupled to denitrification, MOD)过程由于其耗能少,反应器设计简单,受到了研究者的广泛关注,但是其微生物学机理还未有明确定论。本研究以浙江省东阳市生活垃圾填埋场16年龄渗滤液收集池沉积物(0-8cm层)为研究对象,采用现代分子生物学技术,详细分析了高浓度氨氮和有机物胁迫下的渗滤液沉积物原核微生物群落结构、组成多样性,及其潜在的微生物代谢过程;以该渗滤液沉积物为接种体,在微好氧条件下开展了MOD污泥的富集培养及其甲烷氧化与反硝化耦合性能研究;并以功能基因-分子克隆技术探索了富集的MOD功能微生物群落结构与耦合机理。研究结果对开发微生物种质资源以及废水生物处理新工艺具有重要的现实意义。研究主要结论如下:
     (1)以东阳市垃圾填埋场16年龄渗滤液收集池沉积物(0-8cm层)为研究对象,采用PCR-分子克隆技术结合16S rRNA基因系统发育分析阐明了渗滤液沉积物中的古菌群落结构与组成多样性,并发现渗滤液沉积物中可能存在氨氧化古菌。通过对随机挑选的425个古菌克隆子的59个基因型系统发育分析,发现渗滤液沉积物中的古菌分属广古菌门(Euryarchaeota)和泉古菌门(Crenarchaeota);其中属于广古菌门基因型45个,代表了397个古菌16SrRNA基因克隆,占库容的93.41%,与产甲烷古菌有较高的同源性,主要为甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)和甲烷杆菌目(Methanobacteriales)产甲烷古菌,并以甲烷鬃菌属(Methanosaeta spp.)为优势种群。14个泉古菌门基因型代表了28个古菌16S rRNA基因克隆,与环境样品来源的序列同源性较高。泉古菌门克隆B9与Candidatus 'Nitrosophaera gargensis'同源性高达98.3%。
     (2)细菌16S rRNA基因克隆文库揭示了渗滤液沉积物中有机质降解与氮素转化相关微生物的群落结构。多样性指数分析表明,渗滤液沉积物中细菌的多样性明显高于古菌,群落结构也更复杂。代表313个细菌16S rRNA基因克隆的244个基因型,分属于18个细菌分类门。厚壁菌门(Firmicute)和变形菌门(Proteobacteria)细菌是渗滤液沉积物的主要细菌类群,分别占克隆文库库容的21.60%和19.20%。细菌克隆中超过50%的基因型与未培养微生物同源性较高。部分基因型与Genbank中已发表的序列同源性较低,在系统发育学上可能属于新的微生物类群。α-、β-和γ-变形菌亚纲的部分基因型与化能有机营养型反硝化菌同源性较高,推测这些细菌在渗滤液沉积物碳氮元素转化过程中发挥着重要作用。厚壁菌门(Firmicute)梭菌纲(Clostridia)的发酵型细菌、产氢、产乙酸菌等化能有机营养型细菌能够为产甲烷古菌提供H2,CO2,甲基化合物和乙酸等底物,构成了渗滤液沉积物中的产甲烷菌群。氨氧化古菌和氨氮利用型细菌可能具有转化氨氮的功能,并因此形成一个低浓度氨氮小生境,从而减轻或者避免了渗滤液沉积物中高浓度氨氮对其他微生物的抑制或毒害作用。尽管渗滤液沉积物细菌和古菌的群落结构与其他文献报道的渗滤液微生物群落有一定的相似性,但由于渗滤液水质和气候等条件的不同,渗滤液与沉积物理化性质的差别较大,垃圾渗滤液和沉积物中的微生物群落组成与结构多样性存在显著性差异。
     (3)以东阳垃圾填埋场16年龄渗滤液收集池沉积物(0-8cm层)为接种体,甲烷为唯一外加碳源,硝酸盐和亚硝酸盐为电子受体,在微好氧条件下,成功富集了以革兰氏阴性菌为主体的MOD污泥。稳定运行阶段含MOD污泥反应器的反硝化速率为4.5mmol N L-1d-1.血清瓶活性试验表明提高反应器配水溶解氧可显著促进富集污泥的反硝化活性,首次证实了反应器中配水硝酸盐与亚硝酸盐的还原是由于好氧反硝化微生物的作用。富集培养与活性试验水质GC-MS分析结果表明,甲醛、柠檬酸盐和乙酸盐是甲烷氧化代谢过程形成的主要有机物。
     (4)以甲烷氧化功能基因pmoA和反硝化功能基因nirK分子克隆结合荧光定量PCR技术为研究手段,考察了富集培养的MOD污泥功能微生物群落结构及其基因丰度。结果表明,富集的MOD污泥中存在大量的甲烷氧化菌和反硝化细菌,甲烷氧化pmoA基因拷贝数约为反硝化nirK基因拷贝数的3倍。属于γ-变形菌亚纲(Gammaproteobacteria)甲基球菌科(Methylococcaceae)的TypeⅠ型甲烷氧化菌是富集培养MOD污泥优势的甲烷氧化菌群,占总细菌16SrRNA基因克隆文库库容的37.50%,并以甲基杆菌属(Methylobacter spp.)和甲基暖菌属(Methylocaldum spp.)为优势种群;β-变形菌亚纲(Betaproteobacteria)嗜甲基菌科(Methylophilaceae)的甲基营养型好氧反硝化菌是该富集污泥的主要反硝化微生物类群,占总细菌16S rRNA基因克隆文库库容的36.76%。
     综上所述,本研究采用功能基因结合分子克隆技术首次阐明了MOD微生物学机理:Type I型的γ-变形菌亚纲(Gammaproteobacteria)甲基球菌科(Methylococcaceae)甲基杆菌属(Methylobacter spp.)和甲基暖菌属(Methylocaldum spp.)的甲烷氧化菌氧化甲烷,并采用5-磷酸核酮糖途径(RuMP Pathway)同化碳源产生甲醛、柠檬酸盐和乙酸盐等可溶性简单有机物,在微好氧的条件下,为β-变形菌亚纲(Betaproteobacteria)嗜甲基菌科(Methylophilaceae)的好氧反硝化菌提供电子供体,进行硝酸盐或亚硝酸盐的好氧反硝化作用。
Sediment in leachate collection ponds is an extreme environment with considerably high of ammonium and organic matter concentration. Therefore, there might be some specific microognaisms which metabolize in differential pathway in this special habitat, especially carbon and nitrogen transforming microorganisms which could bear high amounts of organic matters and ammonium. Recently, methane oxidation coupled to denitrification (MOD) was attracted much attention due to less energy consumption and simple design reactor. However, the mechanisms and microbial community of this process have not yet been confirmed. In this thesis, sediment (0-8cm) in the16years old leachate collection pond of Dongyang Landfill in Zhejiang Province was taken as the research object. Prokaryotic diversity, composition structure and the potential microbial metabolic processes in leachate sediment ecosystems were analysed by modern molecular biotechnology. With the leachate sediment as inoculum, a consortium involved in MOD was enriched under micro-aerobic condition. Methane oxidation activity and denitrification acitivity of the enrichment reactor were determined.16S rRNA gene phylogeny combined with pmoA gene-based phylogeny of methanotrophs and nirK gene-based phylogeny of denitrifiers were analyzed to reveal the pivotal microbial populations and functional microorganisms. Functional genes combined with molecular cloning technique were performed to identify the primary functional microorganisms and coupling mechanism involved in MOD system. Results of this study would be significant in exploring microbial resources and new technologies for biological wastewater treatment. Main results of the study were summaried as follows:
     (1) Sediment (0-8cm) in the16years old leachate collection pond of Dongyang Landfill in Zhejiang Province was taken as the research object. Archeael diversity and community structure was illuminated using PCR (polymerase chain reaction)-molecular cloning technique combined with phylogenetic analysis of16S rRNA gene. It was suggested that ammonium-oxidizing crenarchaeote might exist in leachate sediment. A total of59phylotypes affiliated with two phyla Euryarchaeota and Crenarchaeota were examined among425randomly selected archaeal rDNA clones. Among them,45phylotypes were identified as Euryarhaeota, representing397out of the total425clones, accounting for93.41%of the total archaeal clones. All of the euryarhaeotic clones were closely related to methanogens, mainly belonging to Methanomicrobiales, Methanosarcinales and Methanobacteriales. Methanosaeta spp. was the dominant spcies. Fourteen crenarchaeotic phylotypes, representing28clones, had relatively high level (>95%) of similarity with unclassified environmental clones, except that clone B9was98.3%indentical to a moderately thermophilic ammonium-oxidizing crenarchaeote "Candidatus Nitrososphaera gargensis"
     (2) Phylogenetic analysis of the bacterial16S rRNA gene clone library revealed the population of organic matter degrading and ammonium transforming microorganisms. Analysis of the diversity indexes indicated that compared to archaeal community, the bacterial community associated with the landfill leachate sediment was much more diverse and complicated. Two hundred and forty four phylotypes were affiliated with18distinct phyla, representing313bacterial clones. Bacteria belonging to Firmicute and Proteobacteria were the dominant populations, accounting for21.60%and19.20%of the total bacterial clones, respectively. More than50%of bacterial clones had high levels of similarity with unculure bacteria. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Some phylotypes belonging to Alpha-, Beta-and Gammaproteobacteria were affiliated with chemoorganoheterotroph denitrifiers. It was inferred that these bacteria played an important role in carbon and nitrogen transforming precess in the leachate sediment. Chemoorganotrophy bacteria, such as fermentative bacteria, acetogenic bacteria, and hydrogen producing bacteria, which belonged to phylum Firmicuteand order Clostridia, would provide methanogens with substrates, including acetate, H2/CO2and methylated compounds. These collections of different microbial species were referred to as a methanogenic consortium. Ammonium-oxidizing archaea and ammonium utilizing microorganisms might consume surrounding ammonium to form a relatively low ammonium microenvironment and to alleviate or avoid negative influence on other microorganisms. There were a degree of resemblances in the microbial populations between leachate sediment of current study and leachate of other references. However, distinct landfill circumstances, various climate conditions, and different physicochemical properties would result in discrepant microbial communities in leachate and leachate sediment.
     (3) Taking the leachate sediment (0-8cm) of16years old in Dongyang Landfill as inoculum, a consortium which was mainly gram-negative bacteria, involved in MOD was successfully enriched under micro-aerobic condition, with methane as external carbon source, nitrite and nitrate as electron acceptor. The denitrification rate of the MOD reactor was around4.5mmol N L-1d-1at the steady period. The batch experiment suggested that more oxygen providing in the reactor would favor a more efficient denitrification, which indicated that nitrite and nitrate depletions might be associated with aerobic denitrification. GC-MS analysis of the influent and effluent liquid of enrichment and batch experiment cultures demonstrated that methanotrophs produced high amount of formaldehyde, citrate, and acetate during the methane oxidation process.
     (4) Composition and abundance of primary functional microbial communities in the MOD ecosystem were investigated by pmoA gene-based phylogeny of methanotrophs and nirK gene-based phylogeny of denitrifiers conbined with real-time PCR. There were amount of methanotrophs and denitrifiers in the enriched sludge, and the copy number of pmoA gene were almost3times more than that of nirK gene. Microbial community in the enrichment culture was dominated by Type I methanotrophs, which belonged to Methylococcaceae, Gammaproteobacteria, comprising37.5%of the total bacterial16S rRNA gene clone library. The Methylobacter spp. and Methylocaldum spp. were the dominant population. Aerobic methylotrophic denitrifiers of Methylophilaceae, Betaproteobacteria, might make great contribution in denitrification in our MOD ecosystems, comprising36.76%of the total bacterial16S rRNA gene clone library.
     In conclusion, the microbiological mechanism of the MOD system in this study was that type I methanotrophs, which belonged to Methylobacter spp. and Methylocaldum spp., Methylococcaceae, Gammaproteobacteria, oxidized methane, employed the ribulose monophosphate (RuMP) pathway for assimilation and released organic intermediates (i.e. formaldehyde, citrate, and acetate) under mireo-aerobic condition. Aerobic methylotrophic denitrifiers of Methylophilaceae, Betaproteobacteria, utilizing organic intermediates released from the methanotrophs as electron donor, played a vital role in aerobic denitrification.
引文
Abbondanzi F, Campisi T, Focanti M, Guerra R, Iacondini A (2005) Assessing degradation capability of aerobic indigenous microflora in PAH-contaminated brackish sediments. Mar Environ Res 59 (5):419-434
    Abed RMM, Musat N, Musat F, Mussmann M (2011) Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Mar Pollut Bull 62 (3):539-546
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25 (17):3389-3402
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59 (1):143-169
    Amaral JA, Archambault C, Richards SR, Knowles R (1995) Denitrification associated with groups Ⅰ and Ⅱmethanotrophs in a gradient enrichment system. FEMS Microbiol Ecol 18 (4):289-298
    Anthony C (1982) The biochemistry of methylotrophs. Academic Press, Inc., London, England
    Anthony C (1986) Bacterial oxidation of methane and methanol. Adv Microb Physiol 27:113-210
    Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161 (7):573-582
    Bachoon DS, Hodson RE, Araujo R (2001) Microbial community assessment in oil impacted salt marsh sediment microcosms by traditional and nucleic acid based indices. J Microbiol Methods 46 (1):37-49
    Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006) The short term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26 (2):455-464
    Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53 (1):68-84
    Bell LC, Richardson DJ, Ferguson SJ (1990) Periplasmic and membrane bound respiratory nitrate reductases in Thiosphaera pantotropha the periplasmic enzyme catalyzes the 1st step in aerobic denitrification. Febs Lett 265 (1-2):85-87
    Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9 (6):1439-1447
    Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9 (1):46-60
    Bitton G (1994) Wastewater microbiology. Wiley-Liss, New York
    Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168 (6):493-503
    Boer SI, Hedtkamp SIC, van Beusekom JEE, Fuhrman JA, Boetius A, Ramette A (2009) Time and sediment depth related variations in bacterial diversity and community structure in subtidal sands. ISME J 3 (7):780-791
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-626
    Bogner JE, Spokas KA, Burton EA (1999) Temporal variations in greenhouse gas emissions at a midlatitude landfill. J Environ Qual 28 (1):278-288
    Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In Methanogenesis. Ecology, Physiology, Biochemistry and Genetics. J. G. Ferry edn. Chapman & Hall, New York
    Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69 (5):2463-2483
    Bowman JP, Sly LI, Nichols PD, Hay ward AC (1993) Revised Taxonomy of the Methanotrophs-Description of Methylobacter gen. nov., emendation of Methylococcus, Validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the Group I methanotrophs. Int J Syst Bacteriol 43 (4):735-753
    Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes(nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64 (10):3769-3775
    Braker G, Zhou JZ, Wu LY, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl Environ Microbiol 66 (5):2096-2104
    Branco R, Chung AP, Verissimo A, Morais PV (2005) Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS Microbiol Ecol 54 (1):35-46
    Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158 (3):213-227
    Burrell PC, O'Sullivan C, Song H, Clarke WP, Blackall LL (2004) Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70 (4):2414-2419
    Burton SAQ, Watson-Craik IA (1998) Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Waste Manage Res 16 (1):41-53
    Calli B, Mertoglu B, Roest K, Inanc B (2006) Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresour Technol 97 (4):641-647
    Cetecioglu Z, Ince BK, Kolukirik M, Ince O (2009) Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the marmara sea. Mar Pollut Bull 58 (3):384-395
    Chai XL, Lou ZY, Shimaoka T, Nakayama H, Ying Z, Cao XY, Komiya T, Ishizaki T, Zhao YC (2010) Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill:An ecological case study of Shanghai. Waste Manage 30 (3):446-451
    Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87(417):210-217
    Chao A, Shen TJ (2003) Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environ Ecol Stat 10 (4):429-443
    Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16 (7-8):659-718
    Conrad R, Klose M, Claus P, Enrich-Prast A (2010) Methanogenic pathway, 13C isotope fractionation, and archaeal community composition in the sediment of two clear water lakes of Amazonia. Limnol Oceanogr 55 (2):689-702
    Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Damste JSS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea:a basin wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9 (4):1001-1016
    Costa C, Stams AJM, Dijkema C, Friedrich M, Garcia-Encina P, Fernandez-Polanco F (2000) Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl Microbiol Biotechnol 53 (6):754-762
    Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65 (11):5066-5074
    Dalton H (1992) Methane and Methanol Utilizers. Methane oxidation by methanotrophs:physiological and mechanistic implications. Plenum Press, New York and London
    Danovaro R, Marrale D, Dell'Anno A, Della Croce N, Tselepides A, Fabiano M (2000) Bacterial response to seasonal changes in labile organic matter composition on the continental shelf and bathyal sediments of the Cretan Sea. Prog Oceanogr 46 (2-4):345-366
    Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89(12):5685-5689
    Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64 (10):3869-3877
    Eggen R, Harmsen H, Devos WM (1990) Organization of a ribosomal RNA gene cluster from the archaebacterium Methanothrix soehngenii. Nucleic Acids Res 18(5):1306-1306
    Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35 (9):2261-2267
    Erkel C, Kemnitz D, Kube M, Ricke P, Chin KJ, Dedysh S, Reinhardt R, Conrad R, Liesack W (2005) Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53 (2):187-204
    Etchebehere C, Errazquin MI, Dabert P, Muxi L (2002) Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiol Ecol 40 (2):97-106
    Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp HJMO, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464 (7288):543-+
    Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10 (11):3164-3173
    Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75 (11):3656-3662
    Fahrbach M, Kuever J, Remesch M, Huber BE, Kampfer P, Dott W, Hollender J (2008) Steroidobacter denitrificans gen. nov., sp nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Micr 58:2215-2223
    Ferrer M, Guazzaroni ME, Richter M, Garcia-Salamanca A, Yarza P, Suarez-Suarez A, Solano J, Alcaide M, van Dillewijn P, Molina-Henares MA, Lopez-Cortes N, Al-Ramahi Y, Guerrero C, Acosta A, de Eugenio LI, Martinez V, Marques S, Rojo F, Santero E, Genilloud O, Perez-Perez J, Rossello-Mora R, Ramos JL (2011) Taxonomic and functional metagenomic profiling of the microbial community in the anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, Central Spain). Microbial Ecol 62 (4):824-837
    Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65 (12):5576-5585
    Foss S, Harder J (1998) Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov. isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) and nitrate. Syst Appl Microbiol 21 (3):365-373
    Frette L, Gejlsbjerg B, Westermann P (1997) Aerobic denitrifiers isolated from an alternating activated sludge system. FEMS Microbiol Ecol 24 (4):363-370
    Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the transbaikal region of Russia. Extremophiles 8 (4):309-316
    Garrity C, Ramseier RO, Peinert R, Kern S, Fischer G (2005) Water column particulate organic carbon modeled fluxes in the ice-frequented Southern Ocean. J Marine Syst 56 (1-2):133-149
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40 (3-4):237-264
    Gough HL, Stahl DA (2011) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. Isme J 5 (3):543-558
    Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between Type-I and Type-II methanotrophs in two-organism, continuous-flow reactors. Microbial Ecol 25 (1):1-17
    Green PN (1992) Taxonomy of methylotrophic bacteria. Intercept Press Ltd, London
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis:testing the hypothesis with environmental genomics.305,1457-1462. Science:1457-1462
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60 (2):439-+
    Hanson RS, Tsien HC, Tsuji K, Brusseau GA, Wackett LP (1990) Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic dacteria. FEMS Microbiol Rev 87 (3-4):273-278
    Hanson RS, Wattenberg EV (1991) Ecology of methylotrophic. Biology of Methylotrophs. Butterworth-Heinemann, Boston, MA.
    Hao CB, Zhang HX, Haas R, Bai ZH, Zhang BG (2007) A novel community of acidophiles in an acid mine drainage sediment. World J Microb Biot 23 (1):15-21
    Hatamoto M, Imachi H, Fukayo S, Ohashi A, Harada H (2007) Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int J Syst Evol Micr 57:2137-2142
    Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105 (6):2134-2139
    Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P (2006a) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8 (11):2012-2021
    Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006b) Cultivation of denitrifying bacteria:Optimization of isolation conditions and diversity study. Appl Environ Microbiol 72 (4):2637-2643
    Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132 (3):203-208
    Horiba Y, Khan ST, Hiraishi A (2005) Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly(ε-caprolactone) as the carbon and energy source. Microbes Environ 20(1):25-33
    Huang HK, Tseng SK (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol 55 (1):90-94
    Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46 (2):171-177
    Huang LN, Zhu S, Zhou H, Qu LH (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242 (2):297-303
    Huang XF, Guan W, Liu J, Lu LJ, Xu JC, Zhou Q (2010) Characterization and phylogenetic analysis of biodemulsifier-producing bacteria. Bioresour Technol 101 (1):317-323
    Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69 (2):1030-1042
    Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72 (9):5689-5701
    Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov., sp. nov,, a new acetotrophic non hydrogen oxidizing methane bacterium. Arch Microbiol 132(1):1-9
    Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate:a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp.. FEMS Microbiol Rev 88 (3-4):181-197
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In Mammalian Protein Metabolism. Munro, H.N. (ed.). Academic Press, New York, NY, USA
    Kalyuhznaya MG, Martens-Habbena W, Wang TS, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Env Microbiol Rep 1 (5):385-392
    Kelly DP, Wood AP (2000) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Micr 50:547-550
    Kemp PF, Aller JY (2004a) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47 (2):161-177
    Kemp PF, Aller JY (2004b) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47 (2):161-177%@ 1574-6941
    Khan ST, Horiba Y, Takahashi N, Hiraishi A (2007) Activity and community composition of denitrifying bacteria in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-using solid-phase denitrification processes. Microbes Environ 22(1):20-31
    Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68 (7):3206-3214
    Kim BS, Oh HM, Kang H, Park SS, Chun J (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechn 14(1):205-211
    King GA (2003) Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69 (12):7257-7265
    Knittel K, Boetius A (2009) Anaerobic oxidation of methane:progress with an unknown process. Annu Rev Microbiol 63:311-334
    Knittel K, Losekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71 (1):467-479
    Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24 (5):441-446
    Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M (2004) Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. Environ Microbiol 6 (6):622-637
    Kusel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments:Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65 (8):3633-3640
    Laitinen N, Luonsi A, Vilen J (2006) Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination 191 (1-3):86-91
    Lane DJ (1991) 16S/23S rRNA sequencing, Nucleic acid techniques in bacterial systematics. (Stackebrandt, E. and Goodfellow, M., eds). Wiley, New York
    Lardy LC, Brauman, A., Bernard, L., Pablo, A.L., Toucet, J., J. Toucetb, M.J. Manob, L. Weberc, D. Brunetb, T. Razafimbelod, J.L. Chotteb and E. Blanchartb (2010) Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl Soil Ecol 45 (3):201-208
    Lazar CS, Dinasquet J, L'Haridon S, Pignet P, Toffin L (2011) Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark. Norwegian Sea. Anton Leeuw Int J G 100 (4):639-653
    Leak DJ, Dalton H (1986) Growth yields of methanotrophs.1. effect of copper on the energetics of methane oxidation. Appl Microbiol Biotechnol 23 (6):470-476
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442 (7104):806-809
    Li XZ, Zhao QL (1999) Inhibition of microbial activity of activated sludge by ammonia in leachate. Environ Int 25 (8):961-968
    Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. A Van Leeuw J Microb 54 (3):189-199
    Linton JD, Buckee JC (1977) Interactions in a methane utilizing mixed bacterial culture in a chemostat. J Gen Microbiol 101 (Aug):219-225
    Lloyd KG, Lapham L, Teske A (2006) Anaerobic methane-oxidizing community of ANME-lb archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72 (11):7218-7230
    Mancinelli RL (1995) The regulation of methane oxidation in soil. Annu Rev Microbiol 49:581-605
    Mateju V, Cizinska S, Krejci J, Janoch T (1992) Biological water denitrification-a Review. Enzyme Microb Tech 14 (3):170-183
    McInerney MJ, Bryant MP (1981) Review of methane fermentation fundamentals. In Fuel Gas Production from Biomass. Wise, D.L. edn. CRC (Chemical Rubber Company) Press, Boca Raton
    Megraw SR, Knowles R (1989) Methane-Dependent Nitrate Production by a Microbial Consortium Enriched from a Cultivated Humisol. FEMS Microbiol Ecol 62 (6):359-365
    Mergaert J, Cnockaert MC, Swings J (2003) Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. Int J Syst Evol Micr 53:1961-1966
    Metcalf & Eddy A, Tchobanoglous G, Burton FL (1991) Wastewater engineering: treatment, disposal, and reuse. Irwin/McGraw-Hill, New York.
    Modin O, Fukushi K, Nakajima F, Yamamoto K. (2008) A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency. Water Sci Technol 58 (1):83-87
    Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41 (12):2726-2738
    Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72 (2):1346-1354
    Morais PV, Francisco R, Branco R, Chung AP, da Costa MS (2004) Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27 (6):646-652
    Morais PV, Paulo C, Francisco R, Branco R, Chung AP, da Costa MS (2006) Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29 (5):414-421
    Mori K, Yamamoto H, Kamagata Y, Hatsu M, Takamizawa K (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Micr 50:1723-1729
    Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswellii gen. nov, sp. nov., a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34(2):216-217
    Narihiro T, Takebayashi S, Hiraishi A (2004) Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composters. Microbes Environ 19 (4):292-300
    Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-I and ANME-II communities. Environ Microbiol 7 (1):98-106
    Nesterov AI, Ivanova TI, Il'chenko VY, Gayazov RR, Mschenshii, Y.N. (1988) Protein and polysaccharide composition during growth of Methylomonas methanica under chemostat conditions. Sov Biotechnol 5:18-22
    Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution-a ribosomal RNA approach. Annu Rev Microbiol 40:337-365
    Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by direct coupled isotopic and phylogenetic analysis. Science 293:484-487
    Osaka T, Ebie Y, Tsuneda S, Inamori Y (2008) Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. FEMS Microbiol Ecol 64 (3):494-506
    Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microbial Ecol 52 (2):253-266
    Paisse S, Coulon F, Goni-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66 (2):295-305
    Patureau D, Bernet N, Delgenes JP, Moletta R (2000) Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Appl Microbiol Biotechnol 54 (4):535-542
    Philippot L, Hallin S (2005) Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 8 (3):234-239
    PoggiVaraldo HM, RodriguezVazquez R, FernandezVillagomez G, EsparzaGarcia F (1997) Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl Microbiol Biotechnol 47 (3):284-291
    Putkinen A, Juottonen H, Juutinen S, Tuittila ES, Fritze H, Yrjala K (2009) Archaeal rRNA diversity and methane production in deep boreal peat. FEMS Microbiol Ecol 70(1):87-98
    Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440 (7086):918-921
    Ragle N, Kissel J, Ongerth JE, Dewalle FB (1995) Composition and variability of leachate from recent and aged areas within a municipal landfill. Water Environ Res 67 (2):238-243
    Rajapakse JP, Scutt JE (1999) Denitrification with natural gas and various new growth media. Water Res 33 (18):3723-3734
    Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA (1994) Quantification of Methanogenic Groups in Anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60 (4):1241-1248
    Reed AJ, Dorn R, Van Dover CL, Lutz RA, Vetriani C (2009) Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps. Deep-Sea Res Ⅱ 56 (19-20):1665-1674
    Ren T, Roy R, Knowles R (2000) Production and consumption of nitric oxide by three methanotrophic bacteria. Appl Environ Microbiol 66 (9):3891-3897
    Rhee GY, Fuhs GW (1978) Wastewater denitrification with one-carbon compounds as energy source. J Water Pollut Con F 50 (9):2111-2119
    Robertson LA, Cornelisse R, Devos P, Hadioetomo R, Kuenen JG (1989) Aerobic denitrification in various geterotrophic nitrifiers. A Van Leeuw J Microb 56 (4):289-299
    Robertson LA, Kuenen JG (1984) Aerobic denitrification-a controversy revived. Arch Microbiol 139 (4):351-354
    Robertson LA, Vanniel EWJ, Torremans RAM, Kuenen JG (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl Environ Microbiol 54 (11):2812-2818
    Saitou N, Nei M (1987) The neighbor-ioining method-a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 (4):406-425
    Sanchez-Andrea Ⅰ, Rodriguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77 (17):6085-6093
    Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109 (2):130-137
    Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJMO, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity. Environ Microbiol 9 (6):1476-1484
    Shilov AE, Koldasheva EM, Kovalenko SV, Akent'eva NP, Varfolomeev SD, Kalyuzhnyi SV, Sklyar VI (1999) Methanogenesis is reversible:acetate is a product of methane carboxylation by bacteria of a methane biocenosis. Dokl Biol Sci 367:425-427
    Shubenkova OV, Zemskaya TI, Chernitsyna SM, Khlystov OM, Triboi TI (2005) The first results of an investigation into the phylogenetic diversity of microorganisms in southern Baikal sediments in the region of subsurface discharge of methane hydrates. Microbiology+ 74 (3):314-320
    Slack RJ, Gronow J, Voulvoulis N (2005) Household hazardous waste in municipal landfills:contaminants in leachate. Sci Total Environ 337 (1-3):119-137
    Song BK, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66 (8):3446-3453
    Song J, Cho JC (2007) Methylibium aquaticum sp. nov., a betaproteobacterium isolated from a eutrophic freshwater pond. Int J Syst Evol Micr 57:2125-2128
    Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, Daims H (2006) Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 8 (3):405-415
    Stouthamer AH (1992) Metabolic pathways in Paracoccus denitrificans and closely related dacteria in relation to the phylogeny of prokaryotes. Antonie van Leeuwenhoek. J Micro biol 61 (1):1-33
    Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou ZM, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69 (6):3152-3157
    Tamminen M, Karkman A, Corander J, Paulin L, Virta M (2011) Differences in bacterial community composition in Baltic Sea sediment in response to fish farming. Aquaculture 313 (1-4):15-23
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24 (8):1596-1599
    Tapilatu Y, Acquaviva M, Guigue C, Miralles G, Bertrand JC, Cuny P (2010) Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett Appl Microbiol 50 (2):234-236
    Thalasso F, Vallecillo A, GarciaEncina P, FdzPolanco F (1997) The use of methane as a sole carbon source for wastewater denitrification. Water Res 31 (1):55-60
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 (24):4876-4882
    Torsvik V, S(?)rheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communitie s- a review. J Ind Microbiol Biotechnol 17 (3):170-178
    Ueda K, Tagami Y, Kamihara Y, Shiratori H, Takano H, Beppu T (2008) Isolation of bacteria whose growth is dependent on high levels of CO2 and implications of their potential diversity. Appl Environ Microbiol 74 (14):4535-4538
    Uz I, Rasche ME, Townsend T, Ogram AV, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. P Roy Soc Lond B Bio 270:S202-S205
    Valenzuela-Encinas C, Neria-Gonzalez I, Alcantara-Hernandez RJ, Enriquez-Aragon JA, Estrada-Alvarado I, Hernandez-Rodriguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12 (2):247-254
    Van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68 (4):2049-2053
    Vigneron V, Ponthieu M, Barina G, Audic JM, Duquennoi C, Mazeas L, Bernet N, Bouchez T (2007) Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manage 27 (6):778-791
    Waki M, Suzuki K, Osada T, Tanaka Y (2005) Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresour Technol 96 (8):921-927
    Waki M, Suzuki K, Osada T, Tanaka Y, Ike M, Fujita M (2004) Microbiological activities contributing to nitrogen removal with methane:Effects of methyl fluoride and tungstate. Bioresour Technol 94 (3):339-343
    Waki M, Tanaka Y, Osada T, Suzuki K (2002) Effects of nitrite and ammonium on methane-dependent denitrification. Appl Microbiol Biotechnol 59 (2-3):338-343
    Wang YL, Wu WX, Ding Y, Liu W, Perera A, Chen YX, Devare M (2008) Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biol Biochem 40 (9):2452-2459
    Weber A, Jorgensen BB (2002) Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Res I 49 (5):827-841
    Werner M, Kayser R (1991) Denitrification with biogas as external carbon source. Water Sci Technol 23 (4-6):701-708
    Wilkinso.Tg, Topiwala HH, Hamer G (1974) Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng 16 (1):41-59
    Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, Deley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophagap seudoflava (formerly Pseudomonas pseudoflava and Pseudomonas carboxydoflava), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39 (3):319-333
    Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74 (3):792-801
    Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: Isolation of novel type Ⅰ and type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65 (11):4887-4897
    Wu CG, Dong XZ, Liu XL (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov.. Syst Appl Microbiol 30 (5):376-380
    Xu JL, Gu XY, Biao S, Wang ZC, Kun W, Li SP (2006) Isolation and characterization of a carbendazim-degrading Rhodococcus sp. dj1-6. Curr Microbiol 53 (1):72-76
    Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Micr 57:2299-2306
    Yang HM, Lou K, Sun J, Zhang T, Ma XL (2012) Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China. J Basic Microb 52 (1):79-85
    Yeung CW, Woo M, Lee K, Greer CW (2011) Characterization of the bacterial community structure of Sydney Tar Ponds sediment. Can J Microbiol 57 (6):493-503
    Youssef NH, Ashlock-Savage K.N, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78 (5):1332-1344
    Zaitsev GM, Tsitko IV, Rainey FA, Trotsenko YA, Uotila JS, Stackebrandt E, Salkinoja-Salonen MS (1998) New aerobic ammonium-dependent obligately oxalotrophic bacteria:description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov.. Int J Syst Bacteriol 48:151-163
    Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401 (6750):266-269
    Zhang Y, Ruan XH, den Camp HJMO, Smits TJM, Jetten MSM, Schmid MC (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9 (9):2375-2382
    Zinder SH (1993) Physiological ecology of methanogens. Ferry, J.G. edn. Chapman and Hall, New York
    Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol R 61 (4):533-616
    王薇,蔡祖聪,钟文辉,王国祥(2007)好氧反硝化菌的研究进展.应用生态学报18(11):2618-2625
    王亚南,王保军,戴欣,焦念志,彭志英,刘双江(2004)海水养殖场沉积物中硝酸盐还原菌种群分析.微生物学通报31(6):73-76
    朱兆良,文启孝(1990)中国土壤氮素.江苏科学技术出版社,江苏
    李秋芬,陈碧鹃,曲克明,辛福言,李健,赵法箴,袁有宪(2002)虾池沉积物中3类主要细菌的垂直分布特征.中国水产科学9(4):367-370
    李涛,王鹏,汪品先(2008)南海西沙海槽表层沉积物微生物多样性.生态学报28(3):1166-1173
    肖晶晶,郭萍,霍炜,于江,朱昌雄(2009)反硝化微生物在污水脱氮中的研究及应用进展.环境科学与技术32(12):98-102
    徐亚同(1994)pH值、温度对反硝化的影响.中国环境科学14(4):308-313
    梁战备,史奕,岳进(2004)甲烷氧化菌研究进展.生态学杂志23(5):198-205
    雷爱莹,彭敏,曾地刚,李咏梅(2005)高效净水沼泽红假单胞菌的分离和鉴定.广西农业科学36(1):57-58
    东秀珠,蔡妙英(2001)常见细菌系统鉴定手册.科学出版社,北京
    郑平,徐向阳,胡宝兰(2004)新型生物脱氮理论与技术.科学出版社,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700