用户名: 密码: 验证码:
复合型煤泥旋流器分级分选规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了当前选煤厂常用的煤炭洗选方法及各方法的特点,详细分析了煤泥的洗选回收工艺及各工艺的优缺点,在此基础上,结合水力旋流器分级原理及水介质旋流器分选原理,提出了一种集分级与分选功能于一体的复合型煤泥旋流器。详细分析了水力旋流器的分级原理及水介质旋流器的分选原理,进而分析了复合型煤泥旋流器的分级分选原理。利用Fluent6.3软件对复合型煤泥旋流器流场进行了数值模拟,详细分析了旋流器内流场不同位置切向速度、轴向速度及径向速度的分布。根据复合型煤泥旋流器分级分选原理及流场数值模拟结果,对旋流器结构进行了探索性设计,并进行了加工制造。建立了试验系统,利用大屯选煤厂煤样,对复合型煤泥旋流器分级分选功能进行了验证性及探索性试验研究,得出复合型煤泥旋流器在所采用的参数条件下,具有明显的分级分选作用,但分级分选效率偏低。另外,提出若将复合型煤泥旋流器与后续作业脱泥筛结合起来,对其分级分选效果进行分析,分级分选效果很好,有很好的应用前景。
Coal separation technologies and their characteristics are introduced, coal slime separation and recovery technologies and their advantadges and disadvantages are analysed in detail, and so composite slime cyclone is put forward on the basis of the classification principle of hydro-cyclone and the separation principle of hydro-medium cyclone, which own classification and separation performances. The classification principle of hydro-cyclone and the separation principle of hydro-medium cyclone are analysed detailedly, then the principle of composite slime cyclone is introduced. With the Fluent6.3, the flow field in composite slime cyclone is simulated, and the tangential、axial and radial velocities in different spaces are analysed in detail. According to the classification and separation principle of composite slime cyclone and the results of the simulation, the structure is designed exploringly and maded. The experimentation system is structured, with the coal example of Da tun plant, the classification and separation performance is studied experimentally and exploringly, the result is that the classification and separation is obvious, with the diameters odopted by the paper, but the efficiency of the classification and separation is low. Additionally, combining the de-sliming screen of posterior process to analyse, the classification and separation result is very good, and composite slime cyclone has a good utilization prospect.
引文
[1]陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报,2004,14(5): 261-264.
    [2]黄盛初.2010中国煤炭发展报告[R].北京:煤炭工业出版社,2010: 4-6.
    [3l濮洪九.中国煤炭可持续开发利用及环境对策研究[M].徐州:中国矿业大学出版社,2010:1-7.
    [4]陈清如.发展洁净煤技术推动节能减排[J].中国高校科技与产业化,2008,(3):65-67.
    [5]崔敬媛,焦红光,陈清如,等.燃煤SO2污染及其控制技术综述[J].水力采煤与管道运输,2004,(4):5-8.
    [6]汤德全.燃烧和人气污染[J].洁净煤技术,1997, 3(1):5-7.
    [7]周安宁,黄定国.洁净煤技术[M].徐州:中国矿业大学出版社2010:1-2.
    [8]陈子彤.干扰床分选机分选粗煤泥的规律研究[D].中国矿业大学(北京),2006,6:2-3.
    [9]谢广儿,张明旭,边炳鑫.等.选矿学[M].徐州:中国矿业大学出版社.2001:99-248. 388-533.
    [10]戴少康.选煤工艺设计实用技术手册[M].徐州:中国矿业大学出版社,2010:155-168.
    [11]陈清如,刘炯天.中国洁净煤[M].徐州冲国矿业人学出版社,2009,9: 324-525.
    [12]李贤国跳汰选煤技术[M].徐州:中国矿业人学出版社2006,1: 1-32.
    [13]李明.跳汰分选过程智能控制系统[M].徐州:中国矿业大学出版社,2003: 4-7.
    [14]匡亚莉.跳汰分选机理及专家知识库研究[M].徐州:中国矿业大学出版社,2006: 59-88.
    [IS]李建民.跳汰机检测技术的应用及智能方法研究[M].北京:国防工业人学2010: 10-22.
    [16]陈迹.跳汰床层分布规律及产品分离理论[J].煤炭学报,1982,(3): 57-66.
    [17]张荣曾,韦晓恒,鲁滨,等.跳汰机床层松散与分层的流体动力学研究[J].煤炭学报,2003,28(2): 193-198.
    [18]张荣曾,韦鲁滨.付晓恒.跳汰机中脉动水流流体动力学研究[J].煤炭学报,2002, 27(6):644-648.
    [19]B.K. Mishra. B. Adhidari. Analysis of fluid motion during jigging. Minerals Engineering. 1999.12(12):1469-1477.
    [20]Tatsuya Oki, Taeko Hazumi, Yoko Umemiya. et al. Influence of water pulsation with different frequency and amplitude on orbit of a particle placed on a fixed screen. Minerals Transaction,2010,51 (1):156-164.
    [21]Kuang Yali. Zhou Jinwu, Wang Li, et al. Laws of motion of particles in a jigging process. J China Univ Mining and Technology,2008, (18):575-579.
    [22]A.K. Mukherjee. V.K. Dwivedi, B.K. Mishra. Analysis of a laboratory jigging system for improved performance. Minerals and Engineering,2005, (18):1037-1044.
    [23]A.K. Mukherjee, B.K. Mishra. An integral assessment of the role of critical process parameters on jigging. Int. J. Miner. Process.2006, (81):187-200.
    [24]王孟浩.浅析动筛跳汰机原理及在原煤准备车间的应用[J].中国西部科技,2011,10(19):29-30.
    [25]刘庆伟.浅谈动筛跳汰机的原理与使用[J].科技情报开发与经济2005,15(24):257-258.
    [26]武维承,王斌,吴广明,等.动筛跳汰机筛下物成因分析及研究[J].煤炭科学技术,2012,40(2):125-128.
    [27]陈建中.动筛跳汰机床面运动曲线的了升究[J].煤炭学报.2000,25(6):649-653.
    [28]刘宏.动筛跳汰机的应用与发展[J].中国煤炭,2003, 29(12):46-47,59.
    [29]卢瑜.动筛跳汰机应用前景探讨[J]山西焦煤科技.2008,(12):67-68.
    [30]欧洋深张文军.重介质选煤技术[M].徐州:中国矿业大学出版社.2006.1:15-31.
    [31]B.H.若尔尼克.承介分选机选槽最佳形式的选择[J].选煤与团煤.1981,(6):12-14.
    [32]李毖辛忠伟,李新宏.重介浅槽分选机工作机理与构设计探讨[J].中国矿业.2009.18(增刊):427-430.
    [33]张祺,刘春龙,崔莉莉.等.降低重介浅槽分选机介耗的措施研究[J].选煤技术.2011.7(6):17-19.
    [34]杨建国.欧泽深.发展重介选煤提高精煤质量[J].中国煤炭,1997,23(1):16-18.
    [35]赵林盛.亚介旋流器的研究现状及发展前景[J].山西热煤科技2008.(3):19-22.
    [36]杨建国,王羽玲.重介旋流器结构参数对分选效果的影响[J].中国矿业人学学报2005.34(6):770-773.
    [37]Mohloana K. Magwai, Jeremy Bosman. The effect of cyclone geometry and operating conditions on spigot capacity of dense medium cyclones. Int. J. Miner. Process.2008,(36):94-103.
    [38]R.Q. Honaker, N. Singh and B. Govindarajan. Application of dense-medium in an enhanced gravity separator for fine coal cleaning. Minerals Engineering,2000,13(4):415-427.
    [39]Mohloana K. Magwai. Jeremy Bosman. Fundamentals on the spigot capacity of dense medium cyclones. Minrals Engineering,2007,(20) 574-580.
    [40]T.C.Rao, J.P. Barnwal, B. Govindarajan. Studies on a Vorsyl separator as an alternate for a dense medium cycnlone. Int. J. Miner. Process.1998,(53):49-57.
    [41]吴大为.浮游选煤技术[M].徐州:中国矿业大学出版社.2004.3:1-23.
    [42]徐博,徐岩,于刚.煤泥浮选技术与实践[M].北京:化学工业出版社,2006:1-7.
    [43]胡熙康.浮选理论与工业[M].长沙:中南工业人学.1991.9:9-101.
    [44]黎小玲(译).不同浮选工艺选别细粒煤的现状评价J]. Mining Engineering,1994,6(5):633-645.
    [451郭梦熊,余强.新型煤泥浮选促进剂的研究[Jl.煤炭学报,1989,3(1):101-112.
    [46]程宏志,张孝钧,石焕,等.我国选煤用机械搅拌不式浮选机的新进展[Jl选煤技术2006.(5):29-32.
    [47]J.N. Reed, S.J. Miles. High-speed conveyor junction based on an air-jet floatation technique. Mechatronics,2004 (14):685-699.
    [48]Xie Weiwei, He Lanhong,He xiaowei, et al. Efficient improvement of new type floatation agent for coal.2011 IEEE:272-275.
    [49]陈子彤.干扰床分选机分选粗煤泥的规律研究[D].中国矿业大学(北京),2006:2-8.
    [50]吴明有,李延峰.冉进财,等.粗煤泥的分选及其对选煤工艺的影响[J].选煤技术.2009,(2):71-74.
    [51]张悦秋.谢广元,俞和胜.煤泥重介旋流器选煤技术现状及发展[J].煤炭工程,2005,(12):14-16.
    [52]申克忠,旋流器选煤[J].选煤技术.2005,(2):55-57.
    [53]赵宏辑.重介质旋流器分选煤泥技术现状及研究方向[J],洁净煤技术,2006, 12(2): 28-30.
    [54]冯翠花.料L煤泥回收工艺及设备对比[J].选煤技术2005.(3):22-25
    [55]陈忠杰.高勤学.粗煤泥回收技术的研究与探讨[J].选煤技术2005.(4):43-44.
    [56]齐正义.粗煤泥分选工艺分析[J].选煤技术2008.(2):46-48.
    [57]聂倩估,沈丽娟,陈建中.等.粗泥分选设备及工艺探讨[J].选煤技术.2007}(5):56-59.
    [58]谢国龙,俞和胜.粗煤泥分选设各及其应用分析[J].煤矿机械12008,29(3):117-119.
    [59]赵广富,周玉森.煤用螺旋分选机机理的探讨[J].选煤技术,1994,(2):13-15.
    [60]沈丽娟.螺旋分选机结构参数对选煤的影响[J].煤炭学报.1996. 21(1):73-78.
    [611周勤举.王行模,冉隆振.螺旋分选机研究[J].昆明工学院学报.1994.19(3):21-28.
    [62]Matthews B.W., Fletcher C.A.J, Partridge A C. Computational simulation of of fluid and dilute particulate flows on spiral concentrators. Applied Mathematical Modelling,1998,22(12):965-979.
    [63]Yong-Fa Dial, Wei-Wei Jin, Bo-Shu He. Separated vortices generated by spiral up flow and thin-plate airfoils. International Conference on Power Engineering,2003:9-13.
    [64]张悦秋.谢广儿.俞和胜.煤泥吸介旋流器选煤技术现状及发展[J].煤炭工程.2005.(12):14-16.
    [65]庞亮.粗煤泥分选工艺技术进展与展望[J].山东煤炭科技,2008.(6):152-153.
    [66]姜金城.水介质旋流器脱硫[J].选煤技术.1985.(3):11-13.
    [67]李清华.水介质旋流器的功能与特性[J].国外科技,1977,(1):44-49.
    [68]尼卡特 苏西. 水介质旋流器[J].煤矿机械1991.(6):54-57.
    [69]汪中简.水介质旋流器[J].国外金属矿选矿.1991.(1):42-44. 25.
    [70]樊民强.董连平.粗煤泥重力分选设备进展与水介质旋流器性能评估[A].全国选煤学术会议论文集,2005:31-34.
    [71]董连平.樊民强.大锥角水介质旋流器工艺参数研究与分选效果[A]. 2005年全国选煤学术会议论文集.137-141.
    [72]董连平,樊民强.大锥角水介质旋流器的应用研究[J].煤炭科学技术,2004,32(11):40-43.
    [73]樊民强,董连平,韩小恒,等.新型水介质旋流器分选粗煤泥的试验研究与工业应用[J].选煤技术,2007,(4):25-29.
    [74]陈子彤,刘文礼,赵宏霞,等.干扰床分选机分选粗煤泥的规律研究[J].煤炭工程,2006,(5):69-70.
    [75]陈子彤,刘文礼,赵宏霞,等.干扰床分选机工作原理及分选理论基础研究[J].煤炭工程,2006,(4):64-66.
    [76]刘文礼,陈子彤,位革老,等.干扰床分选机分选粗煤泥的规律研究[J].选煤技术12007,(4):11-13.
    [77]位革老.干扰床分选机分选粗煤泥规律的研究[D].中国矿业大学(北京),2008:1-2
    [78]Galvin K P, Pratten S J, and Nicol S K. Dense medium separation using a teetered bed separator. Minerals Engineering,1999,12 (9):1059-1081.
    [79]Nicol. A case study in the implementation of novel technology: teetered bed separators, The Australian Coal Review (October),1998:31-34.
    [80]Drummond R, Nicol S and Swanson A. Teetered bed separators-The Australian Experience. Proceedings of the XIV International Coal Preparation Congress and Exhibition, South African Institute of Mining & Metallurgy,2002:385-391.
    [81]Newling P G. et al. An Innovative approach to a Boutique Mine and Coal Preparation Plant at Stratford Coal, XIII International Coal Preparation Congress, Partridge. A.C. and Partridge I.R.(Eds), Australian Coal Preparation Society. Newcastle,1998,1:36-42.
    [82]Drummond R B, et al. Optimisation studies on a 75 t/h teetered bed separator at Stratford coal, ⅩⅢ International Coal Preparation Congress. Partridge. A.C. and Partridge. I.R. (Eds), Australian Coal Preparation Society, Newcastle,1998,1:215-224.
    [83]王建军,焦红光,伦建.细粒煤液固流化床分选技术的发展与应用[J].煤炭技术.2007. 26(04):81-83.
    [84]Kevin Patrick Galvin. A reflux classifier. AU Patent No.758148,2000-02-02.
    [85]Galvin K P. Doroodchi E. Callen A M, et al. Pilot plant trial of the Reflux classifier. Minerals Engineering, 2002. (15):19-25.
    [86]Galvin K P. Callen A. Zhou J, et al. Performance of the reflux classifier for gravity separation at full scale. Mineral Engineering,2005, (18):19-24.
    [87]Nguyentranlam Giang, Galvin Kevin P. Applications of the reflux classifier in solid-liquid operations. Int. J. Miner,2004, (73):83-89.
    [88]Laskovski D, Duncan P, Stevenson P, et al. Segregation of hydraulically suspended particles in inclined channels. Chemical Engineering Science. Oxford:Pergamon Press,2006.61(22):7269-7278.
    [89]D.P. Obeng, S.Morrell. The JK three-product cyclone - performance and potential applications. Int. J. miner. Process,2003,69:120-142.
    [90]Maina.A.,Powell.M.S.. Use of the three-product cyclone in dual-density ore classification. The proceedings of IMPC,2003.
    [91]Mainza,A.,Powell,M.S., Proceedings of the hydrocyclone conference [R].2003.
    [92]白世刚.大锥角新型旋流器实现中煤再选提质的研究[D].中国矿业大学(北京).2009: 24.35.
    [93]徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社,1998.3.
    [94]梁政.王进全,任连城.等.固液分离水力旋流器流场理论研究[M].北京:石油工业出版社.2011.2.
    [95]韦董宾.边炳鑫.矿物分离过程动力学[M].徐州:中国矿业人学出版社. 2002.5:107-112.
    [96]庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社2012.12
    [97]A.и.波瓦罗夫.选矿厂水力旋流器[M].北京:冶金工业出版社.1982.12.
    [98]周力.水介质旋流器在选煤厂中的应用[J].选煤技术.1989.(4):3-33.
    [99]于勇Fluent入门与进阶教程[M].北京:北京理工大学出版社2008.9.
    [100]朱红钧,林元华,谢龙汉Fluent 12流体分析员及工程仿真[M].北京:清华大学出版社.2011,1.
    [101]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社:2007,2.
    [102]李进良,李承曦,胡仁喜,等Fluent 6.3流场分析[M].北京:化工出版社,2009,9.
    [103]刘峰,钱爱军,郭秀军.重介质旋流器流场湍流数值计算模型的选择[J].煤炭学报,2006,31(3):346-350.
    [104]刘峰.饯爱军,郭秀军.DSM重介质旋流器流场的数值模拟[J].煤炭学报,2006,31(5):627-630.
    [105]刘峰,饯爱军.郭秀军.DWP重介质旋流器流场的数值模拟[J].煤炭学报,2007,32(2):186-189.
    [106]刘峰,王金生.先排矸三产品.重介质旋流器流场的数值模拟[J].煤炭学报,2007,32(12):1307-1311.
    [107]刘峰,邵涛.重介质旋流器壁面处理对湍流数值模拟的影响[J].煤炭学报,2008,33(9):1035-1039.
    [108]刘峰,邵涛,罗时磊,等.无压给料三产品重介质旋流器流场的数值模拟[J].煤炭学报,2009,34(8):1116-1119.
    [109]任连城.梁政.钟功祥,等.基于CFD的水力旋流器流场模拟研究[J].石油机械,2005.33(11):16-17.
    [110]A. Mainza, M. Narasimha. M.S. Powell, et al. Study of flow behavior in a three-product cyclone using computational fluid dynamics. Minerals Engineering,2006,(19):1048-1058.
    [111]K.W. Chu, B. Wang, A.B. Yu. et al. CFD-DEM modeling of multiphase flow in dense medium cyclones. Powder Technology,2009,(193):235-247.
    [112]Gujun Wan, Guogang Sun, Xiaohu Xue, et al. solids concentration simulation of different size particles in a cyclone separator. Power Technology.2008.(183):94-104.
    [113]M. Narasimha. Mathew Brennan, P.N. Holtham. Prediction of magnetite segregation in dense medium cyclone using computational fluid dynamics technique. Int. J. Miner. Process,2007, (82):41-56.
    [114]R.B. Xiang, K.W. Lee. Numerical study of flow field in cyclones of different height. Chemical Engineering and processing,2005,(44):877-883.
    [115]Deng Qingfang. Dongyi Zhou, Shen Ai-ling. Flow-field numerical simulation of gas-solid cyclone separator based on Fluent. International conference on digital manufacturing and automation.2010:740-743.
    [116]Shen Li-juan. Hu Yan-feng. Chen Jian-zhong. et al. Numerical simulation of the flow field in a dense-media cyclone. Mining Science and Technology,2009,(19):225-229.
    [117]C. Bhasker. Flow simulation in industrial cyclone separator. Advances in Engineering Software,2010. (41): 220-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700