用户名: 密码: 验证码:
中国典型流域实际蒸散发的时空变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在联络气候系统的大气过程和陆面过程的水文循环中,蒸散发过程是殊为关键的环节。蒸散发研究对于理解气候变化及气候变化的影响具有重要的意义,其准确测定和估算,对水资源、农业、生态环境等方面都具有十分重要的应用价值。本文选择珠江、海河和塔里木河等三个典型流域作为研究区,分别作为中国湿润地区、半湿润半干旱地区及干旱地区等三种气候类型的代表流域,计算并分析了实际蒸散发及其时空变异特征,在此基础上对实际蒸散发的时空变异进行了归因研究,获得的主要研究成果如下:
     (1)分别采用闭合流域水量平衡方程和Penman公式计算了珠江、海河、塔里木河等三个典型流域的年实际蒸散发及潜在蒸散发,验证了下垫面供水条件变化下实际蒸散发与潜在蒸散发存在互补相关关系。通过建立下垫面供水条件与蒸散发之间的联合回归方程,并对回归系数进行显著性T检验的方法判定实际蒸散发与潜在蒸散发互补关系的非对称性,得出相关流域蒸散发关系的从属属性,即珠江流域的韩江、柳江及盘江等三个子流域实际蒸散发与潜在蒸散发呈现严格互补相关关系,而东江、西江、北江以及海河流域的滦河、官厅水库子流域和塔里木河的阿克苏河、和田河子流域都呈现非对称性互补相关关系。研究了非对称条件下的互补相关理论模型形式,对平流-干旱实际蒸散发模型参数α赋予了更多的物理意义,使其适用范围扩展至“非对称互补相关”范围。在珠江、海河及塔里木河三个流域对平流-干旱模型进行了率定,结果表明该模型在三个流域都是适用的。
     (2)1961-2010年,珠江流域和海河流域实际蒸散发呈现显著的下降趋势,塔里木河流域实际蒸散发呈现显著的增加趋势。在三个流域中,夏秋季节实际蒸散发的变化趋势非常明显,春冬季节的变化趋势略显平缓。从三个流域之间年内实际蒸散发的比较来看,珠江和海河流域夏秋季节实际蒸散发的峰值非常接近,两个流域实际蒸散发的差异主要体现在春冬季节,而海河和塔里木河两流域在春冬季节实际蒸散发的谷值非常接近,两个流域实际蒸散发的差异主要体现在夏秋季节。从空间变化特点上看,珠江流域实际蒸散发等值线呈现东北-西南走向,海河流域实际蒸散发等值线基本呈现西北-东南走向,塔里木河流域实际蒸散发的空间分布特点则是在流域北部(天山南麓)和流域西部及西南部实际蒸散发较高,流域中部及东南部较低。
     (3)珠江流域实际蒸散发的下降是辐射能量项的下降和空气动力学项的增加共同作用的结果。其中辐射能量项的下降是由于气温日较差、日照时数下降引起的;空气动力学项的增加是由于平均气温、最高、最低气温的上升引起的;同时平均风速的下降减缓了空气动力学项的增加幅度。海河流域实际蒸散发的下降原因主要是辐射能量项的下降。辐射能量项的下降是由气温日较差、日照时数下降引起的。塔里木河流域实际蒸散发的增加则是辐射能量项的增加和空气动力学项的下降共同作用的结果。其中辐射能量项的增加主要是由于气温(含平均气温、最高、最低气温)以及实际水汽压的上升引起的;日照时数的下降减缓了辐射能量项的增加幅度。空气动力学项的下降主要是由于平均风速的下降引起。根据1961-2010年间各气象要素的实际变幅计算了各气象要素具体的贡献量,发现在三个流域日照时数的下降贡献了实际蒸散发绝大部分的变化,其他气象要素的贡献量相对来说非常弱。
     (4)通过对Budyko及傅抱璞水热耦合实际蒸散发模型以及基于互补相关理论的实际蒸散发计算结果的分析,指出两种理论在根本上是一致的。借助基于互补相关理论的珠江、海河和塔里木河流域实际蒸散发计算结果,拟合得出Budyko-傅抱璞水热耦合曲线的参数,从而定量化分析了降水量变化对实际蒸散发的影响,结果表明:珠江流域平均每增加5%的降水,实际蒸散发约增加2.3%;海河流域平均每增加5%的降水,实际蒸散发约增加4.5%,远远大于珠江流域;塔里木河流域每增加5%的降水,实际蒸散发将增加近5%;根据1961-2010年间降水量的实际变化,得出珠江流域降水变化对实际蒸散发的贡献量为+4.3mm,海河流域为-92mm,而塔里木河流域为+32.5mm。
Evapotranspiration is a key link combining atmospheric process and land surface process in the hydrological cycle of the climate system. Evapotranspiration research has an important significance for the understanding the climate change and the impact of climate change. Meanwhile, the evapotranspiration research has very important application in many subjects such as water resources, agriculture, and ecological environment. This paper taked three typical river basins, the Pearl, Haihe and Tarim River basins, as research area. As the representatives of wet area, semi-wet and semi-arid area, and arid area, the Pearl River basin, the Haihe River basin, and the Tarim River basin were selected as the research areas of this paper. The spatio-temporal variation of the evapotransipiration in the three river basins were analysed, based on which the paper also tried to find the reasons to explain why the variation existed. The main findings are showed as follows:
     (1) Water balance equation and Penman formula were used to calculate annual actual evapotranspiration (ETa) and annual potential evapotranspiration (ETp) of the three river basins. Results demonstrate that ETa has an obviously complementary relationship with ETp under the condition of surface water supply changing. After the regression equation between the water supply conditions of underlying surface (P) and the evapotranspiration (ET) was constructed, the T-test method was used to determine that the complementary relationships between ETa and ETp were symmetrical in three subbasins of the Pearl River basin such as Hanjiang, Liujiang and Panjiang. But asymmetrical complementary relationships between ETa and ETp were found Dongjiang, Xijiang and Beijiang, which are subbasins of the Pearl River basin and same situations were found in Haihe and Tarim River basin. The form of complementary relationship model of asymmetric conditions was discussed. More physical significance was given to the parmmeter "a" of the Advection-Aridity model thus the applicable scope extended to "asymmetric complementary relationship". In the Pearl River, the Haihe River and the Tarim River Three River Basin of Advection-Aridity model was calibrated. The results show that the model is applicable in the three basins.
     (2) The actual evapotranspiration have significantly decreased trend in Pearl River, Haihe over the past50years from1961to2010, but has a significant increasing trend in the Tarim River Basin. In the three basins, the decreased (increased) trend of actual evapotranspiration in summer and autumn is very obvious, but slightly in spring and winter. ETa of the Pearl River was very close to the peak with the ETa of the Haihe River Basin, and the difference between the ETa of the two river basins is mainly reflected in the spring and winter. ETa in Spring and Winter of the Haihe River Basin was close to the ETa in the Tarim River basin, so the difference between the ETa of the two river basins is mainly reflected in the Summer and Autumn. The ETa isoline showed a direction from northeast to southwest in the Pearl River basin and showed a direction from northwest to southeast in the Haihe River basin. In the Tarim River Basin, the spatial distribution characteristics of ETa is that higher ETa values occurred mainly in northern, western and southwest of the basin (root of the Tianshan Mountains and Kunlun Mountains), low ETa values occurred mainly in the hinterland of Taklimakan Desert which is located at the center area of the basin.
     (3) The temporal trend of the ETa results from the variation of the radiation energy term and the aerodynamic term, but different terms gave different impact on the ETa. According to the Adevection-Arid Model, negative (or positive) trends of ETa related to the negative (or positive) trends of the radiation energy term or related to the positive (or negative) trends of aerodynamic term. In the Pearl River Basin decrease of daily range of temperature, sunshine hours caused decrease in radiation energy, contribute to the actual evapotranspiration decrease; the increase of the average temperature, maximum and minimum temperatures, caused the increase of aerodynamic term, contributed to ETa decrease; decline of average wind speed decrease aerodynamic item, actually slow down decrease degree of ETa. In the Haihe River Basin decrease of daily range of temperature, sunshine hours caused decrease in radiation energy, contributed to the decline trend of ETa. The temperature in the Tarim River Basin (including average air temperature, maximum, minimum temperature rise) and actual water vapor pressure gave more obvious contribution to the increase of the radiation energy; decreased sunshine duration caused a decrease in radiation energy, in turn reduces ETa; decline in average wind speed is contributing to the aerodynamics item, turn on strengthening increased degree of ETa. According to the actual amplitude of variation of all the climate factors, we found that the sunhour contribute the most variation of the ETa in all river basins.
     (4) Based on review of the Budyko and Fu Baopu water heat coupling actual evapotranspiration model and analysis of the ETa results calculated from the complementary relationship theory, this paper pointed out such two kinds of theories are fundamentally identical. Used the results of ETa in the Pearl River, Haihe River and the Tarim River Basin, the paper fitting parameters of Budyko-Fu Baopu water heat coupling curve. Thus quantitative analysis can be done to explain how the suface water content conditions impact on the actual evapotranspiration:in the Pearl River Basin average each5%increase in precipitation, can caused ETa increased by about2.3%; in Haihe River Basin, the average increase of5%precipitation, actual evapotranspiration increased by about4.5%, far greater than the Pearl River Basin; and in the Tarim River Basin every additional5%of precipitation, actual evapotranspiration will increase nearly5%. According to the actual amplitude of variation of precipitation from1961to2010, we found that the actual contribution of the precipitation on the ETa is about+4.3mm in the Pearl River basin,-92mm in the Haihe River basin and+32.5mm in the Tarim River basin.
引文
Allen RG, Fisher DK. Direct load cell-based weighing lysimeter system, Proceedings of the 1991ASCE Specially Conference on "Lysimeters for Evapotranspiration and Environmental Measurements",1991.
    Allen RG, et al.1994. An update for the calculation of reference evapotranspiration. ICDC Bulletin.1994, Vol.43, pp.35-92.
    Allen RG, Pereira LS, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56,1998.
    Allen RG, Prultt WO, Jensen ME. Environmental requirements of lysimeters. Proceedings of the 1991 ASCE Specialty Conference on "Lysimeters for Evapotranspiration and Environmental Measurements",1991.
    Allen RG, Walter LA, Elliott R, et al. Issues, Requirements and challenges in selecting and specifying a standardized ET equation.2000
    Allen RG, Wright JL. Conversion of Wright (1981) and Wright (1982) alfalfa-based crop coefficients for use with the ASCE Standardized Penman-Monteith Reference Evapotranspiration Equation. Kimberly Crop Coefficient Conversion,2002, 1-38.
    Amin Haque. Estimating actual areal evapotranspiration from potential evapotranspiration using physical models based on complementary relationships and meteorological data. Bulletin of Engineering Geology and the Environment,2003,2,62(1):57-63.
    Arora VK. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology.2002,265: 164-177.
    Balachandran G, Unny TE, Solomon SI. Potential evaporation as an unsteady process. Journal of Hydrology,1975,24: 291-301.
    Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature,2005,438:303-309.
    Bouchet R. J., Evapotranspiration reele et potentielle, signification climatique, Publ.62,134-142, General assembly Berkeley, Int. Ass. Sci. Hydrol., Gentbrugge, Belgium,1963. (In French).
    Brutsaert W, Parlange MB. Hydrologic cycle explains the evaporation paradox. Nature,1998, (396), p30.
    Brutsaert W, Stricker H. An advection-aridity approach to estimate actural regional evaporation. Water Resources Research.1979,4(15):443-450.
    Budyko MI. The effect of solar radiation variations on the climate of the earth. Main Geophysical Observatory,1969, 5:611-619.
    Budyko MI. The Heat Balance of the Earth,Proceedings of the all-union scientific meteorological conference,1962, volume I: 1-267.
    Cammalleri C, Agnese C, Ciraolo G, et al. Actual evapotranspiration assessment by means of a coupled energy/hydrologic balance model:Validation over an olive grove by means of scintillometry and measurements of soil water contents. Journal of Hydrology,2010(392):70-82.
    Centinari M, Poni S, Filippetti I, et al. Evaluation of an open portable chamber system for measuring cover crop water use in a vineyard and comparison with a mini-lysimeter approach. Agricultural and Forest Meteorology.2009,149:1975-1982.
    Chen DL, Gao G, Xu CY, et al. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Clim Res.2005(28):123-132.
    Chen YD, Zhang Q, Chen XH, et al. Multiscale variability of streamflow changes in the Pearl River basin, China. Stoch Environ Res Risk Assess,2012 (26):235-246.
    Chow G. Tests of Equality Between Sets of Coefficients in two Linear Research. Econometrica,1960,28:591-565.
    Cohen S, Ianetz A and Stanhill G. Evaporative climate changes at Bet Dagan, Israel:1964-1998. Agricultural and Forest Meteorology.2002,111:83-91.
    Davies JA, Alien CD. Equilibrium, Potential and Actual Evaporation from Cropped surfaces in Southern Ontario. Journal of applied meteorology.1973(12):649-657.
    Douville H, Rives A, Decharme B, et al. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nature Climate change.2012,7:1-4.
    Dyck,S. Overview on the present status of the concepts of water balance models. New Approaches in Water Balance Computations (Proceedings of the Hamburg Workshop, August 1983).IAHS Publ. no.148:3-19.
    Eichinger WE, Parlange MB, Strieker H. On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient. Water resources research,1996,32(1):161-164.
    Eischeid, J.K., et al.2000. Creating a serially complete, national daily timeseries of temperature and precipitation for the western United States. Journal of Applied Meteorology.2000, Vol.39, pp.1580-1591.
    Federer CA, Vorosmarty C, Fekete B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water resources research,1996,32(7):2315-2321.
    Federer CA. A soil-plant-atmosphere model for transpiration and availability of soil water. Water resources research, 1975,15(3):555-562.
    Feng S, Hu Q, and Qian WH. Quality Control of Daily Meteorological Data in China,1951-2000:A New Dataset. International Journal of Climatology.2004, Vol.24, pp.853-870.
    Figuerola PI, Berliner PR. Evapotranspiration under advective conditions. Int J Biometeorol 2005,49:403-416.
    Fischer T, Gemmer M, Liu L, et al. Trends in Monthly Temperature and Precipitation Extremes in the Zhujiang River Basin, South China(1961-2007), Advances in Climate Change Research.2010,1(2):63-70.
    Fu GB, Charles SP, Yu J. A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 2009(97):193-214. DOI 10.1007/s10584-009-9579-1.
    Gao G, Chen DL, Xu CY, et al. Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research.2007,112(D11120):1-8.
    Gao G, Xu CY, Chen DL. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch Environ Res Risk Assess,2012,26:655-669. DOI 10.1007/s00477-011-0525-1.
    Gavilan P, Berengena J, Allen RG. Measuring versus estimating net radiation and soil heat flux:Impact on Penman-Monteith reference ET estimates in semiarid regions. Agricultural water management,2007,89:275-286.
    Gemmer M, Becker S, Jiang T. Observed monthly precipitation trends in China 1951-2002. Theoretical and Applied Climatology.2004,77:39-45.
    Gemmer M, Becker S, Jiang T. Observed monthly precipitation trends in China 1951-2002.Theoretical and Climatology, 2004,77:39-45. DOI 10.1007/s00704-003-0018-3.
    GleasonE.2002. Global daily climatology network. Asheville:National Climatic Data Center,2002. http://www.ncdc.noaa.gov/oa/climate/research/gdcn/gdcn.html
    Golubev VS, Lawrimore JH, Groisman PY, et al. Evaporation changes over the contiguous United States and the former USSR:A reassessment. Geophysical research letters,2001,28(13):2665-2668.
    Grago R, Crowley R. Complementary relationships for near-instantaneous evaporation. Journal of Hydrology.2005(300): 199-211.
    Granger RJ, Gray DM. Evaporation from natural non-saturated surfaces Journal of Hydrology,1989,111:21-29.
    Granger RJ. A complementary relationship approach for evaporation from non-saturated surfaces. Journal of Hydrology, 1989,111:31-38.
    Granger RJ. An examination of the concept of potential evaporation. Journal of Hydrology,1989,111:9-19.
    Granger RJ. Partitioning of Energy during the Snow-free Season at the Wolf Creek Research Basin. Hydrology, Ecology, Environment,1999,33-44
    Hamby DM. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment,1994,32 (9),135-154.
    Hasselmann K. Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dynamics 1997,13: 601-611.
    Heusinkveld BG, Berkowicz SM. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. Journal of Hydrometeorology.2006,8:825-832.
    Hobbins MT, Ramirez JA, Brown TC, et al. The complementary relationship in estimation of regional evapotranspiration:the CRAE and AA models. Water resources research.2001,37(5):1267-1387.
    Hobbins MT, Ramirez JA, Brown TC. The complementary relationship in estimation of regional evapotranspiration:an enhanced Advection-Aridity model. Water resources research,2001,37(5):1389-1403.
    Hobbins MT, Ramirez JA, Brown TC. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary. Geophysical research letters,2004,31.L13503. Doi:10.1029/2004GL019846,2004.
    Hubbard KG.2001. Multiple station quality control procedures. In Proceedings of Automated Weather stations for Applications in Agriculture and Water Resources Management:Current Use and Future Perspectives. Lincold:s.n.,2001. pp.133-136.
    James LW, Allen RG, Howell TA et al. Conversion between evapotranspiration references and methods. National irrigation symposium,2000,12:251-259.
    Johnson F, Sharma A. A comparison of Australian open water body evaporation trends for current and future climates estimated from Class A Evaporation Pans and General Circulation Models. American Meteorological Society,2010,11(2): 105-121. DOI:10.1175/2009JHM1158.1.
    Johnson F, Sharma A. Estimating Evaporation-Issues and Challenges. School of Civil and Environmental Journal, 2008.pp589-595
    Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature,2010(467),951-954.
    Kalma JD, Mcvicar TR, McCabe MF. Estimating Land Surface Evaporation:A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv Geophys,2008,29:421-469. DOI 10.1007/s 10712-008-9037-z.
    Kay AL, Davies HN. Calculating potential evaporation from climate model data:A source of uncertainty for hydrological climate change impacts. Journal of Hydrology,2008,358:221-239.
    Kim J, Hogue TS. Evaluation of a MODIS-Based Potential Evapotranspiration Product at the Point Scale. Journal of Hydrometeorology,2008(9),444-460.
    Kristensen KJ, Jensen SE. A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology,1975,6:170-188.
    Kroger DG, Branfield GR, et al. Evaporation-from a Water Surface:Theory and Experiment R & D Journal of the South African Institution of Mechanical Engineering,2007,23(3),5-11.
    Kubecka P.2001. A possible world record maximum natural ground surface temperature. Weather.2001, Vol.56, pp.218-221.
    Kumar R, Shankar V, Kumar M. Modelling of Crop Reference Evapotranspiration:A Review. Universal Journal of Environmental Research and Technology,2011(1),239-246.
    LanzanteJ.R.1996. Resistant, robust and nonparametric techniques for the analysis of climate data:theory and examples, including applications to historical radiosonde station data. International Journal of Climatology.1996, Vol.16, pp.1197-1226.
    Ledrew EF. A Diagnostic Examination of a Complementary Relationship between Actual and Potential Evapotranspiration. Journal of Applied Meteorology,1979(18),495-501.
    Lettau H. Evapotranspiration climatonomy I. A new approach to numerical prediction of monthly evapotranspiration, runoff, and soil moisture storage. Monthly Weather Review,1969,97(10):691-699.
    Lhomme JP, Guilioni L. Comments on some articles about the complementary relationship. Journal of Hydrology,2006(323), 1-3.
    Lhomme JP. Towards a rational definition of potential evaporation. Hydrology & Earth System Sciences,1997,1(2):257-264.
    Li Y, Horton R, Ren T, et al. Investigating Time-Scale Effects on Reference Evapotranspiration from Epan Data in North China. Journal of Applied Meteorology and Climatology,2010,49(5):867-878.
    Li ZL, Tang R, Wan Z, et al. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors,2009(9),3801-3853. doi:10.3390/s90503801.
    Libiseller C. A program for the computation of multivariate and partial Mann-Kendall Test.2002, pp3-16.
    Linacre ET. Evaporation trends. Theor. Appl. Climatol.2004,79:11-21. DOI 10.1007/s00704-004-0059-2.
    Liu B, Hu Q, Wang WP, et al. Variation of actual evapotranspiration and its impact on regional water resources in the Upper Reaches of the Yangtze River. Quaternary International,2011,244:185-193.
    Liu CM Zhang XY, Zhang YQ Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agricultural and Forest Meteorology,2002,111:109-120.
    Liu H, Feng J. Seasonal and Interannual Variations of Evapotranspiration and Energy Exchange over Different Land Surfaces in a Semiarid Area of China. Journal of Applied Meteorology and Glimatology,2012,51(10):1875-1888.
    Liu M, Shen YJ, Zeng Y, et al. Trend in pan evaporation and its attribution over the past 50 years in China Journal of Geographical Sciences,2010,20(4):557-568.
    Liu SM, Sun R, Sun ZP, et al. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin. Hydrol. Process.2006,20:2347-2361.
    Liu X, Luo Y. Zhan D, et al. Recent changes in pan-evaporation dynamics in China. Geophysical Research Letters,2011,38, L13404, doi:10.1029/2011GL047929.
    Lockwood JG. Is Potential Evapotranspiration and Its Relationship with Actual Evapotranspiration Sensitive to Elevated Atmospheric CO2 Levels? Climatic Change,1999,41:193-212.
    Lu J, Sun G, Mcnulty SG, et al. A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States. Journal of the American Water Resources Association.2005(6):621-633.
    Mann ME. On smoothing potentially non-stationary climate time series. Geophysical Research Letters.2004,31.L07214, doi:10.1029/2004GL019569.
    Matthews D. Global change:The water cycle freshens up. Nature,2006,439(2):793-794.
    Meek, D.W. and Hatfield, J.L.1994. Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology.1994, Vol.69, pp.85-109.
    Merlin O, Bitar AA, Rivalland V, et al. An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness. Journal of Applied Meteorology and Climatology,2011,50(2):457-471.
    Milly PCD, Dunne KA, Vecchia AV. Global pattern of trends in streamflow and water availability in a changing climate. Nature,2005,438(11):347-350.
    Milly PCD, Dunne KA. Trends in evaporation and surface cooling in the Mississippi River basin. Geophysical Research Letters,2001,28(7):1219-1222.
    Morton FI. A discussion of four papers on evaporation in Volume 111. Journal of Hydrology,1991,124:363-374.
    Morton FI. Catchment evaporation and potential evaporation further development of a climatologic relationship. Journal of Hydrology.1971,12:81-89.
    Morton FI. Comments on "A Diagnostic Examination of a Complementary Relationship between Actual and Potential Evapotranspiration". Journal of Applied Meteorology.1980,19(3),342-345.
    Morton FI. Estimating evaporation and transpiration from climatological observations. Journal of Applied Meteorology. 1975,14(6):488-497.
    Morton FI. Estimating evapotranspiration from potential evaporation:Practicality of an iconoclastic approach. Journal of Hydrology,1978,38:1-32.
    Morton FI. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology,1983(66),1-76.
    Morton FI. Operational estimates of lake evaporation. Journal of Hydrology,1983(66),77-100.
    Nash JE. Potential evaporation and "The complementary relationship. Journal of Hydrology,1989,111:1-7.
    Ohmura A, Wild Martin. Is the Hydrological Cycle Accelerating? Science.2002,298:1345-1346. DOI: 10.1126/science.1078972.
    Oki T, Kanae S. Global Hydrological Cycles and World Water Resources. Science,2006,311:1068-1072. DOI: 10.1126/science.1128845.
    Oudin L, Michel C, Anctil F. Which potential evapotranspiration input for a lumped rainfall-runoff model. Journal of Hydrology,2005,303,275-289.
    Parlange MB, Katul GG. An advection-aridity evaporation model. Water resources research,1992,28(1):127-132.
    Penman HL. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical.1948,193, No.1032:120-145.
    Pereira AR, Green S,Villa Nova NA. Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration. Agricultural water management,2006,83:153-161.
    Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature,2010,467(9):43-51. doi:10.1038/nature09364.
    Priestley CHB, Taylor RJ. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review,1972,100(2):81-92.
    Prueger JH, Hatfield JL, Aase JK, et al. Bowen-ratio comparisons with lysimeter evapotranspiration. Agronomy Journal. 1997,89(5):730-736.
    Qiu X, Zeng Y, Miao Q, et al. Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data. Science in China Ser. D Earth Sciences,2004,47(3):239-246.
    Ramirez JA, Hobbins MT. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis. Geophysical Research Letters.2005,32,L15401, doi:10.1029/2005GL023549.
    Rana G, Katerji N. A measurement based sensitivity analysis of the Penman-Monteith Actual Evapotranspiration Model for crops of different height and in contrasting water status. Theoretical and Applied Climatology,1998,60:141-149.
    Rana G, Katerji N. A measurement based sensitivity analysis of the Penman-Monteith Actual Evapotranspiration Model for crops of different height and in contrasting water status. Theoretical and Applied Climatology.1998,60:141-149.
    Roderick ML, Farquhar GD. Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 2004,24:1077-1090. DOI:10.1002/joc.1061.
    Roderick ML, Farquhar GD. The cause of decreased pan evaporation over the past 50 years. Science,2002,298:1409-1411. DOI:10.1126/science.1075390.
    Roderick ML, Hobbins MT, Farquhar GD. Pan evaporation trends and the terrestrial water balance. I. Principles and observations. Geography Compass,2009,3/2:746-760.10.1111/j.1749-8198.2008.00213.x.
    Roderick ML, Hobbins MT, Farquhar GD. Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geography Compass,2009,3/2:761-780.10.1111/j.1749-8198.2008.00214.x.
    Roderick ML, Rotstayn LD, Farquhar GD, et al. On the attribution of changing pan evaporation. Geophysical Research Letters,2007,32, L17403, doi:10.1029/2007GL031166,2007.
    Sastri ASRAS, Krishna YSR, Rao BVR. A new method for classification of agricultural droughts. Archives for Meteorology, Geophysics, and Bioclimatology,1981,29, Ser. B:293-297.
    Schlosser CA, Gao X. Assessing Evapotranspiration Estimates from the Second Global Soil Wetness Project (GSWP-2) Simulations. Journal of hydrometeorology,2010,11:880-897.
    Shen Y, Liu C, Liu M, et al. Change in pan evaporation over the past 50 years in the arid region of China. Hydrological Processes,2010,24:225-231.
    Shoemaker WB, Sumner DM. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration. The Society of Wetland Scientists,2006,6,26(2):528-543.
    Shukla J, Mintz Y. Influence of Land-Surface Evapotranspiration on the Earth's Climate-Science. Science, New Series,1982, 215, No.4539:1498-1501.
    Singh VP, Xu CY. Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrological Processes,1997,11:311-323.
    Sumner DM, Jacobs JM. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology,2005,308:81-104.
    Szilagyi J. On Bouchef s complementary hypothesis. Journal of Hydrology.2001,246:155-158.
    Szilagyi J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophysical Research Letters,2007,34, L02405, doi:10.1029/2006GL028708,2007.
    Teixeira AHC. Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the Sao Francisco River Basin (Brazil) using remote sensing and Penman-Monteith Equation. Remote Sensing,2010,2:1287-1319.
    Thomthwaite CW. An approach toward a rational classification of climate. Geographical Review,1948,38:55-94.
    Trajkovic S, Kolakovic S. Evaluation of reference evapotranspiration equations under humid conditions. Water Resources Manage,2009,23:3057-3067. DOI:10.1007/s 11269-009-9423-4.
    Vaughan PJ, Trout TJ, Ayars JE. A processing method for weighing lysimeter data and comparison to micrometeorological ETO predictions. Agricultural water management,2007,88:141-146.
    Wang K, Wang P, Li Z, et al. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research,2007,112, D15107, doi:10.1029/2006JD008351, 2007.
    Wang Y, Liu B, Su B, et al. Trends of Calculated and Simulated Actual Evaporation in the Yangtze River Basin. Journal of Climate,2011,24:4494-4507.
    WeiB M, Menzel L. A global comparison of four potential ET model. Advances in Geosciences.2008,18:15-23.
    Xu CY, Chen D. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes,2005,19:3717-3734. DOI:10.1002/hyp.5853.
    Xu CY, Jiang T, Gong L, et al. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment.Journal of Hydrology.2006,327:81-93.
    Xu C Y, Singh VP. A review on Monthly water balance model for Water Resources Investigations. Water Resources Management,1998,12:31-50.
    Xu CY, Singh VP. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology,2005,308:105-121. doi:10.1016/j.jhydrol.2004.10.024.
    Yang D, Sun F, Liu Z, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophysical Research Letters,2006,33, L18402, doi:10.1029/2006GL027657,2006.
    Yang H, Yang D, Lei Z, et al. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research,2008,44, W03410, doi:10.1029/2007WR006135,2008.
    Yang Y. An analysis of three elements of water balance in the Changjiang River Basin. Chinese Geographical Science. 1991,1(3):197-211.
    Yin Y, Wu S, Chen G, et al. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theoretical and Applied Climatology,2010,101:19-28. DOI 10.1007/s00704-009-0197-7.
    Zhang L, Potter N, Hickel K, et al. Water balance modeling over variable time scales based on the Budyko framework-Model development and testing. Journal of Hydrology,2008,360:117-131.
    蔡锡填,徐宗学,苏保林,等.区域蒸散发分布式模拟及其遥感验证.农业工程学报,2009,25(10):154-161.
    褚健婷,夏军,许崇育,等.海河流域气象和水文降水资料对比分析及时空变异.地理学报,2009,64(9):1083-1092.
    丛振涛,倪广恒,杨大文,等.“蒸发悖论”在中国的规律分析.水科学进展.2008,19(3):147-152.
    冯国章.计算区域蒸散发量的互补关系法及其应用.西北水资源与水工程,1991,2(3):11-23.
    冯伟,张万军.陆面蒸发估算的CRAE模型探讨.中国农学通报.2005,21(8):86-87.
    傅抱璞.论陆面蒸发的计算.大气科学,1981,5(1):23-31.
    傅抱璞.土壤蒸发的计算.气象学报,1981,39(2):226-236.
    高歌,陈德亮,任国玉,等.1956~2000年中国潜在蒸散量变化趋势.地理研究.2006,25(3):378-387.
    关浩林.广东省降水、径流、蒸发三要素平衡协调分析.人民珠江,1983,6:21-24.
    郭生练,程肇芳.流域蒸散发的气候学计算.水文,1994,5:16-22.
    郭生练,朱英浩.互补相关蒸散发理论与应用研究.地理研究,1993,12(4):32-38.
    郭生练.气候变化与水面蒸发计算.武汉水利电力大学学报,1994,27(1):99-106.
    韩松俊,胡和平,田富强.三种通过常规气象变量估算实际蒸散量模型的适用性比较.水利学报,2009,40(1):75-81.
    韩松俊,胡和平,杨大文,等.塔里木河流域山区和绿洲潜在蒸散发的不同变化及影响因素.中国科学.2009,39(8):1375-1383.
    韩松俊,王少丽,杨大文.农业活动对中国区域蒸发悖论规律的影响.农业工程学报,2010,26(10):1-8.
    韩松俊等.淮北平原农田暴雨径流过程的尺度效应.农业工程学报,2012(28),32-37.
    侯兰功,肖洪浪,邹松兵,等.额济纳绿洲生长季参考作物蒸散发敏感性分析冲国沙漠,2011,31(9):1255-1259.
    胡凤彬,康瑛.加拿大CRAE蒸散发模型开发应用.河海大学学报,1994,22(3):58-65.
    胡顺军,郭谨,王举林,等.应用常规气象观测资料估算塔里木盆地水面蒸发量.干旱区地理.2004,27(2):212-215.
    贾绍凤,张士锋.海河流域水资源安全评价.地理科学进展,2003,22(4):379-387.
    焦醒等Penman-Monteith模型在森林植被蒸散研究中的应用.水利学报,2010(2):245-252.
    李宝富,陈亚宁,李卫红,等.基于遥感和SEBAL模型的塔里木河干流区蒸散发估算.地理学报.2011,66(9):1230-1238.
    李斌,李丽娟,覃驭楚,等.澜沧江流域潜在蒸散发敏感性分析.资源科学,2011,33(7):1256-1263.
    李红霞,张永强,张新华,等.遥感Penman-Monteith模型对区域蒸散发的估算.武汉大学学报(工学版).2011,44(4):457-461.
    李红星,蔡焕杰,王健,等.以水面蒸发量为参考推求土壤实际蒸发量的数学模型.农业工程学报.2008,24(3):1-4.
    李纪人.关于流域蒸散发计算方法的探讨.水文,1983,6:28-34.
    李志.黄土高原1961-2009年参考作物蒸散量的时空变异.生态学报,2012,32(13):4139-4145.
    李志威,杨大文,雷慧闽.基于最大熵增原理的蒸发蒸腾量模型应用.清华大学学报(自然科学版).2012,52(6):785-790.
    刘波,肖子牛,马柱国.中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究.高原气象,2010,29(3):629-636.
    刘波,翟建青,高超,等.基于实测资料对日蒸散发估算模型的比较.地球科学进展,2010,25(9):976-980.
    刘波.长江上游水循环要素时空演变特征分析.中国科学院研究生院博士论文.2009.
    刘昌明,张丹.中国地表潜在蒸散发敏感性的时空变化特征分析.地理学报.2011,66(5):579-588.
    刘春雨,赵军,刘英英,等.石羊河流域蒸散发量遥感估算及时空格局分析.国土资源遥感.2011,3:117-122.
    刘健,张奇,许崇育,等.近50年鄱阳湖流域实际蒸发量的变化及影响因素.长江流域资源与环境,2010,19(2):139-145.
    刘绿柳,姜彤,原峰.珠江流域1961-2007年气候变化及2011-2060年预估分析.气候变化研究进展.2009,5(4):209-214.
    刘绍民,刘志辉.用Priestley-Taylor公式估算作物农田蒸散量的研究.高原气象.1997,16(5):191-196.
    刘绍民,孙睿,孙中平,等.基于互补相关原理的区域蒸散量估算模型比较.地理学报.2004,59(3):331-340.
    刘绍民,孙中平,李小文,等.蒸散量测定与估算方法的对比研究.自然资源学报,2003,18(2):161-167.
    刘万根.珠江流域水资源问题及统一管理浅析.人民珠江.2002(增刊).18-20.
    刘小莽,郑红星,刘昌明,等.海河流域潜在蒸散发的气候敏感性分析.资源科学.2009,31(9):1470-1476.
    刘小宁,任芝花.地面气象资料质量控制方法研究概述.气象科技,2005,33(3):199-203.
    刘新安,于贵瑞,何洪林,等.中国地表净辐射推算方法的研究.自然资源学报,2006,21(1):139-145.
    刘艳群,陈创买,郑勇.珠江流域4~9月降水空间分布特征和类型.热带气象学报.2008,24(1):67-73.
    刘钰,彭致功.区域蒸散发监测与估算方法研究综述.中国水利水电科学研究院学报.2009,7(2):256-264.
    吕继强,张晓伟,沈冰,等.和田河年径流序列变化特征及驱动因素分析.水力发电学报.2010,29(5):165-169.
    马耀明,王介民.非均匀陆面上区域蒸发(散)研究概况.高原气象,1997,16(4):446-452.
    马柱国.我国北方干湿演变规律及其与区域增暖的可能联系.地球物理学报.2005,48(5):1011-1018.
    买苗,邱新法,曾燕.西部部分地区农田实际蒸散量分布特征.中国农业气象.2004,25(4):28-32.
    莫兴国,刘苏峡,林忠辉,等.华北平原蒸散和GPP格局及其对气候波动的响应.地理学报,2011,66(5):589-598.
    莫兴国,孟德娟,刘苏峡,等.不同气候情景下华北平原蒸发与径流时空变化分析.气候变化研究进展,2012,8(6):409-416.
    潘云,宫辉力,李小娟,等.蒸散发模拟的Valiantzas方法在中国的应用.水科学进展.2011,22(1):30-37.
    钱学伟,李秀珍.陆面蒸发计算方法述评.水文.1996,6:24-30.
    秦年秀,陈喜,薛显武,等.潜在蒸散发量计算公式在贵州省适用性分析.水科学进展,2010,21(3):357-363.
    邱新法,曾燕,刘昌明.陆面实际蒸散研究.地理科学进展.2003,22(2):118-124.
    邱新法,曾燕,缪启龙,等.用常规气象资料计算陆面年实际蒸散量.中国科学,2003,33(3):281-288.
    任国玉,郭军.中国水面蒸发量的变化.自然资源学报,2006,21(1):31-44.
    尚松浩,孙丽艳,郝增超.互补相关原理在绿洲月蒸发量估算中的应用.水文,2008,8(3):67-69.
    石玉波,刘克岩.互补相关陆面蒸散发模型及其应用.水文.1988,2:8-13.
    司希礼,杨增元,杨增丽,等.区域综合蒸散发量计算方法研究.水文.2003,23(4):17-21.
    宋璐璐,尹云鹤,吴绍洪.蒸散发测定方法研究进展.地理科学进展,2012,31(9):1186-1195.
    孙福宝.基于Budyko水热耦合平衡假设的流域蒸散发研究.清华大学博士论文.2008.
    孙岚,吴国雄.陆面蒸散对气候变化的影响.中国科学.2001,31(1):59-69.
    唐登银,程维新,洪嘉琏.我国蒸发研究的概况与展望.地理研究.1984,3(3):84-97.
    童宏良.我国蒸发力计算的气候学方法.南京气象学院学报.1989,12(1):19-33.
    王国华,赵文智.遥感技术估算干旱区蒸散发研究进展.地球科学进展,2011,26(8):848-858.
    王艳君,姜彤,刘波.长江流域实际蒸发量的变化趋势.地理学报.2010,65(9):1079-1088.
    王艳君,姜彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势.自然资源学报,2005,20(6):864-870.
    王兆礼,陈晓宏,黄国如.近40年来珠江流域平均气温时空演变特征.热带地理,2007,27(4):289-293.
    王兆礼,陈晓宏,张灵,等.近40年来珠江流域降水量的时空演变特征.水文.2006,26(6):71-75.
    王兆礼,覃杰香,陈晓宏.珠江流域蒸发皿蒸发量的变化特征及其原因分析.农业工程学报,2010,26(11):73-77.
    吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用.水利学报,2006,37(3):286-292.
    吴厚水.珠江流域的水面蒸发.人民珠江,1980,2:19-24.
    武夏宁,胡铁松,王修贵,等.区域蒸散发估算测定方法综述.农业工程学报.2006,22(10):257-262.
    肖名忠,张强,陈晓宏.基于多变量概率分析的珠江流域干旱特征研究.地理学报,2012(67),83-92.
    谢平,晓宏,王兆礼,等.东江流域实际蒸发量与蒸发皿蒸发量的对比分析.地理学报.2009,64(3):270-277.
    徐兴奎,隋洪智,田国良.互补相关理论在卫星遥感领域的应用研究.遥感学报.1999,3(1):54-59.
    杨邦,任立良,王贵作,等.基于水文模型的流域蒸散发规律.农业工程学报.2009,25(增刊2):18-22.
    杨汉波,杨大文,雷志栋,等.任意时间尺度上的流域水热耦合平衡方程的推导及验证.水利学报.2008,39(5):610-617.
    杨汉波,杨大文,雷志栋,等.蒸发互补关系的区域变异性.清华大学学报(自然科学版).2008,48(9):1413-1416.
    杨汉波,杨大文,雷志栋,等.蒸发互补关系在不同时间尺度上的变化规律及其机理.中国科学E辑.2009,39(2):333-340.
    杨汉波.流域水热耦合平衡方程推导及其应用.清华大学博士论文.2008.
    姚章民.珠江流域水资源量及用水量近期变化分析.水文.2004,24(5):20-23.
    尹云鹤,吴绍洪,戴尔阜.1971-2008年我国潜在蒸散时空演变的归因.科学通报.2010,55(22):2226-2234.
    曾丽红,宋开山,张柏,等.东北地区参考作物蒸散量对主要气象要素的敏感性分析.中国农业气象.2010,31(1):11-18.
    曾燕,邱新法,刘昌明,等.1960-2000年中国蒸发皿蒸发量的气候变化特征.水科学进展.2007,18(3):311-318.
    曾燕.黄河流域实际蒸散分布式模型研究.中国科学院研究生院博士论文.2004.
    翟禄新,冯起,李艺,等.基于CRAE膜型的西北地区实际蒸散发量计算.灌溉排水学报.2010,29(5):33-38.
    张莉,彭世彰,罗玉峰,等.辐射参数计算方法对参考作物蒸发蒸腾量计算值的影响.河海大学学报(自然科学版)2008,36(3):306-310.
    张瑞钢,莫兴国,林忠辉.滹沱河上游山区近50年蒸散变化及主要影响因子分析.地理科学.2012,32(5):628-634.
    张文君,周天军,宇如聪.中国土壤湿度的分布与变化Ⅰ.多种资料间的比较.大气科学.2008,32(3):581-597.
    张晓琳,熊立华,林琳,等.五种潜在蒸散发公式在汉江流域的应用.干旱区地理.2012,35(2):229-237.
    张志明,陈俊贤.大面积地表湿润程度的间接表示方法和陆面蒸发量计算.气象学报.1991,49(2):253-256.
    张志明,骆红.大气温室效应增强对实际蒸散发量的影响.成都科技大学学报,1995(83),1-5.
    张志明.利用气象资料计算陆面实际蒸发量.气象学报.1988,46(4):477-480.
    张志明.湿润下垫面的近地面层内感热和潜热垂直通量的计算.成都科技大学学报.1984(2):90-96.
    赵军,刘春雨,潘竟虎,等.基于MODIS数据的甘南草原区域蒸散发量时空格局分析.资源科学.2011,33(2):341-346.
    赵玲玲,王中根,夏军,等.气候变化下乌江流域蒸散发互补关系变化及成因辨识.河海大学学报(自然科学版).2011,30(7):629-634.
    赵玲玲等Priestley-Taylor公式的改进及其在互补蒸散模型中的应用.地理科学进展,2011(30),805-810.
    赵文智,吉喜斌,刘鹄.蒸散发观测研究进展及绿洲蒸散研究展望.干旱区研究.2011,28(3):463-470.
    赵勇,王玉坤,多岩松.作物腾发量计算中的一些问题的探讨.南水北调与水利科技,2005,3(1):57-59.
    赵宗慈,王绍武,徐影,等.近百年我国地表气温趋势变化的可能原因.气候与环境研究.2005,10(4):808-817.
    周金龙,董新光.内陆干旱区潜在蒸发量的计算.灌溉排水,2002,21(2):21-24.
    朱岗崑.自然蒸发的理论及应用[M].气象出版社.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700