用户名: 密码: 验证码:
新型有机铬配合物的合成、降血糖活性及毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一种与遗传因素有关又与多种环境因素相关的慢性全身性疾病,主要表现为胰岛素抵抗、高血糖和糖尿,已被世界卫生组织列为三大疑难病之一。因此,辅助降血糖功能食品的研究开发是当前研究的热点课题之一。铬(Ⅲ)是人体重要的微量元素之一,并具有降血糖功能。当体内缺铬时,胰岛素水平下降,诱发糖代谢、脂代谢紊乱。研究发现补充铬可增强胰岛素敏感性,调节糖代谢和脂代谢。相对无机铬,有机铬的吸收率高且安全,作为辅助降血糖功能食品的功效成分和营养素补充剂已得到广泛应用。目前,市场上应用最广的有机铬为吡啶甲酸铬,但有研究报道,吡啶甲酸铬会产生DNA毒性、细胞毒性和生殖毒性,且毒性与配体吡啶甲酸有关,其安全性已受到广泛的关注,因此,降血糖活性好、安全性高的新型有机铬配合物的研究仍是当前重要课题之一。本文以天然活性有机化合物苹果酸、水苏糖和牛磺酸为配体,与Cr3+合成有机铬配合物,表征其结构;通过药效学实验考察5种有机铬(苹果酸铬、芦丁铬、叶酸铬、水苏糖铬和牛磺酸铬,其中芦丁铬和叶酸铬为前期合成)对四氧嘧啶所致糖尿病小鼠的降血糖活性,筛选出降血糖活性较好的有机铬进行急性毒性和亚急性毒性评价,进一步优选出安全性高的有机铬进行转化和转运研究,探讨其转运机理;除铬化合物外,蜂胶作为辅助降血糖功能食品的功效成分也应用广泛,仅次于铬化合物,本文对有机铬和蜂胶组合物的降血糖活性进行研究,探讨其降血糖的增效作用。本论文研究可为安全性高的新型有机铬辅助降血糖功能食品和营养素补充剂的研究开发提供科学依据,对人类健康和社会经济发展具有重要意义。
     主要研究内容如下:
     (1)以天然活性有机化合物苹果酸、水苏糖和牛磺酸与Cr3+反应合成苹果酸铬、水苏糖铬和牛磺酸铬配合物。采用元素分析、红外光谱、紫外-可见光谱、原子吸收光谱等方法表征配合物的结构。结果表明,苹果酸与Cr3+的配位点为羧基中的羟基,水苏糖与Cr3+的配位点为羟基,牛磺酸与Cr3+的配位点为氨基。3种有机铬的分子式分别推测为Cr2C12H22O20、CrC24H48O27和CrN6C12S6H54O24。
     (2)采用四氧嘧啶所致糖尿病小鼠模型,考察苹果酸铬、芦丁铬、叶酸铬、水苏糖铬和牛磺酸铬(其中芦丁铬和叶酸铬为前期合成)的降血糖活性。结果表明,以剂量为3.0 mg Cr/kg b.w.苹果酸铬、芦丁铬和叶酸铬给药治疗糖尿病小鼠14d后,对糖尿病小鼠的血糖下降率分别为45.91%、29.1%和34.7%,而水苏糖铬和牛磺酸铬的降血糖活性不明显。苹果酸铬、芦丁铬和叶酸铬可显著促进肝糖原的合成,抑制肝糖原分解从而发挥降血糖作用。因此,不同配体的有机铬,其降血糖活性存在明显差异,苹果酸铬、芦丁铬和叶酸铬具有较好的降血糖活性。
     (3)苹果酸铬、芦丁铬和叶酸铬的急性毒性和亚急性毒性评价
     采用一次最大限量给药法评价该3种有机铬(苹果酸铬、芦丁铬和叶酸铬)的小鼠经口急性毒性,并设无机铬(CrCl3·6H2O)对照组。结果表明,CrCl3·6H2O的雌、雄性小鼠经口LD50(半数致死剂量)为2.39 g/kg b.w.(95%置信区间为1.776-3.218 g/kgb.w.),属于低毒级;苹果酸铬、芦丁铬和叶酸铬的雌、雄性小鼠经口LDso均大于5.0 g/kg b.w.,属于实际无毒级,可见CrCl3·6H2O与苹果酸、芦丁和叶酸合成有机铬后其毒性明显降低。叶酸铬和苹果酸铬的LDmin(最小致死剂量)大于5.0 g/kgb.w.,远大于芦丁铬的LDmin (2.0 g/kg b.w.)
     采用连续28 d灌胃给药法评价该3种有机铬的小鼠经口亚急性毒性。结果表明,芦丁铬、叶酸铬和苹果酸铬对雌、雄受试小鼠的体重、脏器指数、血液常规指标和生化指标均无显著影响,且不会造成肝组织和肾组织细胞的脂质过氧化反应和DNA的氧化损伤。然而,补充叶酸铬或叶酸,肝脏中的锌浓度显著降低,而肾脏中的锌浓度显著升高。
     综上所述,不同配体的有机铬的安全性也存在明显差异,该3种有机铬的小鼠经口急性毒性均达到实际无毒级。苹果酸铬和叶酸铬对小鼠的LDmin远大于芦丁铬的LDmin。在亚急性毒性试验范围内,苹果酸铬未见明显毒性,而叶酸铬导致了人体必需微量元素锌的代谢紊乱,且与其配体叶酸有关。因此,苹果酸铬不仅降血糖活性好,而且安全性好,在辅助降血糖功能食品和营养素补充剂方面具有很好的应用前景。
     (4)采用静脉注射给药,ICP法考察苹果酸铬在大鼠体内的药代动力学行为,获得基本药代动力学参数,初步阐明了苹果酸铬在大鼠体内分布、排泄规律。经单次静脉注射苹果酸铬在30 min后,铬已从大鼠血液中消除85.0%,肝脏和肾脏中的铬含量在1h后均达到最大值,说明苹果酸铬从血液中消除后分布到各组织中,36 h后几乎所有铬都从各组织中排出。大鼠体内的苹果酸铬主要通过尿液和粪便排泄,36 h内已排出82.4%。
     (5)采用紫外光谱、荧光光谱和等温微量热法(ITC)研究苹果酸铬与脱铁-转铁蛋白和人血清白蛋白的相互作用形式。结果表明,苹果酸铬可与脱铁-转铁蛋白和人血清白蛋白形成了复合物,导致该两种蛋白与铬离子结合部位的色氨酸残基和酪氨酸残基的苯环π→π*跃迁受到干扰,从而使225 nm处的吸光度增加,280 nm处吸光度逐渐减小,并引起该两种蛋白内源荧光猝灭;苹果酸铬与该两种蛋白之间的相互作用力以氢键和范德华力为主。
     (6)采用四氧嘧啶所致糖尿病小鼠模型考察苹果酸铬和蜂胶组合物的降血糖增效作用和一次最大限量给药法评价该组合物的小鼠经口急性毒性。降血糖活性试验结果表明,该组合物可降低血清谷草转氨酶(AST)、谷丙转氨酶(ALT)和碱性磷酸酶(ALP)的含量,说明该组合物可显著减轻糖尿病小鼠的肝损伤,同时该组合物对糖尿病小鼠具有显著的降血糖活性,并达到增效作用。小鼠经口急性毒性结果表明,在14 d的试验期内,雌、雄受试小鼠未出现异常情况及死亡,尸解未见异常。该组合物对主要脏器指数、血液常规指标、血生化学指标均无明显影响。雌、雄性小鼠经口LD50均大于5.0 g/kg b.w.,属于实际无毒级。因此,苹果酸铬和蜂胶的组合物减轻了四氧嘧啶所致小鼠肝损伤的作用,对糖尿病小鼠具有显著的降血糖活性,并达到增效作用,且该组合物在经口急性毒性范围内未见明显毒性,达到实际无毒级。
     综上所述,针对营养素补充剂和含铬化合物功能食品中广泛使用的吡啶甲酸铬存在的安全性问题,本文以天然活性有机化合物为配体合成出了几种新型有机铬配合物,通过降血糖活性研究及急性毒性和亚急性毒性评价筛选出了降血糖活性好、安全性高的苹果酸铬,初步阐明了其在体内的分布、排泄规律及转运机理;苹果酸铬和蜂胶的组合物可减轻四氧嘧啶所致糖尿病小鼠的肝损伤,并达到降血糖增效作用。该成果为新型有机铬辅助降血糖功能食品和营养素补充剂的研究开发提供了科学依据。
Diabetes mellitus is a disorder with high abnormal blood glucose levels caused by the failure of the body to produce enough insulin, or the inability of the insulin to make glucose accessible to blood cells. Diabetes mellitus has been identified as one of the three diseases (cardiovascular diseases, caners and diabetes mellitus) difficult to cure. This has therefore triggered the research into secondary anti-diabetic functional foods or nutrient supplement as a measure to help cure the disease. Chromium(Ⅲ) as one of the important trace elements in the body has shown significantly anti-diabetic activity. The lack of chromium in the body system can result in the decline in insulin secretion and increases blood glucose levels. As a result of the low absorption rate of chromium salts, it has become necessary to find possible mechanisms such as the designing and development of new organic chromium complexes to help address the menace. Chromium picolinate is said to the most commonly applied dietary supplement. However, it has been reported that chromium picolinate exhibits genotoxicity and cytotoxicity which is likely caused by the ligand (picolinate). Hence the safety aspect of chromium picolinate in the body has been a matter of concern to the majority.
     In order to reduce the toxicity and improve the bioactivity of chromium, the organic ligand with less or no toxicity has drawn the attention of researchers.
     In this study, organic ligands including L-malic acid, stachyose, and taurine were selected. The aim of the study was to determine the effects of chromium malate complex, chromium stachyose complex and chromium taurine complex on alloxan-induced diabetic rats. The specific objectives of the study include; (a) to investigate the anti-hyperglycemic activity of five organic chromium complexes (chromium malate complex, chromium rutin complex, chromium folate complex, chromium stachyose complex and chromium taurine complex) administered to alloxan-induced diabetic rats, (b) to evaluate the acute and sub-acute oral toxicity of chromium malate complex, chromium rutin complex and chromium folate complex on the rabbits, and (c) to study the transportation and conversion of the chromium malate complex on alloxan-induced diabetic rats.
     Propolis, as the functional component of secondary anti-diabetic functional foods has been used over the world. In the domestic market for example, propolis accounts for 29.6% of the domestic functional foods; second to chromium compounds (45.3%). In order to investigate further the additional benefits of anti-diabetic activity and protective effects of liver injury on diabetes, this aspect of the study focused on evaluating the anti-diabetic effect of the combination of chromium malate complex and propolis in alloxan-induced diabetic mice and to test the acute oral toxicity of the combination.
     The stepwise experimental procedures and the results of the study is given below:
     (1) Chromium malate complex, chromium stachyose complex and chromium taurine complex were synthesized in a single step reaction in aqueous solution by chelating chromium (Ⅲ) with L-malic acid, stachyose, and taurine respectively. The structures of the chromium complexes were determined using infrared,UV-visible and atomic absorption spectroscopy and elemental analysis. The results of this study (1) indicated that the coordination sites of chromium malate complex, chromium stachyose complex and chromium taurine complex were hydroxyls in the carboxyl groups, hydroxyls and amino respectively. The molecular formulas of the three chromium complexes were inferred as Cr2C12H22O20, Crt24H48O27 and CrN6C12S6H54O24, respectively.
     In the case of second experiment (2), anti-hyperglycemic activities of chromium malate complex, chromium rutin complex, chromium folate complex, chromium stachyose complex and chromium taurine complex were examined in alloxan-induced diabetic mice with daily oral gavage for a period of two weeks at the dose of 0.5-3.0 mg Cr/kg. b.w. The results indicated that chromium malate complex, chromium rutin complex, chromium folate complex and anti-diabetic activity resulted in percentage reduction of blood glucose levels of 45.91%,29.1% and 34.7%, respectively. However, after a two-week period of administrating the mice with the chromium stachyose complex and chromium taurine complex, the effect on anti-diabetic activity of the rabbits were not significant. The significant increase in the glycogen levels of diabetic rabbits which were treated by chromium malate complex, chromium rutin complex, chromium folate complex were determined. This however, indicates that the ligand of the trivalent chromium compounds markedly affected its efficacy. Not all the trivalent chromium compounds possessed equal efficacy. Chromium malate complex, chromium rutin complex and chromium folate complex had hypoglycemic effect on alloxan-induced diabetic mice, while chromium stachyose complex and chromium taurine complex did not.
     In further investigation (3), ie the safety toxicological evaluation (the first step and the second step) of 3 chromium complexes,
     Acute toxicities of chromium malate complex, chromium rutin complex and chromium folate complex were tested using ICR mice with a single oral gavage and observed for a period of two weeks. CrCl3·6H2O was used as the positive control in this test. For the acute toxicities of chromium malate complex, chromium rutin complex and chromium folate complex tested using ICR mice with a single oral gavage (3), LD50 (median lethal dose) for CrCl3·6H2O obtained was 2.39 g/kg body weight (95% confidence intervals:1.776-3.218 g/kg), that of chromium rutin complex and chromium folate complex were greater than 5.0 g/kg each. The minimum lethal dose for both chromium malate complex and chromium folate complex were over 5.0 g/kg b.w., while that of chromium rutin complex was 2.0 g/kg b.w.
     Three chromium (Ⅲ) complexes with different ligands (rutin, folic acid or L-malic acid) were compared to examine whether they have similar effect on sub-acute toxicity status. ICR mice were orally administered with chromium rutin complex, chromium folate complex and/or chromium malate complex at doses of 6 and 36 mg Cr/kg bodyweight/day for a period of 28 days. The results showed that oral administration of all these chromium complexes do not cause adverse effects on body weight, organ weights, hematology and serum biochemical parameters, hepatic and renal lipid peroxidation and cellular 8-OHdG levels. However, supplemental chromium folate complex or folic acid, not chromium malate complex or chromium rutin complex could induce abnormalities in metabolism of Zn. This can be inferred from the increase in renal Zn concentration and a decrease in hepatic Zn concentration.
     Collectively, the ligands affected the metal-toxicity of chromium in their complexes. In the acute toxicity study, the three chromium complexes were "non toxic". The minimum lethal dose for chromium malate complex and chromium folate complex was above 5.0 g/kg while that of chromium rutin complex was 2.0 g/kg b.w. Chromium malate complex and chromium rutin complex were safe in the sub-acute toxicity status while chromium folate complexes were not since chromium folate complex induced abnormalities in metabolism of Zn in the body.
     Following the investigation in (3), additional study (4) where pharmacokinetic study was performed using non-diabetic rats after intravenous administration at a single dose of 500 Crμg/kg b.w. Chromium levels in the blood stream, tissue samples, excreta (urine and faeces) were determined using ICP method. The pharmacokinetic parameters were obtained from this study. The results in this study indicated that chromium malate complex leaves the blood stream after intravenous administration for 30 min, and the elimination rate of chromium was around 85% in the blood stream. The complex leaves of chromium malate in the blood stream ends up appearing in the urine and entering tissue cells. For liver and kidney examined, the chromium content (livers and kidneys) is maximal 1 h after injection. After 36 h, however, no chromium was left in the livers and kidneys. Urine and fecal samples collected over time intervals of 30 min to 36 h after injection of the complex revealed that chromium loss of urine and fecal occurs rapidly for the first 2 h after injection and continues at a substantially lower rate over the next 34 h. The excretion rate of chromium in the urine and fecal was 82.4% after 36 injections.
     In order to determine the interaction between chromium (Ⅲ) malate complex with the high molecular mass components of the human serum albumin and apo-transferrin, a fifth (5) study was embarked upon. In this study, ultraviolet and fluorescence spectra as well as isothermal titration calorimetry was used. Cr3+ was binded with human serum albumin and apo-transferrin. The results showed that the interaction of Cr3+ with the human serum albumin and apo-transferrin obstructed atπ→π* transition of benzene rings (the bind sites of the tryptophan and tyrosine residues) cause the increase of the absorbance at 225 nm and decrease at 280 nm. The interaction also quenched the fluorescence of the two proteins. The interactions between Cr3+with the human serum albumin and apo-transferrin were mainly hydrogen bonds and van der Waals.
     To obtain the additional benefits of anti-diabetic activity and protective effects of liver injury on diabetes, anti-diabetic effect and acute oral toxicity of a combination of chromium (Ⅲ) malate complex and propolis were assessed (6). The anti-diabetic effect of the combination of chromium (Ⅲ) malate complex and propolis was determined and compared with chromium (III) malate complex and propolis only in alloxan-induced diabetic mice through daily oral gavage for 2 weeks. Acute oral toxicity of the combination of chromium (Ⅲ) malate complex and propolis was tested in ICR mice at the dose of 1.0-5.0 g/kg body weight with a single oral gavage and also observed for two weeks. The results therefore indicated that the increase in anti-diabetic efficacy and the protective effects of liver injury for diabetes of chromium malate complex combined with propolis was significant. In acute toxicity study, LD50 (median lethal dose) values for the combination was greater than 5.0 g/kg body weight. The combination might represent the nutritional supplement with potential therapeutic value to control blood glucose and exhibit protective effects of liver injury for diabetes and non-toxicity in acute toxicity.
     Taken together; three chromium complexes with natural active organic ligands have been synthesized. Chromium malate complex represent an optimal chromium supplement among those chromium complexes with potential therapeutic value to control blood glucose in diabetes and non-toxicity in acute and sub-acute toxicity. The fates of distribution and excretion, and transportation mechanism have been elaborated. The combination of chromium (Ⅲ) malate complex and propolis represent the nutritional supplement with potential therapeutic value to control blood glucose and exhibit protective effects of liver injury for diabetes and non-toxicity in acute toxicity.
引文
[1]Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas:Global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Research and Clinical Practice.2011, 94 (3):311-321.
    [2]Krol E, Krejpcio Z. Chromium(Ⅲ) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model[J]. Food and Chemical Toxicology. 2010,48 (10):2791-2796.
    [3]Clodfelder BJ, Upchurch RG, Vincent JB. A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats[J]. Journal of Inorganic Biochemistry.2004, 98(3):522-533.
    [4]国家食品药品监督管理局http://www.sda.gov.cn/WS01/CL0001/
    [5]Hepburn DDD, Marcel Burney J, Woski SA, Vincent JB. The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidized lipids in vzvo[J]. Polyhedron.2003,22 (3):455-463.
    [6]Bailey MM, Boohaker JG, Sawyer RD, Behling JE, Rasco JF, Jernigan JJ, Hood RD, Vincent JB. Exposure of pregnant mice to chromium picolinate results in skeletal defects in their offspring[J]. Birth Defects Research Part B:Developmental and Reproductive Toxicology. 2006,77 (3):244-249.
    [7]Speetjens JK, Collins RA, Vincent JB, Woski SA. The Nutritional Supplement Chromium(Ⅲ) Tris(picolinate) Cleaves DNA[J]. Chemical Research in Toxicology.1999,12 (6):483-487.
    [8]Whittaker P, San RHC, Clarke JJ, Seifried HE, Dunkel VC. Mutagenicity of chromium picolinate and its components in Salmonella typhimurium and L5178Y mouse lymphoma cells[J]. Food and Chemical Toxicology.2005,43 (11):1619-1625.
    [9]Stearns DM, Silveira SM, Wolf KK, Luke AM. Chromium(Ⅲ) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis.2002,513 (1-2): 135-142.
    [10]Manygoats KR, Yazzie M, Stearns DM. Ultrastructural damage in chromium picolinate-treated cells:a TEM study [J]. Journal of Biological Inorganic Chemistry.2002,7 (7):791-798.
    [11]毕晋明,张敏红.吡啶甲酸铬安全性研究进展[J].中国畜牧兽医.2008,35(2):13-16.
    [12]徐成伟,杜贻萌,王金鹏凝血酶激活纤溶抑制物(TAFI)的研究进展[M].山东大学出版社,2008.
    [13]卢卫红.功能性食品与中国药膳.哈尔滨工业大学出版社[M],2009.
    [14]Togo P, Osier M, S(?)rensen TIA, Heitmann BL. Food intake patterns and body mass index in observational studies[J]. International Journal of obesity.2001,25 (12):1741-1751.
    [15]傅樱花,张富春.降血糖功能性食品的研究现状[J].食品研究与开发.2011,32(11):165-168.
    [16]Anderson RA, Cheng N, Bryden NA, Polansky MM, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes[J]. Diabetes.1997,46 (11):1786-1791.
    [17]Shindea UA, Sharmab G, Xuc YJ, Dhallac NS, Goyala RK. Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus[J]. Journal of Trace Elements in Medicine and Biology.2004,18:23-32.
    [18]Kim DS, Kim TW, Kang JS. Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats[J]. Journal of Trace Elements in Medicine and Biology.2004,17 (4):243-247.
    [19]陈强,李清禄.烟酸铬(Ⅲ)的配位结构与生物活性关系[J].结构化学.2003,22(3):346-350.
    [20]Kegley EB, Spears JW. Immune response, glucose metabolism,and performance of stressedfeeder calves fed inorganic or organic chromium[J]. Journal of Animal Science.1995, 73 (9):2721-2726.
    [21]Preuss HG, Wallerstedt D, Talpur N, Tutuncuoglu SO, Echard B, Myers A, Bui M, Bagchi D. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects:a pilot study[J]. Journal of Medicine.2003,31 (5-6): 227-246.
    [22]金政,李善花,李相伍,朴丽花.烟酸铬对糖尿病小鼠降血糖作用的观察[J].微量元素与健康研究.2002,19(1):6-7.
    [23]李鹏飞,张绍维,孙文娟,王雨,叶丽杰.富铬酵母提取液降低血糖作用观察[J].中国公共卫生.2005,21(11):1335-1336.
    [24]Guan X, Matte JJ, Ku PK, Snow JL, Burton JL, Trottier NL. High Chromium Yeast Supplementation Improves Glucose Tolerance in Pigs by Decreasing Hepatic Extraction of Insulin[J]. Journal of Nutrition.2000,130 (5):1274-1279.
    [25]吴建峰,高兆华,陈清,柴之芳,焉莲娜.富铬酵母对糖尿病大鼠的降血糖作用[J].中华内分泌代谢杂志.1997,13(3):190.
    [26]陈翠莲,张英东,黄承德,罗士津,姚继明.常见有机铬的差异性比较[J].广东饲料.2011,20(3):22-25.
    [27]Sulaiman GM, Sammarrae KWA, Ad'hiah AH, Zucchetti M, Frapolli R, Bello E, Erba E, D'Incalci M, Bagnati R. Chemical characterization of Iraqi propolis samples and assessing their antioxidant potentials[J]. Food and Chemical Toxicology.Doi:10.1016/j.fct.2011.06.060.
    [28]玄红专顾美儿.蜂胶的化学多样性及标准化存在的问题[J].养蜂科技.2005,(6):28-29.
    [29]陈盛禄.中国蜜蜂学[M].中国农业出版社,2001.
    [30]Luo C, Zou X, Li Y, Sun C, Jiang Y, Wu Z. Determination of flavonoids in propolis-rich functional foods by reversed phase high performance liquid chromatography with diode array detection[J]. Food Chemistry.2011,127 (1):314-320.
    [31]Zhang CP, Zheng HQ, Liu G, Hu FL Development and validation of HPLC method for determination of salicin in poplar buds:Application for screening of counterfeit propolis[J]. Food Chemistry.2011,127 (1):345-350.
    [32]El-Sayed M, Osama MA, Hamdy AA, Ahmed MM. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats[J]. Pakistan Journal of Pharmaceutical Sciences.2009,22 (2):168-174.
    [33]Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus[J]. Pharmacological Research.2005,51 (2):147-152.
    [34]杨锋,戴关海,潘慧云,江克翎.蜂胶水溶液降脂、降糖、抗炎作用的实验研究[J].中国中医药科技.2007,14(1):41-42.
    [35]喻建辉,高荫榆.蜂胶软胶囊调节血脂作用研究[J].食品科学.2010,31(7):260-262.
    [36]Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY, Oh HY. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice[J]. International Immunopharmacology.2004,4 (3):429-436.
    [37]韩彦彬,姚思宇,赵鹏,李彬,张洁宏,李凤文,梁坚,傅伟忠,王彦武.蜂胶黄酮对小鼠免疫功能影响的实验研究[J].中国卫生检验杂志.2009,119(7):1658-1661.
    [38]Orsolic N, Knezevic AH, Sver L, Terzic S, Basic I. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds[J]. Journal of Ethnopharmacology. 2004,94 (2-3):307-315.
    [39]陈小囡.蜂胶对慢性酒精性肝损伤的保护作用及其机制研究[J].健康研究.2009,29(2):89-91.
    [40]韩小燕,刘春雨,于洋.蜂胶对小鼠红细胞酶活性及血浆自由基代谢的影响[J].中国食物与营养.2009,(5):59-60.
    [41]Kazim Sahina, Muhittin Ondercib, Mehmet Tuzcuc, Bilal Ustundagd, Gurkan Cikime, Ibrahim H. Ozercanf, Vidyasagar Sriramojug, Vijaya Juturuh, Komorowskih JR. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat[J]. Metabolism Clinical and Experimental.2007,56 (9): 1233-1240.
    [42]Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium[J]. Proceedings of the Nutrition Society.2004,63 (1):41-47.
    [43]董国臣,赵春棠.蛋氨酸铬的制备及其组合物降糖胰康片(胶囊)系列[P].中国发明专利.1999,公开号:CN1218054.
    [44]金政,辛洪斌,金松竹,李相伍.谷氨酸铬对实验性糖尿病小鼠血糖水平的影响[J].延边大学医学学报.2002,25(1):11-13.
    [45]Yang X, Palanichamy K, Ontko AC, Rao MNA, Fang CX, Ren J, Sreejayan N. A newly synthetic chromium complex-chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance[J]. FEBS Letters.2005,579 (6):1458-1464.
    [46]Krol E, Krejpcio Z. Evaluation of anti-diabetic potential of chromium(Ⅲ) propionate complex in high-fat diet fed and STZ injected rats[J]. Food and Chemical Toxicology.2011, 49 (12):3217-3223.
    [47]张磊,曹毓,彭龙玲,温志坚,杨亚斯.海藻多糖铬络合物降糖作用的实验研究[J].四 川生理科学杂志.2002,24:69-71.
    [48]邓毅,尹龙萍,赵爱华,徐朝晖,马丽萍,贾伟.黄芪多糖铬络合物的合成及其降血糖活性的初步研究[J].食品科学.2007,28(06):317-320.
    [49]邓毅.黄芩苷黄芩素麦冬多糖铬配合物的研究[D].上海交通大学硕士学位论文,2007.
    [50]陈秀敏.魔芋葡甘露寡糖及其铬络合物的研究[D].中国科学院硕士学位论文,2002.
    [51]刘冰,秦贞奎,林祥梅,梅琳,刘万顺,韩宝芹.壳寡糖及其配合物对胰岛细胞增殖、胰岛素分泌的促进作用[J].中国组织工程研究与临床康复.2009,13:513-516.
    [52]李善花,尹哲洙,文香兰,李相伍,文永植.葡萄糖酸铬对实验性糖尿病小鼠肝PAS反应的影响[J].微量元素与健康研究.2005,22(3):7-8.
    [53]张薇,孙长颢,张毅,韩晶,于春援,刘志芳.葡萄糖酸铬对大鼠肥胖基因表达的影响及其与生长激素的关系[J].中国公共卫生.2001,17(9):804-805.
    [54]金英锦,文香兰,李善花,文永植,朱永哲,张旸,张宏绪.葡萄糖酸铬对实验性糖尿病小白鼠胰岛细胞的超微结构观察[J].微量元素与健康研究.2001,18(1):7-8.
    [55]刘祎春,刘刚.芦丁铬的合成反应研究[J].宁夏工程技术.2002,3(1):224-226.
    [56]刘斌,李英奇,杨斌盛[Cr(Ⅲ)(SSA)(en)2]·2H2O配合物的合成、表征及性质研究[J].化学学报.2006,64(9):917-922.
    [57]Liu B, Li YQ, Yang BS. Synthesis, characterization and kinetics propertiesof chromium(Ⅲ) complex [Cr(3-HNA)(en)2]Cl·H2O·CH3OH[J]. Inorganic Chemistry Communications.2007, 10 (3):367-370.
    [58]张利,刘斌,杨斌盛.3-羟基-2-荼甲酸铬(Ⅲ)配合物与牛血清白蛋白作用的光谱研究[J].光谱实验室.2007,24(2):188-190.,24(2):188-190.
    [59]Liu B, Li YQ, Yang BS, Huang SP. Synthesis, characterization and properties of chromium(III) complex [Cr(SA)(en)2]Cl·2H2O[J]. Journal of Inorganic Biochemistry.2006, 100 (9):1462-1469.
    [60]李俊艳.胶原蛋白多肽-铬螯合物降血糖、抗热应激保健功效的研究[D].河北农业大学硕十学位论文,2004.
    [61]施秀芳.肌肽铬配合物的合成及降血糖活性研究[D].天津大学博士学位论文,2005.
    [62]乔伟.小肽铬对大鼠生长性能和糖代谢的影响与机理研究[D].四川农业大学博士学位论文,2004.
    [63]Heather Sumrall K, Vincent JB. Is glucose tolerance factor an artifact produced by acid hydrolysis of low-molecular-weight chromium-binding substance[J]. Polyhedron.1997,16 (23):4171-4177.
    [64]Vincent JB. Elucidating a biological role for chromium at a molecular level[J]. Accounts chemical research.2000,33 (7):503-510.
    [65]Clodfelder B, Emamaullee J, Hepburn D, Chakov N, Nettles H, Vincent J. The trail of chromium(·) in vivo from the blood to the urine:the roles of transferrin and chromodulin[J]. Journal of Biological Inorganic Chemistry.2001,6 (5):608-617.
    [66]Clodfelder BJ, Upchurch RG, Vincent JB. A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats[J]. Journal of Inorganic Biochemistry.2004,98 (3):522-533.
    [67]陶海鹏,俞华珊,王爱群.铬叶绿酸钠的合成及临床试用初探[J].华西医药杂志.1992,2(14):102-103.
    [68]Mertz W. Chromium occurrence and function in biological systems[J]. Physiological Reviews. 1969,49 (2):163-329.
    [69]Seerley RW Organic chromium and manganese in human nutrition:important possibilities for manipulating lean meat deposition in animals. Proceedings Alltech's of 9th symposium All tech Technical publications:Kentucky:1993.
    [70]Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets[J]. The American Journal of clinical Nutrition.1985,41 (6): 1177-1183.
    [71]Offenbacher EG Promotion of chromium absorption by ascorbic acid[J]. Trace Element Electrolytes.1994,11:178-181.
    [72]查龙应.不同化学形式三价铬肠道吸收机理的研究[D].浙江大学博十学位论文,2007.
    [73]Chen NSC, Alan T, IA D. Effect of chelating agents on chromium absorption in rats[J]. The Journal of Nutritional Biochemistry.1973,103 (8):1182-1186.
    [74]Dowling HJ, Offenbacher EG, Pi-Sunyer FX. Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine[J]. The Journal of Nutrition.1989,119 (8): 1138-1145.
    [75]Sun Y, Ramirez J, Woski SA, Vincent JB. The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCr[J]. Journal of Biological Inorganic Chemistry.2000,5 (1):129-136.
    [76]Hepburn DDD, Vincent JB. Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream[J]. Journal of Inorganic Biochemistry.2003,94 (1-2): 86-93.
    [77]Nguyen N, Mulyani I, Levina A, Lay PA. Reactivity of Chromium(Ⅲ) Nutritional Supplements in Biological Media:An X-Ray Absorption Spectroscopic Study[J]. Inorganic Chemistry.2008,47:4299-4309.
    [78]Kottwitz K, Laschinsky N, Fischer R, Nielsen P. Absorption, excretion and retention of 51Cr from labelled Cr-(Ⅲ)-picolinate in rats[J]. Biometals.2009,22 (2):289-295.
    [79]丁文军,柴之芳,丰伟悦,钱琴芳.老年糖尿病病人和健康人血清铬及尿铬的分析[J].中国老年学杂志.1997,17:132-135.
    [80]Vincent JB. The Biochemistry of Chromium[J]. Journal of Nutrition.2000,130 (715-718)
    [81]Vincent JB. Mechanisms of chromium action:low-molecular-weight chromium-binding substance[J]. Journal of the American College of Nutrition.1999,18 (1):6-12.
    [82]Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism[J]. Molecular Endocrinology. 2006,20 (4):857-870.
    [83]Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance[J]. Molecular Endocrinology.2008,22 (4):937-950.
    [84]Pattar GR, Tackett L, Liu P, Elmendorf JS. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2006,610 (1-2):93-100.
    [85]Klip A, Guma A, Ramlal T, Bilan PJ, Lam L, Leiter LA. Stimulation of hexose transport by metformin in L6 muscle cells in culture[J]. Endocrinology.1992,130:2535-2544.
    [86]Wang Y-q, Yao M-h. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK[J]. The Journal of Nutritional Biochemistry.2009,20 (12):982-991.
    [87]Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, Wang Z, Zheng Q, Dolence EK, Nair S, Ren J, Li J. A newly synthetic chromium complex—Chromium (d-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport[J]. Biochemical Pharmacology.2009,77 (6):1002-1010.
    [88]Somwar R, Perreault M, Kapur S, Taha C, Sweeney G, Ramlal T, Kim DY, Keen J, Cote CH, Klip A, Marette A. Activation of p38 Mitogen-Activated Protein Kinase alpha and beta by Insulin and Contraction in Rat Skeletal Muscle:Potential Role in the Stimulation of Glucose Transport[J]. Diabetes.2000,49 (11):1794-1800.
    [89]沈建忠,刘金凤,丁双阳,江海洋.吡啶甲酸铬毒性研究[J].中国饲料.2002,(1):24-25.
    [90]郭亮,张敏红,郑姗姗,冯京海,谢鹏.静脉注53Cr标记吡啶甲酸铬对仔猪肝细胞DNA的影响[J].畜牧兽医学报.2009,40(10):1487-1493.
    [91]Bagchi D, Tran MX, Newton S, Bagchi M, Ray SD, Kuszynski CA, Stohs SJ. Chromium-and cadmium-induced oxidative stress and apoptosis in cultured J 774 A.1 macrophage cells[J]. In Vitro & Molecular Toxicology.1998,11:22171-22181.
    [92]Stearns DM, Silveira SM, Wolf KK, Luke AM. Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2002,513 (1-2):135-142.
    [93]Chaudhary S, Pinkston J, Rabile MM, Van Horn JD. Unusual reactivity in a commercial chromium supplement compared to baseline DNA cleavage with synthetic chromium complexes[J]. Journal of Inorganic Biochemistry.2005,99 (3):787-794.
    [94]Rhodes MC, Hebert CD, Herbert RA, Morinello EJ, Roycroft JH, Travlos GS, Abdo KM. Absence of toxic effects in F344/N rats and B6C3F1 mice following subchronic administration of chromium picolinate monohydrate[J]. Food and Chemical Toxicology. 2005,43 21-29.
    [95]Hepburn DDD, Xiao J, Bindom S, Vincent JB, ODonnell J. Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophilamelanogaster[l]. Proceedings of the National Academy of Sciences of the United States of Amicerica.2003, 100 (7):3766-3771.
    [96]Shrivastava HY, Ravikumar T, Shanmugasundaram N, Babu M, Unni Nair B. Cytotoxicity studies of chromium(Ⅲ) complexes on human dermal fibroblasts[J]. Free Radical Biology and Medicine.2005,38 (1):58-69.
    [97]Shara M, Yasmin T, Kincaid AE, Limpach AL, Bartz J, Brenneman KA, Chatterjee A, Bagchi M, Stohs SJ, Bagchi D. Safety and toxicological evaluation of a novel niacin-bound chromium (Ⅲ) complex[J]. Journal of Inorganic Biochemistry.2005,99 (11):2161-2183.
    [98]Deshmukh NS, Bagchi M, Lau FC, Bagchi D. Safety of a novel oxygen-coordinated niacin-bound chromium(Ⅲ) complex (NBC):I. Two-generation reproduction toxicity study[J]. Journal of Inorganic Biochemistry.2009,103 (12):1748-1754.
    [99]Deshmukh NS, Bagchi M, Lau FC, Bagchi D. Safety of an oxygen-coordinated niacin-bound chromium(Ⅲ) complex (NBC):II. Developmental toxicity study in rats[J]. Journal of Inorganic Biochemistry.2009,103 (12):1755-1760.
    [100]Shara M, Kincaid AE, Limpach AL, Sandstrom R, Barrett L, Norton N, Bramble JD, Yasmin T, Tran J, Chatterjee A, Bagchi M, Bagchi D. Long-term safety evaluation of a novel oxygen-coordinated niacin-bound chromium (Ⅲ) complex[J]. Journal of Inorganic Biochemistry.2007,101 (7):1059-1069.
    [101]Staniek H, Krejpcio Z, Iwanik K. Evaluation of the acute oral toxicity class of tricentric chromium(Ⅲ) propionate complex in rat[J]. Food and Chemical Toxicology.2010,48 (3): 859-864.
    [102]Staniek H, Kostrzewska-Poczekaj M, Arndt M, Szyfter K, Krejpcio Z. Genotoxicity assessment of chromium(Ⅲ) propionate complex in the rat model using the comet assay[J]. Food and Chemical Toxicology.2010,48 (1):89-92.
    [103]Staniek H, Krejpcio Z. The effects of tricentric chromium(Ⅲ) propionate complex supplementation on pregnancy outcome and maternal and foetal mineral status in rat[J]. Food and Chemical Toxicology.2009,47 (10):2673-2678.
    [104]刘红,李炳奇,孙延鸣.有机铬(Ⅲ)赘合物的合成及其应用研究[J].黑龙江畜牧兽医.2004,(3):46-47.
    [105]汪成,张泓绪,赵书清,张世平.葡萄糖酸铬合成方法的研究[J].化学与粘合.2001,(5):213-214.
    [106]Li F, Wu X, Zhao T, Zhang M, Zhao J, Mao Q Yang L. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats[J]. Journal of Trace Elements in Medicine and Biology.2011,25 (4):218-224.
    [107]Mccarty MF. Sub toxic intracellular trivalent chromium is not mutagenic:implications for safety of chromium supplementation[J]. Medical Hypotheses.1997,48:263-269.
    [108]Caballero AE. Long-term benefits of insulin therapy and glycemic control in overweight and obese adults with type 2 diabetes [J]. Journal of Diabetes and Its Complications 2009,23: 143-152.
    [109]Stearns DM, Wise JPSr, Patierno SR, Wetterhahn KE. Chromium(Ⅲ) picolinate produces chromosome damage in Chinese hamster ovary cells[J]. The FASEB Journal.1995,9 (15): 1643-1648.
    [110]邓文辉.水苏糖的功效及应用研究概述[J].饮料工业.2010,13(8):17-19.
    [111]黄晓春.水苏糖:适于开发多种功能食品[J].饮料工业.2008,11(6):41-42.
    [112]白小琼,孔德义.牛磺酸研究进展[J].中国食物与营养.2011,17(5):78-80.
    [113]吴军林,吴清平,张菊梅.L-苹果酸的生理功能研究进展[J].食品科学.2008,29(11):692-695.
    [114]Kim D-S, Kim T-W, Park I-K, Kang J-S, Om A-S. Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats[J]. Metabolism.2002,51 (5):589-594.
    [115]Bordbar A-K, Creagh AL, Mohammadi F, Haynes CA, Orvig C. Calorimetric studies of the interaction between the insulin-enhancing drug candidate bis(maltolato)oxovanadium(IV) (BMOV) and human serum apo-transferrin[J]. Journal of Inorganic Biochemistry.2009,103 (4):643-647.
    [116]Krishna Murthy B, Nammi S, Kota MK, Krishna Rao RV, Koteswara Rao N, Annapurna A. Evaluation of hypoglycemic and antihyperglycemic effects of Datura metel (Linn.) seeds in normal and alloxan-induced diabetic rats[J]. Journal of Ethnopharmacology.2004,91 (1): 95-98.
    [117]奚清丽,周伟.四氧嘧啶致小鼠糖尿病造模条件组合优化研究[J].江苏预防医学.2011,22(4):18-20.
    [118]袁伯俊,廖明阳,李波.药物毒理学实验方法与技术[M],化学工业出版社,2006.
    [119]李芳,吴向阳,仰榴青,邹艳敏,赵江丽,张蓉仙.芦丁铬和槲皮素铬配合物的合成及其结构表征[J].化学研究与应用.2009,21(6):899-902.
    [120]仰榴青,李芳,吴向阳,张敏,张蓉仙,闫舒[P].中国发明专利,公开号:CN200910232917.3,2009.
    [121]Halliwell B, Gutteridge J. Free radicals in Biology and Medicine[M] Oxford,1985.
    [122]Mansour HA, Newairy A-S A, Yousef MI, Sheweita SA. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats[J]. Toxicology.2002,170 (3): 221-228.
    [123]Machalinski B, Walczak M, Syrenicz A, Machalinska A, Grymula K, Stecewicz I, Wiszniewska B, Dabkowska E. Hypoglycemic potency of novel trivalent chromium in hyperglycemic insulin-deficient rats[J]. Journal of Trace Elements in Medicine and Biology. 2006,20 (1):33-39.
    [124]马华智,盛和章,秦爱平,施畅,李永涛,廖明阳.氯化铬和重铬酸钾毒性的比较研究[J].癌变·畸变·突变.2003,15(3):171-173.
    [125]Sugden KDG, R. D.; Rogers, S. J.. Oxygen radical mediated DNA damage by redox active chromium(Ⅲ) complexes[J]. Biochemistry.1992,31:11626-11631.
    [126]Beyersmann D, Koster A. On the role of trivalent chromium in chromium genotoxicity[J]. toxicological & environmental chemistry 1987,14:11-22.
    [127]Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG Cytotoxicity and oxidative mechanisms of different forms of chromium[J]. Toxicology.2002,180 (1):5-22.
    [128]Warren G, Schultz P, Bancroft D, Bennett K, Abbott EH, Rogers S. Mutagenicity of a series of hexacoordinate chromium(Ⅲ) compounds[J]. Mutation Research/Genetic Toxicology. 1981,90 (2):111-118.
    [129]Clodfelder BJ, Gullick BM, Lukaski HC, Neggers Y, Vincent JB. Oral administration of the biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats[J]. Journal of Biological Inorganic Chemistry.2005,10 (2):119-130.
    [130]Toraason M, Clark J, Dankovic D, Mathias P, Skaggs S, Walker C, Werren D. Oxidative stress and DNA damage in Fischer rats following acute exposure to trichloroethylene or perchloroethylene [J]. Toxicology.1999,138,43-53
    [131]Boiteux S, Radicella JP. The Human OGG1 Gene:Structure, Functions, and Its Implication in the Process of Carcinogenesis[J]. Archives of Biochemistry and Biophysics.2000,377 (1):1-8.
    [132]Andersson MA, Petersson Grawe KV, Karlsson OM, Abramsson-Zetterberg LAG, Hellman BE. Evaluation of the potential genotoxicity of chromium picolinate in mammalian cells in vivo and in vitro[J]. Food and Chemical Toxicology.2007,45 (7):1097-1106.
    [133]Coryell VH, Stearns DM. Molecular analysis of hprt mutations induced by chromium picolinate in CHO AA8 cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2006,610 (1-2):114-123.
    [134]Stallings DM, Hepburn DDD, Hannah M, Vincent JB, O'Donnell J. Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2006,610 (1-2):101-113.
    [135]Stearns DM, Silveira SM, Wolf KK, Luke AM. Chromium(Ⅲ) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2002,513 (1-2):135-142.
    [136]Jansen J, Karges W, Rink L. Zinc and diabetes - clinical links and molecular mechanisms[J]. The Journal of Nutritional Biochemistry.2009,20 (6):399-417.
    [137]Wilson JG, Lindquist JH, Grambow SC, Crook ED, Maher JF. Potential role of increased iron stores in diabetes[J].2003,325 (6):332-339.
    [138]Cooper GJS, Chan Y-K, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppitt SD. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals[J]. Diabetes.54(5): 1468-1476.
    [139]Tupe RS, Chiplonkar SA, Agte VV. Changes in zinc uptake in response to ascorbic acid and folic acid in rat liver slices under normal and oxidative stress conditions [J]. Biofactors.2007, 30 (1):27-34.
    [140]宋震玉.药物代谢研究一意义、方法、应用[M].人民卫生出版社:北京:1990.
    [141]陈建国.药理学[M].科学出版社,2007.
    [142]Martinez A, Suarez J, Shand T, Magliozzo RS, Sanchez-Delgado RA. Interactions of arene-Ru(Ⅱ)-chloroquine complexes of known antimalarial and antitumor activity with human serum albumin (HSA) and transferrin[J]. Journal of Inorganic Biochemistry.2011, 105 (1):39-45.
    [143]Sanna D, Garribba E, Micera G. Interaction of VO2+ ion with human serum transferrin and albumin[J]. Journal of Inorganic Biochemistry.2009,103 (4):648-655.
    [144]Montavon G, Apostolidis C, Bruchertseifer F, Repinc U, Morgenstern A. Spectroscopic study of the interaction of U(VI) with transferrin and albumin for speciation of U(Ⅵ) under blood serum conditions[J]. Journal of Inorganic Biochemistry.2009,103 (12):1609-1616.
    [145]Haber A, Agadjanian H, Medina-Kauwe LK, Gross Z. Corroles that bind with high affinity to both apo and holo transferrin [J]. Journal of Inorganic Biochemistry.2008,102 (3): 446-457.
    [146]Wilcox DE. Isothermal titration calorimetry of metal ions binding to proteins:An overview of recent studies[J]. Inorganica Chimica Acta.2008,361 (4):857-867.
    [147]王彦卿,张红梅,张根成.硅钨杂多酸与牛血红蛋白相互作用的研究[J].无机化学学报.2006,22(5):895-899.
    [148]Ross PD, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry.1981,20 (11):3096-3102.
    [149]陈克海,王玉莲,郭明,郑学仿,唐乾,马君燕,高大彬.长春新碱与牛血清白蛋白相互作用研究[J].光谱学与光谱学分析.2008,28(6):1375-1378.
    [150]Orsolic N, Knezevic AH, Sver L, Terzic S, Basic I. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds [J]. Journal of Ethnopharmacology. 2004,94 (2-3):307-315.
    [151]Wang ZQ, Zhang XH, Cefalu WT. Chromium picolinate and biotin enhance glycogen synthesis and glycogen synthase gene expression in human skeletal muscle culture[J]. Diabetes Research and Clinical Practice.2000,50 (Supplement 1):395-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700