用户名: 密码: 验证码:
高效降解生氰糖苷的工程菌株构建与亚麻籽发酵脱毒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻籽为一年生亚麻科草本植物亚麻(Linum usitatissimum L.)的种子,是世界十大油料之一。亚麻籽因富含α-亚麻酸和亚油酸等不饱和脂肪酸及木酚素而具有增强机体免疫力、延缓衰老、提高记忆力、降血脂血糖和抗肿瘤等保健功效。亚麻籽粕是亚麻籽榨油后副产物,它富含蛋白质和膳食纤维等营养成分,是优质的畜禽饲料和食品添加剂。然而,亚麻籽中含有生氰糖苷,它在β-葡萄糖苷酶的作用下可生成剧毒的氢氰酸。显然,亚麻籽中生氰糖苷的高效去除已成为亚麻籽开发利用时必须突破的关键技术问题。
     前人虽已建立多种去除亚麻籽中生氰糖苷的脱毒方法,如水煮法、烘烤法、微波法和溶剂提取法,但与传统的物理和化学脱毒方法相比,生物发酵脱毒法具有高效、节能、安全、环保等优点,并已被成功用于木薯生氰糖苷等的脱毒。然而,迄今为止尚未见到采用全生物发酵脱毒法去除亚麻籽中生氰糖苷的相关研究报道。
     作者在系统调研有关亚麻籽脱毒文献的基础上,选择对亚麻籽生氰糖苷具有高效降解能力的人肝脏β-葡萄糖苷酶和对氰根具有水解吸收作用的氰化物降解细菌Bacillus sp. CN-22的氰化物水合酶,采用基因工程技术成功构建了能同时分泌表达Bacillus sp. CN-22菌的氰化物水合酶和人β-葡萄糖苷酶的毕赤酵母工程菌株;在此基础上诱导该工程菌表达氰化物水合酶和β-葡萄糖苷酶,获得可用于亚麻籽脱氰的酶制剂及发酵脱毒的最优化条件,并取得了如下主要研究成果:
     (1)在降氰细菌Bacillus sp. CN-22降解氰化钾溶液的过程中,通过分析甲酸盐、甲酰胺、氨气和氰根浓度的变化以及NADPH对氰化钾降解速率的影响,获知氰化物水合酶为该细菌的主要氰化物降解酶。
     (2)以Bacillus sp. CN-22基因组DNA为模板,采用聚合酶链式反应(PCR)技术成功扩增得到氰化物水合酶基因(Ch);并以质粒pPIC9K为表达载体,成功构建出毕赤酵母分泌表达载体pPIC9K-Ch。
     (3)以人肝脏组织总RNA为模板,采用反转录-聚合酶链式反应(RT-PCR)技术,扩增获得人β-葡萄糖苷酶基因(Glu);并以质粒pPIC9K为表达载体,构建得到毕赤酵母分泌表达载体pPIC9K-Glu。
     (4)将毕赤酵母胞外分泌型表达载体pPIC9K-Ch和pPIC9K-Glu依次转化毕赤酵母GS115和重组菌株GS115-Ch的感受态细胞,通过载体与基因组DNA同源重组,首次成功构建可同时体外分泌表达氰化物水合酶和人β-葡萄糖苷酶的毕赤酵母工程菌株GS115-Ch-Glu。
     (5)以甲醇诱导表达目的蛋白氰化物水合酶和β-葡萄糖苷酶;SDS-PAGE分析结果表明,毕赤酵母工程菌株GS115-Ch-Glu的最佳诱导表达条件为0.5%甲醇、30°C、200rpm诱导表达48h;在该条件下,氰化物水合酶和β-葡萄糖苷酶分别占上清液总蛋白含量的8.9%和12.5%。
     (6)采用响应面分析方法,以亚麻籽生氰糖苷降解率和氰根残留浓度为响应值,对亚麻籽发酵脱毒体系和发酵脱毒条件进行优化研究,结果表明在25.0g亚麻籽,1.27g酶制剂,8.0g灭菌水,MgCl_2和MnCl_2各50mg于250mL广口锥形瓶内充分混合的脱毒体系下,将起始pH值调至6.3,当温度为46.8°C时,在密封静置发酵体系中脱毒48h后,亚麻籽中的生氰糖苷降解率高达99.26%,氰根残留量可降至0.015mg g~(-1)。
     (7)采用高效液相色谱(HPLC)和气相色谱-质谱(GC-MS)分析技术对发酵脱毒前后的亚麻籽样品中木酚素和脂肪酸含量进行比较研究,结果表明发酵脱毒前后亚麻籽样品中木酚素和脂肪酸含量无显著差异;这进一步证明本文所建立的全生物发酵脱毒方法不仅能高效去除亚麻籽中的生氰糖苷,而且还能有效保护亚麻籽中的生物活性物质在脱毒过程中免遭破坏。
Flaxseed, the seed of an annual herb plant flax (Linum usitatissimum L.), is oneof the ten important oilseeds in the world. Flaxseed, being a rich source of α-linolenicacid, linoleic acid and mammalian lignan precursors, imparts many health benefits,including anti-tumor, reducing blood lipid, improving memory, anti-ageing andenhancing immunity. Flaxseed meal, a by-product of the flaxseed after oil extraction,is available to high-quality forages and food additives due to being rich in protein,amino acid, dietary fiber and other nutrients. However, cyanogenic glycosides (CGs)in flaxseed can release extremely poisonous hydrocyanic acid (HCN) because of thecatalytic decomposition effect of intestinal β-glucosidases. Obviously, the efficientremoval of CGs has become a key technical problem which should be resolvedbeforehand in applications of flaxseed.
     The detoxification of CGs has been tried by diverse conventional methods, e.g.,boiling, roasting, microwave and solvent extraction. In contrast with the conventionalmethods, the fermentation detoxification method owns many advantages of highefficiency, energy saving, safety, and being friendly to the environment, and has beensuccessfully used to remove the CGs in several dietary plants such as cassava.However, no report on an entire fermentative method to detoxify CGs in flaxseed haspresented so far.
     Based on the overview of the references on the detoxification of CGs, thetechnology of genetic engineering was employed to successfully construct arecombinant strain of Pichia pastoris GS115-Ch-Glu, which could simultaneously secrete the recombinant proteins of Bacillus sp. CN-22cyanide hydratase and humanliver β-glucosidase. Then, an enzymatic preparation including12.5%human liverβ-glucosidase and8.9%(w:w) Bacillus sp. CN-22cyanide hydratase, which wasproduced by this recombinant strain, was used to detoxify of CGs in flaxseed. Finally,response surface methodology (RSM) was used to optimize the fermentationconditions. The main results of this paper are described as below:
     (1) The concentrations of formate, formamide and ammonia were determined,and the influence of NADH on the degradability of cyanide was assayed in thedegradation of KCN. The results showed that the cyanide hydratase was a majordegrading enzyme of cyanide-biodegradation in strain Bacillus sp. CN-22.
     (2) Using the genomic DNA of Bacillus sp. CN-22as a template, PCR wasperformed to amplify cyanide hydratase (Ch) gene. Then, the gene Ch was insertedinto an expression vector pPIC9K to get a recombinant plasmid pPIC9K-Ch.
     (3) Using the human liver total RNA as a template, RT-PCR was performed toamplify β-glucosidase (Glu) gene. Then, the gene Glu was inserted into theexpression vector pPIC9K to get a recombinant plasmid pPIC9K-Glu.
     (4) The recombinant plasmids pPIC9K-Ch and pPIC9K-Glu were transformedinto Pichia pastoris GS115and GS115-Ch in succession. By the homologousrecombination between recombinant plasmids and genome DNA of Pichia pastoris,an an engineering strain GS115-Ch-Glu, which could simultaneously secrete therecombinant proteins of Bacillus sp. CN-22cyanide hydratase and human liverβ-glucosidase, was successfully obtained for the first time.
     (5) Under the optimal fermentation conditions of30°C and200rpm, therecombinant strain GS115-Ch-Glu was cultured in flasks for48h to examine thesupernatant for the target proteins after being induced by0.5%methanol. As assessedby SDS-PAGE analysis, the contents of cyanide hydratase and β-glucosidase could beup to12.5%and8.9%of the total proteins in the supernatant, respectively.
     (6) By setting CGs degradability and residual cyanide as two response values,RSM was used to optimize the fermentation detoxification conditions. The optimalconditions were the combination of25g flaxseed,1.27g enzymatic preparation,8.0gsterilized water,50mg MgCl_2,50mg MnCl_2,46.8°C, pH6.3, and detoxification time48h. Under these conditions, the maximum CGs degradability and the concentrationof reidual cyanide are99.26%and0.015mg g~(-1), respectively.
     (7) The contents of lignans and fatty acids in the flaxseed samples before andafter fermentation detoxification were analyzed by high performance liquidchromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS),respectively. The results show that the detoxified flaxseed can retain the beneficialnutrients of lignans and fatty acids at the same level as untreated flaxseed, indicatingthat the newly-established fermentation method is suitable to remove the CGs inflaxseed, and useful to prepare the safe flaxseed products with the same levels ofbeneficial bioactive ingredients.
引文
[1] Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E, Vachani A,Solomides CC, Cengel KA, Christofidou-Solomidou M. Dietary flaxseedprevents radiation-induced oxidative lung damage, inflammation and fibrosis in amouse model of thoracic radiation injury. Cancer Biology and Therapy,2009,8:47–53.
    [2] Abuelgassim AO. Effect of flax seeds and date palm leaves extracts on serumconcentrations of glucose and lipids in alloxan diabetic rats. Pakistan Journal ofBiological Sciences,2010,13:1141–1145.
    [3] Makni M, Sefi M, Garouiel M, Fetoui H, Boudawara T, Zeghal N. Dietarypolyunsaturated fatty acid prevents hyperlipidemia and hepatic oxidant status inpregnant diabetic rats and their macrosomic offspring. Journal of DiabetesComplications,2011,25:267–274.
    [4] Sturgeon SR, Volpe SL, Puleo E, Bertone-Johnson ER, Heersink J, Sabelawski S,W h l K, Bigelow C, Kurzer MS. Dietary Intervention of Flaxseed: Effect onSerum Levels of IGF-1, IGF-BP3, and C-Peptide. Nutrition and Cancer,2011,63:376–380.
    [5] Puthpongsiriporn U, Scheideler SE. Effects of dietary ratio of linoleic to linolenicacid on performance, antibody production, and in vitro lymphocyte proliferationin two strains of leghorn pullet chicks. Poult Science,2005,84:846–857.
    [6] Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesityand diabetes. American Journal of Clinical Nutrition,2002,76:1191–1201.
    [7] Yuan JP, Li X, Xu SP, Wang JH, Liu X. Hydrolysis kinetics ofsecoisolariciresinol diglucoside oligomers from flaxseed. Journal of Agriculturaland Food Chemistry,2008,56:10041–10047.
    [8] Li X, Yuan JP, Xu SP, Wang JH, Liu X. Separation and determination ofsecoisolariciresinol diglucoside oligomers and their hydrolysates in the flaxseedextract by high-performance liquid chromatography. Journal of ChromatographyA,2008,1185:223–232.
    [9] Lamblin F, Hano C, Fliniaux O, Mesnard F, Fliniaux MA, Lainé E. Interest oflignans in prevention and treatment of cancers. Medical Science Paris,2008,24:511–519.
    [10] Morton MS, Chan PSF, Cheng C, Blacklock N, Matos-Ferreira A,Abranches-Monteiro L, Correia R, Lloyd S, Griffiths K. Lignans andisoflavonoids in plasma and prostatic fluid in men: samples from Portugal,Hongkong and the United Kingdom. Prostate,1997,32:122–128.
    [11] Adlercreutz H. Phytooestrogens and cancer. Lancet Oncology,2002,3:364–373.
    [12] Jenab M, Thompson LU. The influence of flaxseed and lignans on coloncarcinogenesis and β-glucuronidase activity. Carcinogenesis,1990,17:1343–1348.
    [13] Niemeyer HB, Metzler M. Differences in the antioxidant activity of plant andmammalian lignans. Journal of Food Engineering,2003,56:255–256.
    [14] Lee JC, Bhora F, Sun J, Cheng G, Arguiri E, Solomides CC, Chatterjee S,Christofidou-Solomidou M. Dietary flaxseed enhances antioxidant defenses andis protective in a mouse model of lung ischemia-reperfusion injury. AmericanJournal of Physiology-Lung Cellular and Molecular Physiology,2008,294:L255–265.
    [15] Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the developmentof type2diabetes in Zucker rat. Journal of Laboratory and Clinical Medicine,2001,138:32–39.
    [16]于修烛,李志西,杜双奎,侯倩华. α-亚麻酸保健功效及苏子油研究进展.粮油食品科技,2002,10:28–30.
    [17]丛涛,赵霖,鲍善芬,李珍,邹海民.低温冷榨亚麻籽油对生长期大鼠营养生理功能的影响.中国食物与营养,2009,9:51–54.
    [18] Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-ChoudhuryN. Fish oil prevents breast cancer cell metastasis to bone. Biochemical andBiophysical Research Communications,2010,402:602–607.
    [19]巩涛,李勇,郭建文,范立桥,赵群,王力利,宋振川,焦志凯,刘羽. ω-3多不饱和脂肪酸对人胃癌BGC-823细胞周期及凋亡的影响.中国临床营养杂志,2006,14:77–81.
    [20] Medeiros DM, Hampton M, Kurtzer K, Parelman M, Al-Tamimi E, Drouillard JS.Feeding enriched omega-3fatty acid beef to rats increases omega-3fatty acidcontent of heart and liver membranes and decreases serum vascular cell adhesionmolecule-1and cholesterol levels. Nutrition Research,2007,27:295–299.
    [21]胡鑫尧.亚麻种子及麻屑的综合利用.中国麻业,2003,25:235–238.
    [22]吴素萍.亚麻籽中α-亚麻酸的保健功能及提取技术.中国酿造,2010,215:7–11.
    [23]禹晓,邓乾春,黄庆德,黄凤洪,钮琰星,郭萍梅,刘昌盛.亚麻油的制油工艺及其开发利用研究进展.食品研究与开发,2011,32:147–153.
    [24]许晖,孙兰萍.亚麻籽脱毒的研究进展.中国食物与营养,2007,10:26–28.
    [25] Brenner J. Applications of essential fatty acids in skin care, cosmetics andcosmeceuticals. Comestics&Technology Magazine,2005,3:75–80.
    [26] Muir AD, Westcott ND. Flaxseed constituents and human health. London, UK,Taylor&Francis,2003, Chapter12:243–251.
    [27]张爱武,董斌,左璐雅.亚麻籽的营养及其在禽类饲料中的应用.饲料工业,2011,32:51–54.
    [28]孙中义.亚麻籽饲用研究进展.中国麻业科,2010,32:37–41.
    [29]王俊国,王新宇.亚麻(籽)油的精炼技术研究.粮油加工,2007,(1):47–48.
    [30] Jiao SS, Li D, Huang ZG, Bhandari B, Chen XD, Mao ZH. Optimization ofSupercritical Carbon Dioxide Extraction of Flaxseed Oil Using Response SurfaceMethodology. International Journal of Food Engineering,2008,4:1409–1426.
    [31] Vetter J. Plant cyanogenic glycosides. Toxicon,2000,38:11–36.
    [32] Wu M, Li D, Wang LJ, Zhou YG, Brooks MSL, Chen XD, Mao ZH. Extrusiondetoxification technique on flaxseed by uniform design optimization. Separationand Purification Technology,2008,61:51–59.
    [33] Madhusudha KT, Ramesh HP, Ogawa T, Sasoka K, Singh N. Detoxification ofcommercial linseed meal for use in Broiler Ration. Poultry Science,1986,65:164–171.
    [34]赵清华,杨宏志,孙伟洁,刘景文.亚麻籽微波脱毒与挤压膨化脱毒工艺研究.中国粮油学报,2008,23:103–106.
    [35] Feng DY, Shen YR, Chavez ER. Effectiveness of different processing methods inreducing hydrogen cyanide content of flaxseed. Journal of the Science of Foodand Agriculture,2003,83:836–841.
    [36]杨宏志,毛志怀.不同处理方法降低亚麻籽中氰化氢含量的效果.中国农业大学学报,2004,9:65–67.
    [37] Wanasundara JPD, Shahdi F. Alkanol–ammonia–water/hexane extraction offlaxseed. Food Chemistry,1994,49:39–44.
    [38] Bradbury JH. Simple wetting method to reduce cyanogen content of cassava flour.Journal of Food Composition and Analysis,2006,19:388–393.
    [39] Bradbury JH, Denton IC. Simple method to reduce the cyanogen content of garimade from cassava. Food Chemistry,2010,123:840–845.
    [40] Cardoso AP, Mirione E, Ernesto M, Massaza F, Cliff J, Haque MR, Bradbury JH.Processing of cassava roots to remove cyanogens. Journal of Food Compositionand Analysis,2005,18:451–460.
    [41] Sornyotha S, Kyu KL, Ratanakhanokchai K. An efficient treatment fordetoxification process of cassava starch by plant cell wall-degrading enzymes.Journal of Bioscience and Bioengineering,2010,109:9–14.
    [42] Yamashita T, Sano T, Hashimoto T, Kanazawa K. Development of a method toremove cyanogen glycosides from flaxseed meal. International Journal of FoodScience and Technology,2007,42:70–75.
    [43] Lei V, Amoa-Awua WKA, Brimer L. Degradation of cyanogenic glycosides byLactobacillus plantarum strains from spontaneous cassava fermentation and othermicroorganisms. International Journal of Food Microbiology,1999,53:169–184.
    [44] Vasconcellos SP, Cereda MP, Cagnon JR, Foglio MA, Rodrigues RA, Manfio GP, Oliveira VM. In vitro degradation of linamarin by microorganisms isolatedfrom cassava wastewater treatment lagoons. Brazilian Journal of Microbiology,2009,40:879–883.
    [45] Watanabe A, Yano K, Ikebukuro K, Karube I. Cloning and expression of a geneencoding cyanidase from Pseudomonas stutzeri AK61. Applied Microbiology andBiotechnology,1998,50:93–97.
    [46] Basile LJ, Willson RC, Sewell BT, Benedik MJ. Genome mining ofcyanide-nitrilases from filamentous fungi. Applied Microbiology andBiotechnology,2008,80:427–435.
    [47] Kunz DA, Nagappan O, Silva-Avalos J, Delong GT. Utilization of cyanide as anitrogenous substrate by Pseudomonas fluorescens NCIMB11764: evidence formultiple pathways of metabolic conversion. Applied and EnvironmentalMicrobiology,1992,58:2022–2029.
    [48] Fawcett JK, Scott JE. A rapid and precise method for the determination of urea.Journal of Clinical Pathology,1960,13:156–159.
    [49]黄思涵.氰降解菌的分离和鉴定及其降解特性研究.中山大学硕士学位论文,2011.
    [50]萨姆布鲁克,鲁塞尔,黄培堂.分子克隆实验指南(中译版)(第三版).北京:科学出版社,2002.
    [51]吴酬飞.以人胰葡萄糖激酶为靶的降糖活性因子筛选平台的建立.南昌大学硕士学位论文,2008.
    [52] Wu CF, Xu Y, Tao Y, Yang JY. Establishment of a hypoglycemic agentsscreening method based on Human glucokinase. Biomedical and EnviromentalSciences,2009,22:62–69.
    [53]涂追.橙色红曲菌(AS3.4384) SOD基因的克隆与功能分析.南昌大学硕士学位论文,2007.
    [54] Guo LX, Xu XM, Yuan JP, Wu CF, Wang JH. Characterization andauthentication of significant Chinese edible oilseed oils by stable carbon isotopeanalysis. Journal of the American Oil Chemists’ Society,2010,87:839–848.
    [55] Kunz DA, Wang CS, Chen JL. Alternative routes of enzymic cyanide metabolismin Pseudornonas fluorescens NCIMB I1764. Microbiology,1994,140:1705–1712.
    [56] Dash RR, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and itsremoval: A review on biotreatment. Journal of Hazardous Materials,2009,163:1–11.
    [57] Dursun AY, al k A, Aksu Z. Degradation of ferrous (II) cyanide complex ion byPseudomonas fluorescens. Process Biochemistry,1999,34:901–908.
    [58] Kao CM, Liu JK, Lou HR, Lin CS, Chen SC. Biotransformation of cyanide tomethane and ammonia by Klebsiella oxytoca. Chemosphere,2003,50:1055–1061.
    [59] Dash RR, Majumder CB, Kumar A. Treatment of metal cyanide bearingwastewater by simultaneous adsorption biodegradation (SAB). Journal ofHazardous Materials,2008,152:387–396.
    [60] Gurbuz F, Ciftci H, Akcil A. Biodegradation of cyanide containing effluents byScenedesmus obliquus. Journal of Hazardous Materials,2009,162:74–79.
    [61]林晨,甘莉,陈祖亮.纺锤芽孢杆菌降解水中萘的特性研究.中国给水排水,2010,26:76–79.
    [62] Castric PA, Strobel GA. Cyanide metabolism by Bacillus megaterium. AmericanSociety of Biological Chemists,1969,244:4089–4094.
    [63] Meyers PR, Gokool P, Rawlings DE, Woods DR. An efficient cyanide-degradingBacillus pumilus strain. Journal of General Microbiology,1991,137:1397–1400.
    [64]马溪平,戴丹丹,王鹏,李彬.细菌降解氰的研究.辽宁大学学报,1997,24:89–93.
    [65] Hill BC, Peterson J. Spectral and cyanide binding properties of the cytochromeaa3(600nm) complexfrom Bacillus subtilis. Archives of Biochemistry andBiophysics,1998,350:273–282.
    [66] Akcil A, Karahan AG, Ciftci H, Sagdic O. Biological treatment of cyanide bynatural isolated bacteria (Pseudomonas sp.). Minerals Engineering,2003,16:643–649.
    [67] Dumestre A, Chone T, Portal J, Gerard M, Berthelin J. Cyanide degradationunder alkaline conditions by a strain of Fusarium solani isolated fromcontaminated soils. Applied and Environmental Microbiology.1997,63:2729–2734.
    [68] Peral J, Domenech X. Photocatalytic cyanide oxidation from aqueous coppercyanide solutions over TiO2and ZnO. Journal of Chemical Technology&Biotechnology,1992,53:93–96.
    [69] Skowronski B, Strobel GA. Cyanide resistance and cyanide utilization by a strainof Bacillus pumilus. Canadian Journal of Microbiology.1969,15:93–98.
    [70] Shivaraman N, Parhad NM. Biodegradation of cyanide by Pseudomonasacidovarans and influence of pH and phenol. Indian Journal of EnvironmentalHealth,1985,27:1–8.
    [71] Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilizedcells on the treatment of cyanide wastewater. Chemosphere,2008,71:133–139.
    [72] Watanabe A, Yano K, Ikebukuro K, Karube I. Cyanide hydrolysis in acyanidedegrading bacterium, Pseudomonas stutzeri AK61by cyanidase.Microbiology,1998,144:1677–1682.
    [73] White DM, Schnabel W. Treatment of cyanide waste in a sequencing batchbiofilm reactor. Water Research,1998,32:254–257.
    [74] Babu GRV, Wolfram JH, Chapatwala KD. Conversion of sodium cyanide tocarbon dioxide and ammonia by immobilized cells of Pseudomonas putida.Journal of Industrial Microbiology and Biotechnology,1992,9:235–238.
    [75] Nazly N, Knowles CJ, Beardsmore AJ, Naylor WT, Corcoran EG. Detoxificationof cyanide by immobilised fungi. Journal of Chemical Technology andBiotechnology,1983,33:119–126.
    [76] Figueira MM, Ciminelli VST, de Andrade MC, Linardi VR. Cyanide degradationby an Eschericia coli strain, Canadian Journal of Microbiology.1996,42:519–523.
    [77] Adjei MD, Ohta Y. Purification and properties of a cyanide-degrading enzymefrom Burkholderia cepacia strain C-3. World Journal of Microbiology andBiotechnology,2000,16:171–175.
    [78] Ezzi MI, Lynch JM. Biodegradation of cyanide by Trichoderma spp. andFusarium spp. Enzyme and Microbial Technology,2005,36:849–854.
    [79] O'Reilly C, Turner PD. The nitrilase family of CN hydrolysing enzymes–acomparative study. Journal of Applied Microbiology.2003,95:1161–1174.
    [80] Cluness MJ, Turner PD, Clements E, Brown DT, O'Reilly C. Purification andproperties of cyanide hydratase from Fusarium lateritium and analysis of thecorresponding chy1gene. Journal of General Microbiology.1993,139:1807–1815.
    [81] LaMarco KL, Glew RH. Hydrolysis of a naturally occurring β-glucoside by abroad-specificity beta-glucosidase from liver. Biochemistry Journal,1986,237:469–476.
    [82] de Graaf M, van Veen IC, van der Meulen-Muileman IH, Gerritsen WR, PinedoHM, Haisma HJ. Cloning and characterization of human liver cytosolicbeta-glycosidase. Biochemistry Journal,2001,356:907–910.
    [83] Minami Y, Shigeta Y, Tokumoto U, Tanaka Y, Yonekura-Sakakibara K, Oh-oka H,Matsubara H. Cloning, sequencing, characterization, and expression of abeta-glucosidase cDNA from the indigo plant. Plant Science,1999,142:219–226.
    [84]李远华,江昌俊,杨顺利,余有本.茶树β-葡萄糖苷酶cDNA克隆和原核表达.农业生物技术学报,2004,12:625–629.
    [85] Li Y, Liu Z, Cui F, Liu Z, Zhao H. Application of Plackett-Burman experimentaldesign and Doehlert design to evaluate nutritional requirements for xylanaseproduction by Alternaria mali ND-16. Applied Microbiology Biotechnology,2007,77:285–291.
    [86] Santos LO, Gonzales TA, Ubeda BT, Monte Alegre R. Influence of cultureconditions on glutathione production by Saccharomyces cerevisiae. AppliedMicrobiology Biotechnology,2007,77:763–769.
    [87]石勇,谢爱娣,罗璇,王金华.红酵母产类胡萝卜素固态发酵工艺条件的研究.生物技术,2006,16:65–68.
    [88] Sen R, Swaminathan T. Response surface modeling and optimization to elucidateand analyze the effect of inoculum age and size on surfactin production.Biochemical Engineering Journal,2004,21:141–148.
    [89] Padmaja G. Cyanide detoxification in cassava for food and feed use. CriticalReviews in Food Science and Nutrition,1995,35:299–339.
    [90] Nout MJR, Tuncel G, Brimer L. Microbial degradation of amygdalin of bitterapricot seeds (Prunus armeniaca). International Journal of Food Microbiology,1995,24:407–412.
    [91] Tuncel G, Nout MJR, Brimer L. Toxicological, nutritional and microbiologicalevaluation of tempe fermentation with Rhizopus oligosporus of bitter and sweetapricot seeds. International Journal of Food Microbiology,1990,11:337–344.
    [92] Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chen ZY, WoleverTM, Jenkins DJ. High alphalinolenic acid flaxseed (Linum usitatissimum): somenutritional properties in humans. British Journal of Nutrition,1993,69:443–453.
    [93] British Nutrition Foundation. Unsaturated fatty acids-nutritional andphysiological significance: The report of the British Nutrition Foundation’s taskforce. London: Chapman&Hall.1992:152–163.
    [94]陈海华.亚麻籽的营养成分及开发利用.中国油脂,2004,6:73–74.
    [95] Nicolle C, Manach C, Morand C, Mazur W, Adlercreutz H, Rémésy C, Scalbert A.Mammalian lignan formation in rats fed a wheat bran diet. Journal of AgriculturalFood Chemistry,2002,50:6222–6226.
    [96]张文举.高效降解棉酚菌种的选育及棉粕生物发酵的研究.浙江大学硕士学位论文,2006.
    [97]赵顺红.棉粕生物发酵脱毒效果.石河子大学硕士学位论文,2007.
    [98]朱德伟,刘志鹏,蔡国林,曹钰,王兴国,陆健.高效降解棉酚菌种的筛选及棉粕发酵脱毒工艺研究.油脂蛋白,2010,35:24–28.
    [99]叶龙祥,牛兴亮.菜籽粕混菌发酵脱毒研究.粮食与食品工业,2010,17:41–44.
    [100] Dent KC, Weber BW, Benedik MJ, Sewell BT. The cyanide hydratase fromNeurospora crassa forms a helix which has a dimeric repeat. AppliedMicrobiology and Biotechnology,2009,82:271–278.
    [101] Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T. Expressionin the yeast Pichia pastoris. Methods in Enzymology,2009,463:169–189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700