用户名: 密码: 验证码:
PTV用于柴油机燃烧过程中气/颗粒相多环芳香烃分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以全气缸取样系统为基础,结合先进的仪器分析方法,研究了在柴油燃烧过程中气相/颗粒相多环芳香烃(Polycyclic Aromatic Hydrocarbons, PAHs)的分布特性。实验采用聚氨酯泡沫/树脂(PUF/XAD-2/PUF)吸附柱和玻璃纤维滤膜分别收集柴油燃烧过程中气相和颗粒相PAHs。由于柴油燃烧过程生成的PAHs在单一工作循环中位于超痕量水平,因此在气相色谱-质谱联用仪(Gas Chromatography - Mass Spectrometric, GC-MS)上选择了程序升温大体积进样方法(Programmed Temperature Vaporization, PTV),并使用试验设计对PTV的进样参数进行优化,结果表明该方法能完全满足超痕量PAHs的分析要求。在此分析方法的基础上,使用CO_2模拟废气再循环(EGR),进一步研究了EGR对柴油燃烧过程中气相/颗粒相PAHs分布特性的影响。研究结果表明:
     1、使用PUF/XAD-2/PUF吸附柱及玻璃纤维滤膜对气相/颗粒相PAHs采样,回收率范围分别是71.83%~98.64%和86.41%~118.35%。采用2水平全因子设计和中心复合设计法优化PTV进样条件,分别对进样量为50μL和25μL两个条件下PTV参数进行优化,最终采取PTV进样量为25μL的分析方法,因子优化结果的综合合意性为0.83。PTV大体积进样与分流/不分流进样方式相比,既简化样品分析步骤,又不影响分离效果,25μL进样量时检出限提高3.8~59.2倍。
     2、柴油机在在整个燃烧过程中,总PAHs(滤膜+吸附柱上PAHs)的质量在有EGR的工况下随着燃烧的进行先增大后减小,无EGR的工况下先降低再升高,最后再降低。各工况燃烧结束时,总PAHs的质量在EGR率为19.5%时最低。
     3、在整个燃烧过程中,气相PAHs质量占总PAHs质量的95.15%以上,萘在气相PAHs中含量最多,占97.7%以上,其中燃烧初期和中期最易生成PAHs。燃烧进行时,低环数的萘、苊烯、苊、芴和菲的生成量较多;燃烧结束时,颗粒相PAHs中3环组分占33.5%~49.3%,其中以荧蒽和菲的含量最多,气相PAHs中含量最多的是萘,占99%以上。
     4、柴油机燃烧过程中,PAHs在气相的比例随着PAHs分子量的增加而降低。挥发性最强的PAHs主要存在于气相中,4环以上PAHs多吸附在颗粒上,而部分中间的3环和4环PAHs则在两相中均衡分布。燃烧结束时,各种PAHs在气相中的比例随EGR率的增加而降低。
The gas/particle phase distribution of polycyclic aromatic hydrocarbons (PAHs) during diesel combustion process was investigated with advanced instrument analysis methods, and all samples were obtained from the total cylinder dumping system. The particle-phase PAHs were trapped with a glass fiber filter, and the gas-phase PAHs were captured passing through a glass cartridge packed with XAD-2 resin supported by two polyurethane foam (PUF) plugs. Since the PAHs for a single combustion cycle was at a ultra-trace level, the analysis of ultra-trace PAHs were carried out by gas chromatography with mass spectrometric detection (GC–MS) coupled with large-volume programmed temperature vaporization (PTV) injection. The large-volume PTV injection settings were optimized using a statistical design of experiments, and the results indicated that the requirement of analyzing PAHs at the ultra-trace levels can be well met by this method. In light of the method above, the influence of exhaust gas recirculation (EGR), which was efficiently simulated with the CO_2 addition, on the distribution of the gas/particle phase PAHs during the combustion process was studied. The major achievements are listed as follows:
     1. The method of selecting a cartridge packed with XAD-2 resin and a glass fiber filter for collecting gas-phase and particle-phase PAHs was reliable, with the PAHs recoveries in the range of 71.83% - 98.64% for the cartridge and 86.41% - 118.35% for the fiber filter. The large-volume PTV injection settings for 50μL injection and 25μL injection were all optimized using two-level full factorial designs and central composite designs (CCD) of experiments. The final injection volume was chosen as 25μL, and the optimized factor settings for 25μL injection provided a composite desirability of 0.83. The large-volume PTV injection method simplified sample analysis steps without affecting the separation effect. For 25μL injection, an increase in sensitivity was 3.8 - 59.2 times as compared with the conventional splitless injection.
     2. With the presence of EGR, the total PAHs (PAHs on filter+ cartridge) increased at first, and then decreased as the combustion went on; with the absence of EGR, the total PAHs decreased at the beginning and then increased later, but decreased again at the end of the combustion process. At the end of the combustion process, the minimum of the total PAHs could be obtained at the EGR rate of 19.5%.
     3. Throughout the combustion period, gas-phase PAHs acted as a contribution of more than 95.15% in the total PAHs, and naphthalene was the most abundant gas-phase PAHs, exceeding 97.7% of gas-phase PAHs. Of the total analyzed PAHs, the two- and three-ring PAHs such as naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene were the dominant species during the combustion process. At the end of the combustion, the PAHs with three-ring arrangement accounted for 33.5% - 49.3% of the total particle-phase PAHs, and fluoranthene and pyrene were the most abundant. In gas-phase PAHs, naphthalene was found to prevail, which accounted for more than 97.7%.
     4. During the combustion process, the more the molecular weight of PAH, the lower the proportions of in the gas-phase. The most volatile PAHs were mainly found in the gas-phase, whereas four-ring PAHs and higher-ring PAHs were predominantly absorbed into the particles. Most of three- and four-ring PAHs exhibited an intermediate behavior. A negative correlation was also found between EGR rate and the PAHs distributions in gas-phase at the end of the combustion process.
引文
[1]杨家林,环保节能重载,呼唤动力“柴油化”时代的到来,改装车聚焦,2006,(06)
    [2]李胜茂,2010-2015年中国发动机行业投资分析及前景预测报告(上下卷):中投顾问,2010,416
    [3] Lewtas J,Evaluation of the Mutagenicity and Carcinogenicity of Motor Vehicle Emissions in Short-Term Bioassays.,Environ Health Persp,1983,47:141
    [4] Pope C A,Schwartz J,Ransom M R,Daily Mortality and Pm1O Pollution in Utah Valley,Arch Environ Health,1992,47(3):211~217
    [5]岳敏,谷学新,邹洪等,多环芳烃的危害与防治,首都师范大学学报:自然科学版,2003,24(003):40~44
    [6] Yus V,Quintas G,Pardo O,et al,Determination of Pahs in Airborne Particles by Accelerated Solvent Extraction and Large-Volume Injection-Gas Chromatography-Mass Spectrometry,Talanta,2006,69(4):807~815
    [7] Kertész-Sáringer M,Morlin Z,On the Occurrence of Polycyclic Aromatic Hydrocarbons in the Urban Area of Budapest,Atmospheric Environment (1967),1975,9(9):831~834
    [8] Yamasaki H,Kuwata K,Miyamoto H,Effects of Ambient Temperature On Aspects of Airborne Polycyclic Aromatic Hydrocarbons,Environmental Science and Technology,1982,16(4):189~194
    [9] Bidleman T F,Atmospheric Processes.,Environ Sci Technol,1988,22(4):361~367
    [10] Goss K U,Eisenreich S J,Sorption of Volatile Organic Compounds to Particles From a Combustion Source at Different Temperatures and Relative Humidities,Atmos Environ,1997,31(17):2827~2834
    [11] Goss K U,The Air/Surface Adsorption Equilibrium of Organic Compounds Under Ambient Conditions,Crit Rev Env Sci Tec,2004,34(4):339~389
    [12] Elghawi U M,Mayouf A,Tsolakis A,et al,Vapour-Phase and Particulate-Bound Pahs Profile Generated by a (Si/Hcci) Engine From a Winter Grade Commercial Gasoline Fuel,Fuel,2010,In Press, Corrected Proof
    [13] Spezzano P,Picini P,Cataldi D,Gas- And Particle-Phase Distribution of Polycyclic Aromatic Hydrocarbons in Two-Stroke, 50-Cm3 Moped Emissions,Atmos Environ,2009,43(3):539~545
    [14] Zielinska B,Sagebiel J,Arnott W P,et al,Phase and Size Distribution of Polycyclic Aromatic Hydrocarbons in Diesel and Gasoline Vehicle Emissions,Environ Sci Technol,2004,38(9):2557~2567
    [15]张永铭,居钰生,王吉华等,冷Egr技术对柴油机性能及排放的影响,现代车用动力,2008,3
    [16] Baert R,Beckman D E,Veen A,Efficient Egr Technology for Future Hd Diesel Engine Emission Targets,SAE transactions,1999,108(4):381~393
    [17]平银生,侯洪川,利用Egr降低柴油机排放的研究,内燃机工程,2000,21(004):6~10
    [18] Westerholm R N,Almen J,Li H,et al,Chemical and Biological Characterization of Particulate-, Semivolatile-, And Gas-Phase-Associated Compounds in Diluted Heavy-Duty Diesel Exhausts: A Comparison of Three Different Semivolatile-Phase Samplers,Environ Sci Technol,1991,25(2):332~338
    [19] Schauer J J,Kleeman M J,Cass G R,et al,Measurement of Emissions From Air Pollution Sources. 2. C1 through C30 Organic Compounds From Medium Duty Diesel Trucks,Environ Sci Technol,1999,33(10):1578~1587
    [20]务宗伟,大体积进样与分流/不分流进样气相色谱/质谱测定二噁英的对比,环境监测管理与技术,2008,20(005):48~51
    [21] Norlock F M,Jang J K,Zou Q,et al,Large-Volume Injection Ptv-Gc-Ms Analysis of Polycyclic Aromatic Hydrocarbons in Air and Sediment Samples.,Journal of the Air & Waste Management Association (1995),2002,52(1):19
    [22]刘玲,程序升温汽化大体积进样Gc/Ms分析痕量氯霉素,分析仪器,2005,(002):16~19
    [23] Stone N,采用大气压电喷雾(Api-Esi)质谱和液体样品直接大体积进样技术检测饮用和地下水中的苯基脲类和三嗪类除草剂,环境化学,2005,24(2)
    [24]姜俊,郝苗,佟克兴等,大体积进样气相色谱法测定空气中的痕量苯,化学分析计量,2004,13(003):42~43
    [25]周仕禄,许锴霖,董永智等,Ptv-Gc/Ms-Sim法检测卷烟烟气中的B [a] P,中国烟草科学,2007,28(002):19~22
    [26]堀口博著,安家驹译,公害与毒物、危险物:无机篇,北京:化学工业出版社,1981
    [27]蹇兴超,多环芳烃(Pah)的污染,环境保护,1995,(010):31~33
    [28]刘维立,朱先磊,大气中多环芳烃的来源及采样方式的研究,城市环境与城市生态,1999,12(005):58~60
    [29]蔚隽,西安市机动车排放尾气中多环芳烃对大气环境的影响研究,[硕士学位论文],西安建筑科技大学,2006
    [30] Burtscher H,Physical Characterization of Particulate Emissions From Diesel Engines: A Review,J Aerosol Sci,2005,36(7):896~932
    [31]陈生齐,柴油机燃烧过程中多环芳香烃生成机理的多维数值研究,[硕士学位论文],天津大学,2008
    [32]解茂昭著,内燃机计算燃烧学,大连:大连理工大学出版社,2005,380
    [33] Miguel A H,Kirchstetter T W,Harley R A,et al,On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon From Gasoline and Diesel Vehicles,Environ. Sci. Technol,1998,32(4):450~455
    [34]朱利中,刘勇建,沈红心等,公路隧道空气中多环芳烃的污染现状及影响因素分析,中国环境科学,1999,(03):201~205
    [35] Westerholm R,Li H,A Multivariate Statistical Analysis of Fuel-Related Polycyclic Aromatic Hydrocarbon Emissions From Heavy-Duty Diesel Vehicles,Environ Sci Technol,1994,28(5):965~972
    [36]王静,朱利中,空气中多环芳烃的污染源研究,浙江大学学报(理学版),2001,(03):303~308
    [37] Bjorseth A,Ramdahl T,Sources and Emissions of Pah,Handbook of polycyclic aromatic hydrocarbons,1985,2:1~20
    [38] Lee J J,Huang K L,Yu Y Y,et al,Laboratory Retention of Vapor-Phase Pahs Using Xad Adsorbents,Atmos Environ,2004,38(36):6185~6193
    [39] Jennings W,气相色谱分析样品制备,北京:中国石化出版社,107
    [40]陈进生,袁东星,燃煤烟气中多环芳烃富集技术研究,热力发电,2006,35(008):1~3
    [41] Siegl W O,Hammerle R H,Herrmann H M,et al,Organic Emissions Profile for a Light-Duty Diesel Vehicle,Atmos Environ,1999,33(5):797~805
    [42] Schulz H,De Melo B,Volatile Organic Compounds and Particulates as Components of Diesel Engine Exhaust Gas,Combust Flame,1999,118(1-2):179~190
    [43]张淑芳,大气环境中多环芳烃的存在状态及其采样装置的研究,环境科学丛刊,1991,12(004):11~20
    [44]朱利中,王静,杜烨等,汽车尾气中多环芳烃(Pahs)成分谱图研究,环境科学,2003,24(003):26~29
    [45]姚渭溪,何宇联,超声提取环境样品中苯并(a)芘的研究,环境科学,1982,3(1):18~21
    [46]沈学优,刘勇建,空气中多环芳烃的研究进展,环境污染与防治,1999,21(006):32~35
    [47] Dean J R,Extraction Methods for Environmental Analysis:Wiley Chichester etc,1998
    [48] Gundel L A,Daisey J M,De Carvalho L,et al,Polar Organic Matter in Airborne Particles: Chemical Characterization and Mutagenic Activity,Environ Sci Technol,1993,27(10):2112~2119
    [49]梁汉昌编著,痕量物质分析气相色谱法,北京:中国石化出版社,2000,280
    [50] Kayali M N,Barroso R,Polo-Diez L M,Rapid Pah Determination in Urban Particulate Air Samples by Hplc Eith Fluorometric Detection and Programmed Excitation and Emission Wavelength Pairs,Chromatogr. Sci,1995,33:181~185
    [51]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究,[博士学位论文],天津大学,2007
    [52]陈群,刘巽俊,李骏等,Ca498车用柴油机Egr的试验研究,内燃机学报,2001,(06):557~561
    [53] Du C J,Kittelson D B,Total Cylinder Sampling From a Diesel Engine: Part Iii-Particle Measurements,1983,
    [54] Manoli E,Kouras A,Samara C,Profile Analysis of Ambient and Source Emitted Particle-Bound Polycyclic Aromatic Hydrocarbons From Three Sites in Northern Greece,Chemosphere,2004,56(9):867~878
    [55] Vaz J M,Screening Direct Analysis of Pahs in Atmospheric Particulate Matter with Spme,Talanta,2003,60(4):687~693
    [56]胡振元,气相色谱的程序升温蒸发中大体积进样技术,化学世界,1998,39(010):507~511
    [57] Vermeulen A,Welvaert K,Vercammen J,Evaluation of a Dedicated Gas Chromatography-Mass Spectrometry Method for the Analysis of Phenols in Water,J Chromatogr A,2005,1071(1-2):41~46
    [58] Kristenson E M,Angioi S,Vreuls R,et al,Miniaturised Pressurised Liquid Extraction of Chloroanilines From Soil with Subsequent Analysis by Large-Volume Injection-Gas Chromatography-Mass Spectrometry,J Chromatogr A,2004,1058(1-2):243~249
    [59] Eppe G,Focant J F,Pirard C,et al,Ptv-Lv-Gc/Ms/Ms as Screening and Complementary Method to Hrms for the Monitoring of Dioxin Levels in Food and Feed,Talanta,2004,63(5):1135~1146
    [60] Covaci A,de Boer J,Ryan J J,et al,Determination of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Human Adipose Tissue by Large-Volume Injection- Narrow-Bore Capillary Gas Chromatography/Electron Impact Low-Resolution Mass Spectrometry,Anal. Chem,2002,74(4):790~798
    [61] Teske W,Methods for, and Applications of, Large-Volume Injection in Capillary Gas Chromatography,TRAC Trends in Analytical Chemistry,2002,21(9-10):584~593
    [62] Massart D L,Vandeginste B,Buydens L,et al,Data Handling in Science and Technology 20a: Handbook of Chemometrics and Qualimetrics Part a,1997,
    [63]张驰编著,六西格玛试验设计,广州:广东经济出版社,2003,384
    [64]杨铭,Minitab用于中心复合设计与数据处理,药学服务与研究,2007,7(003):231~234
    [65] Westerholm R,Li H,A Multivariate Statistical Analysis of Fuel-Related Polycyclic Aromatic Hydrocarbon Emissions From Heavy-Duty Diesel Vehicles,Environ Sci Technol,1994,28(5):965~972
    [66]杨铁皂,刘文艺,宋崇林等,包含Pah的正庚烷燃烧简化机理,拖拉机与农用运输车,2009,(02):79~81
    [67]王立群,闫民,Egr对柴油机燃烧影响模拟,科技导报,2010,(003):100~104
    [68]马鑫,柴油均质充量压燃微粒演化历程及非常规排放研究,[硕士学位论文],天津大学,2009
    [69]张振东朱A刘A,废气再循环对车用柴油机性能与排放的影响,汽车工程,2004,(02):145~148
    [70] Thrane K E,Mikalsen A,High-Volume Sampling of Airborne Polycyclic Aromatic Hydrocarbons Using Glass Fibre Filters and Polyurethane Foam,Atmospheric Environment (1967),1981,15(6):909~918
    [71]魏象仪著,内燃机燃烧学,大连:大连理工大学出版社,1992
    [72]于晓丽,张江,多环芳烃污染与防治对策,油气田环境保护,1996,(04):53~56
    [73] Marr L C,Kirchstetter T W,Harley R A,et al,Characterization of Polycyclic Aromatic Hydrocarbons in Motor Vehicle Fuels and Exhaust Emissions,Environ. Sci. Technol,1999,33(18):3091~3099

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700